Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems

Giordano Scarciotti

This is a joint work with Alessandro Astolfi

Workshop on Model Order Reduction of Transport-dominated Phenomena, Berlin, Germany

May 19-20, 2015

G. Scarciotti is with CAP EEE, Imperial College London.

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Moments - Interpolation approach

Moments - Interpolation approach

Moments - Interpolation approach

Let

$$V = \left[(s^*I - A)^{-1}B, \ (s^*I - A)^{-2}B, \ \dots, \ (s^*I - A)^{-k}B \right],$$

be the generalized reachability matrix and W any matrix such that

 $W^*V = I$

Then a reduced order model which matched the moments of the system at s^* is described by the equations

$$\dot{\xi} = W^* A V \xi + W^* B u$$

 $y = C V \xi + D u$

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Imperial College Moments - Time domain approach

Consider a linear, single-input, single-output, continuous-time, system described by the equations

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad y(t) = Cx(t) \tag{1}$$

and let

$$W(s) = C(sI - A)^{-1}B$$

be the associated transfer function.

Definition

The 0-moment of system (1) at $s_i \in \mathbb{C}$ is the complex number $\eta_0(s_i) = C(s_i I - A)^{-1}B$. The *k*-moment of system (1) at $s_i \in \mathbb{C}$ is the complex number

$$\eta_k(s_i) = \frac{(-1)^k}{k!} \left[\frac{d^k}{ds^k} (C(sI - A)^{-1}B) \right]_{s=s_i}$$

with $k \ge 1$ and integer.

Imperial College Moments - Time domain approach

Consider a linear, single-input, single-output, continuous-time, system described by the equations

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad y(t) = Cx(t) \tag{1}$$

and let

$$W(s) = C(sI - A)^{-1}B$$

be the associated transfer function.

Definition

The 0-moment of system (1) at $s_i \in \mathbb{C}$ is the complex number $\eta_0(s_i) = C(s_i I - A)^{-1} B$. The *k*-moment of system (1) at $s_i \in \mathbb{C}$ is the complex number

$$\eta_k(s_i) = \frac{(-1)^k}{k!} \left[\frac{d^k}{ds^k} (C(sI - A)^{-1}B) \right]_{s=s_i}$$

with $k \ge 1$ and integer.

Imperial College Moments - Time domain approach

Consider a linear, single-input, single-output, continuous-time, system described by the equations

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad y(t) = Cx(t) \tag{1}$$

and let

$$W(s) = C(sI - A)^{-1}B$$

be the associated transfer function.

Definition

The 0-moment of system (1) at $s_i \in \mathbb{C}$ is the complex number $\eta_0(s_i) = C(s_i I - A)^{-1}B$. The *k*-moment of system (1) at $s_i \in \mathbb{C}$ is the complex number

$$\eta_k(s_i) = rac{(-1)^k}{k!} \left[rac{d^k}{ds^k} (C(sI - A)^{-1}B)
ight]_{s=s_i}$$

with $k \ge 1$ and integer.

Moments - Time domain approach

Lemma

Suppose $s_i \notin \sigma(A)$. Then there exists a one-to-one relation between the moments $\eta_0(s_1), \ldots, \eta_{k_1}(s_1), \ldots, \eta_0(s_\eta), \ldots, \eta_{k_\eta}(s_\eta)$ and the matrix $C\Pi$, where Π is the unique solution of the Sylvester equation

 $A\Pi + BL = \Pi S$,

with $S \in \mathbb{R}^{\nu \times \nu}$ any non-derogatory matrix with characteristic polynomial $p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i}$, where $\nu = \sum_{i=1}^{\eta} k_i$, and L such that the pair (L, S) is observable.

K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction and the solution of Sylvester equations, in Proc. MTNS, Kyoto, Japan, 2006.

Moments - Time domain approach

Lemma

Suppose $s_i \notin \sigma(A)$. Then there exists a one-to-one relation between the moments $\eta_0(s_1), \ldots, \eta_{k_1}(s_1), \ldots, \eta_0(s_\eta), \ldots, \eta_{k_\eta}(s_\eta)$ and the matrix $C\Pi$, where Π is the unique solution of the Sylvester equation

 $A\Pi + BL = \Pi S$,

with $S \in \mathbb{R}^{\nu \times \nu}$ any non-derogatory matrix with characteristic polynomial $p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i}$, where $\nu = \sum_{i=1}^{\eta} k_i$, and L such that the pair (L, S) is observable.

K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction and the solution of Sylvester equations, in Proc. MTNS, Kyoto, Japan, 2006.

Moments - Time domain approach

Lemma

Suppose $s_i \notin \sigma(A)$. Then there exists a one-to-one relation between the moments $\eta_0(s_1), \ldots, \eta_{k_1}(s_1), \ldots, \eta_0(s_\eta), \ldots, \eta_{k_\eta}(s_\eta)$ and the matrix $C\Pi$, where Π is the unique solution of the Sylvester equation

 $A\Pi + BL = \Pi S$,

with $S \in \mathbb{R}^{\nu \times \nu}$ any non-derogatory matrix with characteristic polynomial $p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i}$, where $\nu = \sum_{i=1}^{\eta} k_i$, and L such that the pair (L, S) is observable.

K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction and the solution of Sylvester equations, in Proc. MTNS, Kyoto, Japan, 2006.

Moments - Time domain approach

The interconnected system has a globally invariant manifold given by

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+
u} : x = \Pi \omega
ight\}$$

with Π the unique solution of the Sylvester $A\Pi + BL = \Pi S$.

Moments - Time domain approach

The interconnected system has a globally invariant manifold given by

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+\nu} : \mathbf{x} = \mathbf{\Pi} \omega \right\}$$

with Π the unique solution of the Sylvester $A\Pi + BL = \Pi S$.

Moments - Time domain approach

$$\dot{\omega} = S\omega$$

$$u = L\omega$$

$$\dot{x} = Ax + Bu$$

$$y$$

$$y$$
Moments
$$y$$
II

The interconnected system has a globally invariant manifold given by

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+
u} : \mathbf{x} = \mathsf{\Pi}\omega
ight\}$$

with Π the unique solution of the Sylvester $A\Pi + BL = \Pi S$. As a result

$$y(t) = C\Pi\omega(t) + Ce^{At}(x(0) - \Pi\omega(0))$$

where the first term on the right-hand side describes the steady-state response of the system, and the second term on the right-hand side the transient response.

Giordano Scarciotti Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems 8/56

Moments - Time domain approach

$$\dot{\omega} = S\omega$$

$$u = L\omega$$

$$\dot{x} = Ax + Bu$$

$$y$$

$$y$$
Moments
$$y$$
II

The interconnected system has a globally invariant manifold given by

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+
u} : \mathbf{x} = \mathsf{\Pi}\omega
ight\}$$

with Π the unique solution of the Sylvester $A\Pi + BL = \Pi S$. As a result

$$y(t) = C\Pi\omega(t) + Ce^{At}(x(0) - \Pi\omega(0))$$

where the first term on the right-hand side describes the steady-state response of the system, and the second term on the right-hand side the transient response.

Giordano Scarciotti Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems 8/56

Moments for nonlinear systems

The interconnected system has a local invariant manifold

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+
u} : x = \pi(\omega)
ight\}$$

if $\pi(\omega)$ solves $f(\pi(\omega), I(\omega)) = \frac{\partial \pi}{\partial \omega} s(\omega)$.

Moments for nonlinear systems

The interconnected system has a local invariant manifold

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+\nu} : x = \pi(\omega) \right\}$$

 $\text{if } \pi(\omega) \text{ solves } f(\pi(\omega), I(\omega)) = \frac{\partial \pi}{\partial \omega} s(\omega).$

Moments for nonlinear systems

The interconnected system has a local invariant manifold

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+
u} : x = \pi(\omega) \right\}$$

if $\pi(\omega)$ solves $f(\pi(\omega), I(\omega)) = \frac{\partial \pi}{\partial \omega} s(\omega)$. Then

$$y(t) = h(\pi(\omega)) + \varepsilon(t, x(0) - \pi(\omega(0)))$$

and the steady-state response is **by definition** the moment of the nonlinear system at $s(\omega)$.

Moments for nonlinear systems

The interconnected system has a local invariant manifold

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+
u} : x = \pi(\omega) \right\}$$

if $\pi(\omega)$ solves $f(\pi(\omega), I(\omega)) = \frac{\partial \pi}{\partial \omega} s(\omega)$. Then

$$y(t) = h(\pi(\omega)) + \varepsilon(t, x(0) - \pi(\omega(0)))$$

and the steady-state response is **by definition** the moment of the nonlinear system at $s(\omega)$.

The key message

In this talk I will try to convey the message that **the one-to-one relation between moments and steady-state response is a flexible and powerful tool** to extend the moment matching approach to general class of systems.

Our toolbox is constituted by the steady-state equations

$$x(t) = \Pi\omega(t)$$
$$x(t) = \pi(\omega(t))$$
$$x(t) = \Pi(t)\omega(t)$$

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Motivations

Time-delay systems are ubiquitous

Motivations

Time-delay systems are ubiquitous

Delays generate unexpected behavior

Motivations

- Time-delay systems are ubiquitous
- Delays generate unexpected behavior
- Model reduction for linear and nonlinear systems

Motivations

- Time-delay systems are ubiquitous
- Delays generate unexpected behavior
- Model reduction for linear and nonlinear systems
- What is the role of the delay in the reduced order model?

Consider a linear, single-input, single-output, continuous-time, time-delay system described by the equations

$$\dot{x} = \sum_{j=0}^{\varsigma} A_j x_{\tau_j} + \sum_{j=\varsigma+1}^{\mu} B_j u_{\tau_j}, \qquad y = \sum_{j=0}^{\varsigma} C_j x_{\tau_j}, \tag{2}$$

and let $W(s) = \sum_{i=0}^{\varsigma} C_j e^{-s\tau_j} \left(sI - \sum_{i=0}^{\varsigma} A_j e^{-s\tau_j} \right)^{-1} \sum_{i=\varsigma+1}^{\mu} B_j e^{-s\tau_j}.$

Definition

The *k*-moment of system (2) at $s_i \in \mathbb{C}$ is the complex number

$$\eta_k(s_i) = \frac{(-1)^k}{k!} \left[\frac{d^k}{ds^k} \left(\sum_{j=0}^{\varsigma} C_j e^{-s\tau_j} \left(sI - \sum_{j=0}^{\varsigma} A_j e^{-s\tau_j} \right)^{-1} \sum_{j=\varsigma+1}^{\mu} B_j e^{-s\tau_j} \right) \right]_{s=s_i}$$

with $k \ge 0$ integer.

Consider a linear, single-input, single-output, continuous-time, time-delay system described by the equations

$$\dot{x} = \sum_{j=0}^{\varsigma} A_j x_{\tau_j} + \sum_{j=\varsigma+1}^{\mu} B_j u_{\tau_j}, \qquad y = \sum_{j=0}^{\varsigma} C_j x_{\tau_j}, \tag{2}$$

and let $W(s) = \sum_{j=0}^{\varsigma} C_j e^{-s\tau_j} \left(sI - \sum_{j=0}^{\varsigma} A_j e^{-s\tau_j} \right)^{-1} \sum_{j=\varsigma+1}^{\mu} B_j e^{-s\tau_j}.$

Definition

The *k*-moment of system (2) at $s_i \in \mathbb{C}$ is the complex number

$$\eta_k(s_i) = \frac{(-1)^k}{k!} \left[\frac{d^k}{ds^k} \left(\sum_{j=0}^{\varsigma} C_j e^{-s\tau_j} \left(sl - \sum_{j=0}^{\varsigma} A_j e^{-s\tau_j} \right)^{-1} \sum_{j=\varsigma+1}^{\mu} B_j e^{-s\tau_j} \right) \right]_{s=s_i}$$

with $k \ge 0$ integer.

Lemma

Let $\bar{A}(s) = \sum_{j=0}^{s} A_j e^{-s\tau_j}$ and suppose $s_i \notin \sigma(\bar{A}(s_i))$ for all $i = 1, ..., \eta$. Then there exists a one-to-one relation between the moments $\eta_0(s_1), ..., \eta_{k_1}(s_1),$ $..., \eta_0(s_\eta), ..., \eta_{k_\eta}(s_\eta)$ and the matrix $\sum_{j=0}^{s} C_j \Pi e^{-S\tau_j}$, where Π is the unique solution of the Sylvester-like equation

$$\sum_{j=0}^{\varsigma} A_j \Pi e^{-S au_j} - \Pi S = -\sum_{j=arsigma+1}^{\mu} B_j L e^{-S au_j}$$

with $S \in \mathbb{R}^{\nu \times \nu}$ any non-derogatory matrix with characteristic polynomial $p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i}$, where $\nu = \sum_{i=1}^{\eta} k_i$ and L such that the pair (L, S) is observable.

Lemma

Let $\bar{A}(s) = \sum_{j=0}^{s} A_j e^{-s\tau_j}$ and suppose $s_i \notin \sigma(\bar{A}(s_i))$ for all $i = 1, ..., \eta$. Then there exists a one-to-one relation between the moments $\eta_0(s_1), ..., \eta_{k_1}(s_1),$ $..., \eta_0(s_\eta), ..., \eta_{k_\eta}(s_\eta)$ and the matrix $\sum_{j=0}^{s} C_j \Pi e^{-S\tau_j}$, where Π is the unique solution of the Sylvester-like equation

$$\sum_{j=0}^{\varsigma} A_j \Pi e^{-S au_j} - \Pi S = -\sum_{j=arsigma+1}^{\mu} B_j L e^{-S au_j}$$

with $S \in \mathbb{R}^{\nu \times \nu}$ any non-derogatory matrix with characteristic polynomial $p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i}$, where $\nu = \sum_{i=1}^{\eta} k_i$ and L such that the pair (L, S) is observable.

Lemma

Let $\bar{A}(s) = \sum_{j=0}^{s} A_j e^{-s\tau_j}$ and suppose $s_i \notin \sigma(\bar{A}(s_i))$ for all $i = 1, ..., \eta$. Then there exists a one-to-one relation between the moments $\eta_0(s_1), ..., \eta_{k_1}(s_1),$ $..., \eta_0(s_\eta), ..., \eta_{k_\eta}(s_\eta)$ and the matrix $\sum_{j=0}^{s} C_j \Pi e^{-S\tau_j}$, where Π is the unique solution of the Sylvester-like equation

$$\sum_{j=0}^{\varsigma} A_j \Pi e^{-S au_j} - \Pi S = -\sum_{j=arsigma+1}^{\mu} B_j L e^{-S au_j}$$

with $S \in \mathbb{R}^{\nu \times \nu}$ any non-derogatory matrix with characteristic polynomial $p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i}$, where $\nu = \sum_{i=1}^{\eta} k_i$ and L such that the pair (L, S) is observable.

Moments for LTD - Time domain

$$\dot{\omega} = S\omega$$

$$u = L\omega$$

$$y = \sum_{j=0}^{s} C_j x_{\tau_j} + \sum_{j=\varsigma+1}^{\mu} B_j u_{\tau_j}$$

$$y = \sum_{j=0}^{s} C_j x_{\tau_j}$$

$$y \xrightarrow{\text{Moments}}$$

The interconnected system has a globally invariant manifold given by

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega \right\}$$

with Π the unique solution of the Sylvester-like equation.

Moments for LTD - Time domain

$$\dot{\omega} = S\omega$$

$$u = L\omega$$

$$y = \sum_{j=0}^{s} C_j x_{\tau_j} + \sum_{j=\varsigma+1}^{\mu} B_j u_{\tau_j}$$

$$y = \sum_{j=0}^{s} C_j x_{\tau_j}$$

$$y \xrightarrow{\text{Moments}}$$

The interconnected system has a globally invariant manifold given by

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega \right\}$$

with Π the unique solution of the Sylvester-like equation.
Moments for LTD - Time domain

The interconnected system has a globally invariant manifold given by

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega \right\}$$

with Π the unique solution of the Sylvester-like equation. As a result

$$y(t) = \sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} \omega + \sum_{j=0}^{\varsigma} C_j \mathcal{L}^{-1} \{ (sI - \bar{A}(s))^{-1} (x(0) - \Pi \omega(0)) \}$$

where the first term on the right-hand side describes the steady-state response of the system, and the second term the transient response.

Moments for LTD - Time domain

The interconnected system has a globally invariant manifold given by

$$\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega \right\}$$

with Π the unique solution of the Sylvester-like equation. As a result

$$y(t) = \sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} \omega + \sum_{j=0}^{\varsigma} C_j \mathcal{L}^{-1} \{ (sI - \bar{A}(s))^{-1} (x(0) - \Pi \omega(0)) \}$$

where the first term on the right-hand side describes the steady-state response of the system, and the second term the transient response.

Neutral type - Distributed delays

$$\dot{x} = \sum_{j=1}^{q} D_{j} \dot{x}_{c_{j}} + \sum_{j=0}^{\varsigma} A_{j} x_{\tau_{j}} + \sum_{j=\varsigma+1}^{\mu} B_{j} u_{\tau_{j}} + \sum_{j=1}^{r} \int_{t-h_{j}}^{t} (G_{j} x(\theta) + H_{j} u(\theta)) d\theta$$

Neutral type - Distributed delays

$$\dot{x} = \sum_{j=1}^{q} D_{j} \dot{x}_{c_{j}} + \sum_{j=0}^{\varsigma} A_{j} x_{\tau_{j}} + \sum_{j=\varsigma+1}^{\mu} B_{j} u_{\tau_{j}} + \sum_{j=1}^{r} \int_{t-h_{j}}^{t} (G_{j} x(\theta) + H_{j} u(\theta)) d\theta$$

Neutral type - Distributed delays

$$\dot{x} = \sum_{j=1}^{q} D_{j} \dot{x}_{c_{j}} + \sum_{j=0}^{\varsigma} A_{j} x_{\tau_{j}} + \sum_{j=\varsigma+1}^{\mu} B_{j} u_{\tau_{j}} + \sum_{j=1}^{r} \int_{t-h_{j}}^{t} (G_{j} x(\theta) + H_{j} u(\theta)) d\theta$$

The relation between moments and steady-state response is a powerful tool!

$$x(t) = \Pi \omega(t)$$
 $\omega_{\tau} = e^{S_{\tau}} \omega(t)$ $\int_{t-h}^{t} \omega(\theta) d\theta = S^{-1} (I - e^{-Sh}) \omega(t)$

Neutral type - Distributed delays

$$\dot{x} = \sum_{j=1}^{q} D_{j} \dot{x}_{c_{j}} + \sum_{j=0}^{\varsigma} A_{j} x_{\tau_{j}} + \sum_{j=\varsigma+1}^{\mu} B_{j} u_{\tau_{j}} + \sum_{j=1}^{r} \int_{t-h_{j}}^{t} (G_{j} x(\theta) + H_{j} u(\theta)) d\theta$$

The relation between moments and steady-state response is a powerful tool!

$$x(t) = \Pi \omega(t)$$
 $\omega_{\tau} = e^{S\tau} \omega(t)$ $\int_{t-h}^{t} \omega(\theta) d\theta = S^{-1}(I - e^{-Sh}) \omega(t)$

Hence, the associated Sylvester-like equation is

$$\sum_{j=0}^{s} A_{j} \Pi e^{-S\tau_{j}} + \sum_{j=1}^{r} G_{j} \Pi S^{-1} (I - e^{-Sh_{j}}) + \sum_{j=1}^{q} D_{j} \Pi S e^{-Sc_{j}} - \Pi S =$$

= $-\sum_{j=\varsigma+1}^{\mu} B_{j} L e^{-S\tau_{j}} - \sum_{j=1}^{r} H_{j} L S^{-1} (I - e^{-Sh_{j}}).$
 Π unique if $s_{i} \notin \sigma \left(\sum_{j=1}^{q} D_{j} s e^{-sc_{j}} + \sum_{j=0}^{s} A_{j} e^{-s\tau_{j}} + \sum_{j=1}^{r} G_{j} \frac{1 - e^{-sh_{j}}}{s} \right)$ and $s_{i} \neq 0.$

Neutral type - Distributed delays

$$\dot{x} = \sum_{j=1}^{q} D_{j} \dot{x}_{c_{j}} + \sum_{j=0}^{\varsigma} A_{j} x_{\tau_{j}} + \sum_{j=\varsigma+1}^{\mu} B_{j} u_{\tau_{j}} + \sum_{j=1}^{r} \int_{t-h_{j}}^{t} (G_{j} x(\theta) + H_{j} u(\theta)) d\theta$$

The relation between moments and steady-state response is a powerful tool!

$$x(t) = \Pi \omega(t)$$
 $\omega_{\tau} = e^{S\tau} \omega(t)$ $\int_{t-h}^{t} \omega(\theta) d\theta = S^{-1}(I - e^{-Sh}) \omega(t)$

Hence, the associated Sylvester-like equation is

$$\sum_{j=0}^{s} A_{j} \Pi e^{-S\tau_{j}} + \sum_{j=1}^{r} G_{j} \Pi S^{-1} (I - e^{-Sh_{j}}) + \sum_{j=1}^{q} D_{j} \Pi S e^{-Sc_{j}} - \Pi S =$$

= $-\sum_{j=\varsigma+1}^{\mu} B_{j} L e^{-S\tau_{j}} - \sum_{j=1}^{r} H_{j} L S^{-1} (I - e^{-Sh_{j}}).$
 Π unique if $s_{i} \notin \sigma \left(\sum_{j=1}^{q} D_{j} s e^{-sc_{j}} + \sum_{j=0}^{s} A_{j} e^{-s\tau_{j}} + \sum_{j=1}^{r} G_{j} \frac{1 - e^{-sh_{j}}}{s} \right)$ and $s_{i} \neq 0.$

Reduced model with free parameters

The system

$$\dot{\xi} = \sum_{j=0}^{\varrho} F_j \xi_{\chi_j} + \sum_{j=\varrho+1}^{\rho} G_j u_{\chi_j}, \qquad \psi = \sum_{j=0}^{d} H_j \xi_{\chi_j},$$

is a model of the original system at *S*, if $s_l \notin \sigma\left(\sum_{j=0}^{\varrho} F_j e^{-s_l \chi_j}\right)$ for all l = 1 , r_l and there exists a unique solution *P* of the equation

 $l=1,\ldots,\eta$, and there exists a unique solution P of the equation

$$\sum_{j=0}^{\varrho} F_j P e^{-S\chi_j} - PS = -\sum_{j=\varrho+1}^{\rho} G_j L e^{-S\chi_j},$$

such that

$$\sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} = \sum_{j=0}^{d} H_j P e^{-S\chi_j}$$

Reduced model with free parameters

The system

$$\dot{\xi} = \sum_{j=0}^{\varrho} F_j \xi_{\chi_j} + \sum_{j=\varrho+1}^{\rho} G_j u_{\chi_j}, \qquad \psi = \sum_{j=0}^{d} H_j \xi_{\chi_j},$$

is a model of the original system at *S*, if $s_l \notin \sigma\left(\sum_{j=0}^{\varrho} F_j e^{-s_l \chi_j}\right)$ for all $l = 1, \ldots, \eta$, and there exists a unique solution *P* of the equation

$$\sum_{j=0}^{\varrho} F_j P e^{-S\chi_j} - PS = -\sum_{j=\varrho+1}^{\rho} G_j L e^{-S\chi_j},$$

such that

$$\sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} = \sum_{j=0}^{d} H_j P e^{-S\chi_j}$$

Reduced model with free parameters

The system

$$\dot{\xi} = \sum_{j=0}^{\varrho} F_j \xi_{\chi_j} + \sum_{j=\varrho+1}^{\rho} G_j u_{\chi_j}, \qquad \psi = \sum_{j=0}^{d} H_j \xi_{\chi_j},$$

is a model of the original system at *S*, if $s_l \notin \sigma\left(\sum_{j=0}^{\varrho} F_j e^{-s_l \chi_j}\right)$ for all $l = 1, \ldots, \eta$, and there exists a unique solution *P* of the equation

$$\sum_{j=0}^{\varrho} F_j P e^{-S_{\chi_j}} - PS = -\sum_{j=\varrho+1}^{\rho} G_j L e^{-S_{\chi_j}},$$

such that

$$\sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} = \sum_{j=0}^{d} H_j P e^{-S\chi_j}$$

Imperial College Reduced model with free parameters

To construct a family of models that achieves moment matching at ν points select P = I. This yields the family of reduced order models

$$\begin{aligned} \dot{\xi} &= \left(S - \sum_{j=\varrho+1}^{\rho} G_j L e^{-S\chi_j} - \sum_{j=1}^{\varrho} F_j e^{-S\chi_j}\right) \xi + \sum_{j=1}^{\varrho} F_j \xi_{\chi_j} + \sum_{j=\varrho+1}^{\rho} G_j u_{\chi_j}, \\ \psi &= \left(\sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} - \sum_{j=1}^{d} H_j e^{-S\chi_j}\right) \xi + \sum_{j=1}^{d} H_j \xi_{\chi_j}, \end{aligned}$$

with G_j , F_j and H_j any matrices.

Imperial College Reduced model with free parameters

To construct a family of models that achieves moment matching at ν points select P = I. This yields the family of reduced order models

$$\begin{split} \dot{\xi} &= \left(S - \sum_{j=\varrho+1}^{\rho} G_j L e^{-S\chi_j} - \sum_{j=1}^{\varrho} F_j e^{-S\chi_j} \right) \xi + \sum_{j=1}^{\varrho} F_j \xi_{\chi_j} + \sum_{j=\varrho+1}^{\rho} G_j u_{\chi_j}, \\ \psi &= \left(\sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} - \sum_{j=1}^{d} H_j e^{-S\chi_j} \right) \xi + \sum_{j=1}^{d} H_j \xi_{\chi_j}, \end{split}$$

with G_j , F_j and H_j any matrices.

Imperial College Reduced model with free parameters

To construct a family of models that achieves moment matching at ν points select P = I. This yields the family of reduced order models

$$\begin{aligned} \dot{\xi} &= \left(S - \sum_{j=\varrho+1}^{\rho} G_j L e^{-S\chi_j} - \sum_{j=1}^{\varrho} F_j e^{-S\chi_j}\right) \xi + \sum_{j=1}^{\varrho} F_j \xi_{\chi_j} + \sum_{j=\varrho+1}^{\rho} G_j u_{\chi_j}, \\ \psi &= \left(\sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} - \sum_{j=1}^{d} H_j e^{-S\chi_j}\right) \xi + \sum_{j=1}^{d} H_j \xi_{\chi_j}, \end{aligned}$$

with G_j , F_j and H_j any matrices.

The delay-free model is in this family

$$\dot{\xi} = (S - G_1 L)\xi + Gu,$$

 $\psi = \sum_{j=0}^{S} C_j \Pi e^{-S\tau_j} \xi$

Example - Exploiting F_j

Consider the model of a LC transmission line described by the equations

$$\begin{split} \dot{x}_1 &= -\frac{1}{C_1} \left(\frac{1}{R_1} + \sqrt{\frac{C_0}{L}} \right) x_1 - \frac{2}{C_1} \sqrt{\frac{C_0}{L}} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \\ \dot{x}_2 &= x_1 + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \end{split}$$

$$y=c_1x_1+c_2x_2,$$

Example - Exploiting F_j

Consider the model of a LC transmission line described by the equations

$$\begin{split} \dot{x}_1 &= -\frac{1}{C_1} \left(\frac{1}{R_1} + \sqrt{\frac{C_0}{L}} \right) x_1 - \frac{2}{C_1} \sqrt{\frac{C_0}{L}} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \\ \dot{x}_2 &= x_1 + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \end{split}$$

$$y=c_1x_1+c_2x_2,$$

Example - Exploiting F_j

Consider the model of a LC transmission line described by the equations

$$\begin{split} \dot{x}_1 &= -\frac{1}{C_1} \left(\frac{1}{R_1} + \sqrt{\frac{C_0}{L}} \right) x_1 - \frac{2}{C_1} \sqrt{\frac{C_0}{L}} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \\ \dot{x}_2 &= x_1 + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \\ y &= c_1 x_1 + c_2 x_2, \end{split}$$

A family of reduced order models at (S = 1, L = 1), parameterized in G, is described by the equations

$$\begin{split} \dot{\xi} &= \left(1 - e^{-\tau} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} - G\right) \xi + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} \xi_{\tau} + Gu, \\ \psi &= \left[\begin{array}{cc} c_1 & c_2 \end{array}\right] \Pi \xi. \end{split}$$

Example - Exploiting F_j

Consider the model of a LC transmission line described by the equations

$$\begin{split} \dot{x}_1 &= -\frac{1}{C_1} \left(\frac{1}{R_1} + \sqrt{\frac{C_0}{L}} \right) x_1 - \frac{2}{C_1} \sqrt{\frac{C_0}{L}} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \\ \dot{x}_2 &= x_1 + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \\ y &= c_1 x_1 + c_2 x_2, \end{split}$$

A family of reduced order models at (S = 1, L = 1), parameterized in G, is described by the equations

$$\begin{split} \dot{\xi} &= \left(1 - e^{-\tau} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} - G\right) \xi + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} \xi_{\tau} + Gu, \\ \psi &= \left[\begin{array}{cc} c_1 & c_2 \end{array}\right] \Pi \xi. \end{split}$$

Interpolating $(\rho + 1)\nu$ points

Can we exploit the additional free parameters to interpolate more points?

Interpolating (ho+1) u points

Can we exploit the additional free parameters to interpolate more points?

Let $S_a \in \mathbb{R}^{\nu \times \nu}$ and $S_b \in \mathbb{R}^{\nu \times \nu}$ be two matrices such that $\sigma(S_a) \cap \sigma(S_b) = \emptyset$. Consider F_0 and H_0 given before with $\chi_2 = 0$, $S = S_a$, d = 1 and $L = L_a = L_b$. Then the selection

$$\begin{split} F_1 &= (S_b - S_a - G_3(e^{-S_b\chi_3} - e^{-S_a\chi_3}))(e^{-S_b\chi_1} - e^{-S_a\chi_1})^{-1}, \\ F_0 &= S_a - G_2L - G_3Le^{-S_a\chi_3} - F_1e^{-S_a\chi_1}, \\ H_1 &= (C\Pi_b - C\Pi_a)(e^{-S_b\chi_1} - e^{-S_a\chi_1})^{-1}, \\ H_0 &= C\Pi_a - H_1e^{-S_a\chi_1}, \end{split}$$

Interpolating $(\rho + 1)\nu$ points

Can we exploit the additional free parameters to interpolate more points?

Let $S_a \in \mathbb{R}^{\nu \times \nu}$ and $S_b \in \mathbb{R}^{\nu \times \nu}$ be two matrices such that $\sigma(S_a) \cap \sigma(S_b) = \emptyset$. Consider F_0 and H_0 given before with $\chi_2 = 0$, $S = S_a$, d = 1 and $L = L_a = L_b$. Then the selection

$$\begin{split} F_1 &= (S_b - S_a - G_3(e^{-S_b\chi_3} - e^{-S_a\chi_3}))(e^{-S_b\chi_1} - e^{-S_a\chi_1})^{-1}, \\ F_0 &= S_a - G_2L - G_3Le^{-S_a\chi_3} - F_1e^{-S_a\chi_1}, \\ H_1 &= (C\Pi_b - C\Pi_a)(e^{-S_b\chi_1} - e^{-S_a\chi_1})^{-1}, \\ H_0 &= C\Pi_a - H_1e^{-S_a\chi_1}, \end{split}$$

Interpolating $(\rho + 1)\nu$ points

Can we exploit the additional free parameters to interpolate more points?

Let $S_a \in \mathbb{R}^{\nu \times \nu}$ and $S_b \in \mathbb{R}^{\nu \times \nu}$ be two matrices such that $\sigma(S_a) \cap \sigma(S_b) = \emptyset$. Consider F_0 and H_0 given before with $\chi_2 = 0$, $S = S_a$, d = 1 and $L = L_a = L_b$. Then the selection

$$F_{1} = (S_{b} - S_{a} - G_{3}(e^{-S_{b}\chi_{3}} - e^{-S_{a}\chi_{3}}))(e^{-S_{b}\chi_{1}} - e^{-S_{a}\chi_{1}})^{-1},$$

$$F_{0} = S_{a} - G_{2}L - G_{3}Le^{-S_{a}\chi_{3}} - F_{1}e^{-S_{a}\chi_{1}},$$

$$H_{1} = (C\Pi_{b} - C\Pi_{a})(e^{-S_{b}\chi_{1}} - e^{-S_{a}\chi_{1}})^{-1},$$

$$H_{0} = C\Pi_{a} - H_{1}e^{-S_{a}\chi_{1}},$$

Interpolating $(\rho + 1)\nu$ points

Can we exploit the additional free parameters to interpolate more points?

Let $S_a \in \mathbb{R}^{\nu \times \nu}$ and $S_b \in \mathbb{R}^{\nu \times \nu}$ be two matrices such that $\sigma(S_a) \cap \sigma(S_b) = \emptyset$. Consider F_0 and H_0 given before with $\chi_2 = 0$, $S = S_a$, d = 1 and $L = L_a = L_b$. Then the selection

$$\begin{split} F_1 &= (S_b - S_a - G_3(e^{-S_b\chi_3} - e^{-S_a\chi_3}))(e^{-S_b\chi_1} - e^{-S_a\chi_1})^{-1}, \\ F_0 &= S_a - G_2L - G_3Le^{-S_a\chi_3} - F_1e^{-S_a\chi_1}, \\ H_1 &= (C\Pi_b - C\Pi_a)(e^{-S_b\chi_1} - e^{-S_a\chi_1})^{-1}, \\ H_0 &= C\Pi_a - H_1e^{-S_a\chi_1}, \end{split}$$

From delay-free to time-delay

Bode plot of a n = 1006 delay-free system (blue/solid line), of a $\nu = 8$ delay-free reduced order model (black/dash-dotted line) and a $\nu = 8$ time-delay reduced order model (red/dotted line). The squares indicate the first set of interpolation points, whereas the circles indicate the second set.

Giordano Scarciotti Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems 21/56

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Moment for NLTD systems

Consider a nonlinear, single-input, single-output, continuous-time, time-delay system described by the equations

$$\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_{\varsigma}}, u_{\tau_{\mu}}), \qquad y = h(x)$$

Consider a signal generator described by the equations

$$\dot{\omega} = s(\omega), \qquad \qquad \theta = I(\omega),$$

and the interconnected system

$$\dot{\omega} = s(\omega), \qquad \dot{x} = f(x_{\tau_0}, \dots, x_{\tau_{\varsigma}}, l(\omega_{\tau_{\mu}})), \qquad y = h(x).$$

Assumption

There exists a unique mapping $\pi(\omega)$, locally defined in a neighborhood of $\omega = 0$, which solves the partial differential equation

$$\frac{\partial \pi}{\partial \omega} s(\omega) = f(\pi(\bar{\omega}_{\tau_0}), \dots, \pi(\bar{\omega}_{\tau_\varsigma}), I(\bar{\omega}_{\tau_\mu}))$$
(3)

where $\bar{\omega}_{\tau_i} = \Phi^s_{\tau_i}(\omega)$ is the flow of the vector field s at τ_i .

Moment for NLTD systems

Consider a nonlinear, single-input, single-output, continuous-time, time-delay system described by the equations

$$\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_{\varsigma}}, u_{\tau_{\mu}}), \qquad y = h(x)$$

Consider a signal generator described by the equations

$$\dot{\omega} = s(\omega), \qquad \qquad \theta = I(\omega),$$

and the interconnected system

$$\dot{\omega} = s(\omega), \qquad \dot{x} = f(x_{\tau_0}, \dots, x_{\tau_{\varsigma}}, l(\omega_{\tau_{\mu}})), \qquad y = h(x).$$

Assumption

There exists a unique mapping $\pi(\omega)$, locally defined in a neighborhood of $\omega = 0$, which solves the partial differential equation

$$\frac{\partial \pi}{\partial \omega} s(\omega) = f(\pi(\bar{\omega}_{\tau_0}), \dots, \pi(\bar{\omega}_{\tau_\varsigma}), I(\bar{\omega}_{\tau_\mu}))$$
(3)

where $\bar{\omega}_{\tau_i} = \Phi^s_{\tau_i}(\omega)$ is the flow of the vector field s at τ_i .

Moment for NLTD systems

Assumption

The signal generator is observable.

Definition

The function $h(\pi(\omega))$, with π solution of equation (3), is the moment of the system at $(s(\omega), I(\omega))$.

Theorem

Assume the zero equilibrium of the system $\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_{\varsigma}}, 0)$ is locally exponentially stable and $s(\omega)$ is Poisson stable. Then there exists a unique $\pi(\omega)$ and the moment of the system at $(s(\omega), l(\omega))$ coincides with the steady-state response of the output of the interconnected system.

Moment for NLTD systems

Assumption

The signal generator is observable.

Definition

The function $h(\pi(\omega))$, with π solution of equation (3), is the moment of the system at $(s(\omega), I(\omega))$.

Theorem

Assume the zero equilibrium of the system $\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_{\varsigma}}, 0)$ is locally exponentially stable and $s(\omega)$ is Poisson stable. Then there exists a unique $\pi(\omega)$ and the moment of the system at $(s(\omega), l(\omega))$ coincides with the steady-state response of the output of the interconnected system.

Moment for NLTD systems

Assumption

The signal generator is observable.

Definition

The function $h(\pi(\omega))$, with π solution of equation (3), is the moment of the system at $(s(\omega), I(\omega))$.

Theorem

Assume the zero equilibrium of the system $\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_{\varsigma}}, 0)$ is locally exponentially stable and $s(\omega)$ is Poisson stable. Then there exists a unique $\pi(\omega)$ and the moment of the system at $(s(\omega), l(\omega))$ coincides with the steady-state response of the output of the interconnected system.

Imperial College Reduced order model for NLTD systems

A family of models that achieves moment matching at $(s(\omega), l(\omega))$ is described by the equations

$$\begin{aligned} \dot{\xi} &= s(\xi) - \delta(\xi) I(\bar{\xi}_{\chi_u}) - \gamma(\bar{\xi}_{\chi_1}, \dots, \bar{\xi}_{\chi_\varrho}) + \gamma(\xi_{\chi_1}, \dots, \xi_{\chi_\varrho}) + \delta(\xi) u_{\chi_u} \\ \psi &= h(\pi(\xi)) \end{aligned}$$

where $\bar{\omega}_{\chi_i} = \Phi^s_{\chi_i}(\omega)$ and δ and γ are arbitrary mappings such that

$$rac{\partial \boldsymbol{p}}{\partial \omega} \boldsymbol{s}(\omega) = \boldsymbol{s}(\boldsymbol{p}(\omega)) - \delta(\boldsymbol{p}(\omega)) \boldsymbol{l}(\boldsymbol{p}(\bar{\omega}_{\chi_u})) + \delta(\boldsymbol{p}(\omega)) \boldsymbol{l}(\omega_{\chi_u}) - \gamma(\boldsymbol{p}(\bar{\omega}_{\chi_1}), \dots, \boldsymbol{p}(\bar{\omega}_{\chi_e})) + \gamma(\boldsymbol{p}(\omega_{\chi_1}), \dots, \boldsymbol{p}(\omega_{\chi_e}))$$

has the unique solution $p(\omega) = \omega$.

Imperial College Reduced order model for NLTD systems

A family of models that achieves moment matching at $(s(\omega), l(\omega))$ is described by the equations

$$\begin{aligned} \dot{\xi} &= s(\xi) - \delta(\xi) I(\bar{\xi}_{\chi_u}) - \gamma(\bar{\xi}_{\chi_1}, \dots, \bar{\xi}_{\chi_\varrho}) + \gamma(\xi_{\chi_1}, \dots, \xi_{\chi_\varrho}) + \delta(\xi) u_{\chi_u} \\ \psi &= h(\pi(\xi)) \end{aligned}$$

where $\bar{\omega}_{\chi_i} = \Phi^s_{\chi_i}(\omega)$ and δ and γ are arbitrary mappings such that

$$\frac{\partial p}{\partial \omega} s(\omega) = s(p(\omega)) - \delta(p(\omega)) / (p(\bar{\omega}_{\chi_u})) + \delta(p(\omega)) / (\omega_{\chi_u}) - \delta(p(\omega))$$

$$-\gamma(\boldsymbol{p}(\bar{\omega}_{\chi_1}),\ldots,\boldsymbol{p}(\bar{\omega}_{\chi_{\varrho}}))+\gamma(\boldsymbol{p}(\omega_{\chi_1}),\ldots,\boldsymbol{p}(\omega_{\chi_{\varrho}}))$$

has the unique solution $p(\omega) = \omega$.

Dynamics of an oilwell drillstring

$$rac{\partial^2 heta}{\partial z^2}(z,t)=rac{I}{GJ}rac{\partial^2 heta}{\partial t^2}(z,t), \qquad \quad z\in(0,L), t>0$$

coupled to the mixed boundary conditions

$$GJ\frac{\partial\theta}{\partial z}(0,t) = c_{a}\left(\frac{\partial\theta}{\partial z}(0,t) - \Omega(t)\right), \quad GJ\frac{\partial\theta}{\partial z}(L,t) + I_{B}\frac{\partial^{2}\theta}{\partial t^{2}}(L,t) = -T\left(\frac{\partial\theta}{\partial t}(L,t)\right)$$

Fig. Angular speed of the system (17), with (20), for different values of $r: 20 \ rad/s$ (solid line), $15 \ rad/s$ (dashed line) and $10 \ rad/s$ (dotted line). Note the stick-slip phenomenon for $r(t) = 10 \ rad/s$.

Dynamics of an oilwell drillstring

Fig. Time histories of the output of system (17), with (20) and (21), (dotted line) and the output ψ of the reduced order model (22), with $\delta(\cdot) = 2$, (dashed line) for various desired velocities.

Reduced order model

$$\dot{\xi} = -\delta(\xi) \left[\xi - r_{ au_2}
ight] \psi = \pi(\xi)$$

Fig. Time histories of the output of system (17), with (20), (solid line) and of system (23) (dashed line) with $\delta(z) = qz^2 + \varepsilon$ for r = 25, q = 0.0333, $\varepsilon = 0.3$ (top) and r = 15, q = 0.125, $\varepsilon = 0.01$ (bottom).

Open-loop reduced order model

$$\begin{aligned} \dot{\xi} &= -\delta(\xi) \left[\xi - \mu_{\tau_2}\right] \\ \mu &= -k_1 \pi(\dot{\xi}_{\tau_2}) - k_2 \pi(\xi_{\tau_2}) + r \\ \psi &= \pi(\xi) \end{aligned}$$

3.4

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Recap and further directions

The problem of model reduction by moment matching has been changed from a problem of interpolation of points to a problem of interpolation of signals. The output of the reduced order model has to behave as the output of the original system for a class of input signals, a concept which can be translated to nonlinear systems, time-delay systems and...

Recap and further directions

The problem of model reduction by moment matching has been changed from a problem of interpolation of points to a problem of interpolation of signals. The output of the reduced order model has to behave as the output of the original system for a class of input signals, a concept which can be translated to nonlinear systems, time-delay systems and...

Recap and further directions

The problem of model reduction by moment matching has been changed from a problem of interpolation of points to a problem of interpolation of signals. The output of the reduced order model has to behave as the output of the original system for a class of input signals, a concept which can be translated to nonlinear systems, time-delay systems and...

The results described are based on the availability of a differential representation of the signal generator, namely $\dot{\omega} = S\omega$. However, there are notable applications in which this may not be the case. For instance, the input of a dynamical system describing a power electronic device can often be a PWM wave (e.g. a square or sawtooth wave) which cannot be represented as the output of a system described by smooth differential equations.

Recap and further directions

The problem of model reduction by moment matching has been changed from a problem of interpolation of points to a problem of interpolation of signals. The output of the reduced order model has to behave as the output of the original system for a class of input signals, a concept which can be translated to nonlinear systems, time-delay systems and...

The results described are based on the availability of a differential representation of the signal generator, namely $\dot{\omega} = S\omega$. However, there are notable applications in which this may not be the case. For instance, the input of a dynamical system describing a power electronic device can often be a PWM wave (e.g. a square or sawtooth wave) which cannot be represented as the output of a system described by smooth differential equations.

Recap and further directions

The problem of model reduction by moment matching has been changed from a problem of interpolation of points to a problem of interpolation of signals. The output of the reduced order model has to behave as the output of the original system for a class of input signals, a concept which can be translated to nonlinear systems, time-delay systems and...

The results described are based on the availability of a differential representation of the signal generator, namely $\dot{\omega} = S\omega$. However, there are notable applications in which this may not be the case. For instance, the input of a dynamical system describing a power electronic device can often be a PWM wave (e.g. a square or sawtooth wave) which cannot be represented as the output of a system described by smooth differential equations.

Analysis of a square wave

Consider a square wave $\sqcap(t)$ defined as

$$\sqcap(t) = \operatorname{sign}(\sin(t)) = \begin{cases} 1, & (k-1)\pi < t < k\pi, \\ 0, & t = k\pi \text{ or } t = (k+1)\pi, \\ -1, & k\pi < t < (k+1)\pi, \end{cases}$$

i.e. with sign(0) = 0, and $k = 1, 3, 5, ..., +\infty$.

Analysis of a square wave

Consider a square wave $\sqcap(t)$ defined as

$$\sqcap(t) = \operatorname{sign}(\sin(t)) = \begin{cases} 1, & (k-1)\pi < t < k\pi, \\ 0, & t = k\pi \text{ or } t = (k+1)\pi, \\ -1, & k\pi < t < (k+1)\pi, \end{cases}$$

i.e. with sign(0) = 0, and $k = 1, 3, 5, ..., +\infty$.

The Laplace transform of this function is

$$\mathcal{L}(\sqcap(t)) = rac{1-e^{-s\pi}}{s(1+e^{-s\pi})},$$

and this has the poles

$$s_1=0, \qquad s_i=(2j+1)\iota,$$

with
$$j=-\infty,\ldots,-1,0,1,\ldots,+\infty$$
 .

Analysis of a square wave

Consider a square wave $\sqcap(t)$ defined as

$$\sqcap(t) = \operatorname{sign}(\sin(t)) = \begin{cases} 1, & (k-1)\pi < t < k\pi, \\ 0, & t = k\pi \text{ or } t = (k+1)\pi, \\ -1, & k\pi < t < (k+1)\pi, \end{cases}$$

i.e. with sign(0) = 0, and $k = 1, 3, 5, ..., +\infty$.

The Laplace transform of this function is

$$\mathcal{L}(\sqcap(t)) = rac{1-e^{-s\pi}}{s(1+e^{-s\pi})},$$

and this has the poles

$$s_1=0, \qquad s_i=(2j+1)\iota,$$

with
$$j=-\infty,\ldots,-1,0,1,\ldots,+\infty$$
 .

Analysis of a square wave

Since the function $\sqcap(t)$ is periodic, it admits a Fourier series, namely

$$\Box(t) = \frac{4}{\pi} \sum_{i=1,3,5,\ldots,+\infty}^{\infty} \frac{1}{i} \sin(it).$$

Analysis of a square wave

Since the function $\sqcap(t)$ is periodic, it admits a Fourier series, namely

$$\Box(t) = \frac{4}{\pi} \sum_{i=1,3,5,\ldots,+\infty}^{\infty} \frac{1}{i} \sin(it).$$

The Laplace and Fourirer transform of the square wave suggest that we could describe $\sqcap(t)$ by means of the infinite dimensional system

$$\dot{\omega} = \begin{bmatrix} \ddots & \ddots & & & & \\ \ddots & +2\iota & 0 & & & \\ & 0 & +\iota & 0 & & \\ & & 0 & 0 & 0 & \\ & & 0 & -\iota & 0 & \\ & & & 0 & -2\iota & \ddots \\ & & & & \ddots & \ddots \end{bmatrix} \omega$$

with output $\Box = P\omega$ for some "matrix" P.

Analysis of a square wave

Since the function $\sqcap(t)$ is periodic, it admits a Fourier series, namely

$$\Box(t) = \frac{4}{\pi} \sum_{i=1,3,5,\ldots,+\infty}^{\infty} \frac{1}{i} \sin(it).$$

The Laplace and Fourirer transform of the square wave suggest that we could describe $\sqcap(t)$ by means of the infinite dimensional system

with output $\Box = P\omega$ for some "matrix" P.

Generator in explicit form

To overcome these issues we consider signal generators in explicit form. Thus, consider

$$\omega(t) = \Lambda(t, t_0)\omega_0, \qquad u = L\omega,$$

Note that for linear systems in implicit form

$$\Lambda(t,t_0)=e^{S(t-t_0)}.$$

Generator in explicit form

To overcome these issues we consider signal generators in explicit form. Thus, consider

$$\omega(t) = \Lambda(t, t_0)\omega_0, \qquad u = L\omega,$$

Note that for linear systems in implicit form

$$\Lambda(t,t_0)=e^{S(t-t_0)}.$$

But it describes a very large class of signals: noncontinuos periodic signals, time-varying systems, a subclass of hybrid systems, a subclass of nonlinear systems,...

Generator in explicit form

To overcome these issues we consider signal generators in explicit form. Thus, consider

$$\omega(t) = \Lambda(t, t_0)\omega_0, \qquad u = L\omega,$$

Note that for linear systems in implicit form

$$\Lambda(t,t_0)=e^{S(t-t_0)}.$$

But it describes a very large class of signals: noncontinuos periodic signals, time-varying systems, a subclass of hybrid systems, a subclass of nonlinear systems,...

We want to characterize the "moments" of the following interconnection

$$\omega(t) = \Lambda(t, t_0)\omega_0$$
$$\dot{x} = Ax + BL\omega$$
$$y = Cx$$

Characterization of the moments

Let
$$\Pi(t) = \left(e^{A(t-t_0)}\Pi(t_0) + \int_{t_0}^t e^{A(t-\tau)}BL\Lambda(\tau,t_0)d\tau\right)\Lambda(t,t_0)^{-1}$$

be a family of matrix valued functions parametrized in $\Pi(t_0) \in \mathbb{R}^{n \times \nu}$. Given "mild" assumptions there exists a unique $\Pi_{\infty}(t_0)$ such that, for any $\Pi(t_0)$,
 $\lim_{t \to +\infty} \Pi(t) - \Pi_{\infty}(t) = 0$. Moreover, if $x(t_0) = \Pi_{\infty}(t_0)\omega(t_0)$ then $x(t) - \Pi_{\infty}(t)\omega(t) = 0$ for all $t \ge t_0$, and the set $\{(x,\omega) \mid x(t) = \Pi_{\infty}(t)\omega(t)\}$ is attractive.

Characterization of the moments

Let
$$\Pi(t) = \left(e^{A(t-t_0)}\Pi(t_0) + \int_{t_0}^t e^{A(t-\tau)}BL\Lambda(\tau,t_0)d\tau\right)\Lambda(t,t_0)^{-1}$$

be a family of matrix valued functions parametrized in $\Pi(t_0) \in \mathbb{R}^{n \times \nu}$. Given "mild" assumptions there exists a unique $\Pi_{\infty}(t_0)$ such that, for any $\Pi(t_0)$,
 $\lim_{t \to +\infty} \Pi(t) - \Pi_{\infty}(t) = 0$. Moreover, if $x(t_0) = \Pi_{\infty}(t_0)\omega(t_0)$ then $x(t) - \Pi_{\infty}(t)\omega(t) = 0$ for all $t \ge t_0$, and the set $\{(x,\omega) \mid x(t) = \Pi_{\infty}(t)\omega(t)\}$ is attractive.

Characterization of the moments

Let
$$\Pi(t) = \left(e^{A(t-t_0)}\Pi(t_0) + \int_{t_0}^t e^{A(t-\tau)}BL\Lambda(\tau,t_0)d\tau\right)\Lambda(t,t_0)^{-1}$$

be a family of matrix valued functions parametrized in $\Pi(t_0) \in \mathbb{R}^{n \times \nu}$. Given "mild" assumptions there exists a unique $\Pi_{\infty}(t_0)$ such that, for any $\Pi(t_0)$,
 $\lim_{t \to +\infty} \Pi(t) - \Pi_{\infty}(t) = 0$. Moreover, if $x(t_0) = \Pi_{\infty}(t_0)\omega(t_0)$ then $x(t) - \Pi_{\infty}(t)\omega(t) = 0$ for all $t \ge t_0$, and the set $\{(x,\omega) \mid x(t) = \Pi_{\infty}(t)\omega(t)\}$ is attractive.

Characterization of the moments

Let
$$\Pi(t) = \left(e^{A(t-t_0)}\Pi(t_0) + \int_{t_0}^t e^{A(t-\tau)}BL\Lambda(\tau,t_0)d\tau\right)\Lambda(t,t_0)^{-1}$$

be a family of matrix valued functions parametrized in $\Pi(t_0) \in \mathbb{R}^{n \times \nu}$. Given "mild" assumptions there exists a unique $\Pi_{\infty}(t_0)$ such that, for any $\Pi(t_0)$,
 $\lim_{t \to +\infty} \Pi(t) - \Pi_{\infty}(t) = 0$. Moreover, if $x(t_0) = \Pi_{\infty}(t_0)\omega(t_0)$ then $x(t) - \Pi_{\infty}(t)\omega(t) = 0$ for all $t \ge t_0$, and the set $\{(x,\omega) \mid x(t) = \Pi_{\infty}(t)\omega(t)\}$ is attractive.

Characterization of the moments

Theorem

Let
$$\Pi(t) = \left(e^{A(t-t_0)}\Pi(t_0) + \int_{t_0}^t e^{A(t-\tau)}BL\Lambda(\tau,t_0)d\tau\right)\Lambda(t,t_0)^{-1}$$

be a family of matrix valued functions parametrized in $\Pi(t_0) \in \mathbb{R}^{n \times \nu}$. Given "mild" assumptions there exists a unique $\Pi_{\infty}(t_0)$ such that, for any $\Pi(t_0)$,
 $\lim_{t \to +\infty} \Pi(t) - \Pi_{\infty}(t) = 0$. Moreover, if $x(t_0) = \Pi_{\infty}(t_0)\omega(t_0)$ then $x(t) - \Pi_{\infty}(t)\omega(t) = 0$ for all $t \ge t_0$, and the set $\{(x,\omega) \mid x(t) = \Pi_{\infty}(t)\omega(t)\}$ is attractive.

Remark

 $\Pi_{\infty}(t)$ is also the unique solution of

$$\dot{\Pi}(t)=A\Pi(t)+BL-\Pi(t)\dot{\Lambda}(t,t_0)\Lambda(t,t_0)^{-1}$$

with the initial condition $\Pi(t_0) = \Pi_{\infty}(t_0)$. From a practical point of view, it is necessary to know the initial condition $\Pi_{\infty}(t_0)$. However, since the motion $\Pi_{\infty}(t)$ is attractive, any solution of the two equations converges to $\Pi_{\infty}(t)$.

Characterization of the moments

Theorem

Let
$$\Pi(t) = \left(e^{A(t-t_0)}\Pi(t_0) + \int_{t_0}^t e^{A(t-\tau)}BL\Lambda(\tau,t_0)d\tau\right)\Lambda(t,t_0)^{-1}$$

be a family of matrix valued functions parametrized in $\Pi(t_0) \in \mathbb{R}^{n \times \nu}$. Given "mild" assumptions there exists a unique $\Pi_{\infty}(t_0)$ such that, for any $\Pi(t_0)$,
 $\lim_{t \to +\infty} \Pi(t) - \Pi_{\infty}(t) = 0$. Moreover, if $x(t_0) = \Pi_{\infty}(t_0)\omega(t_0)$ then $x(t) - \Pi_{\infty}(t)\omega(t) = 0$ for all $t \ge t_0$, and the set $\{(x,\omega) \mid x(t) = \Pi_{\infty}(t)\omega(t)\}$ is attractive.

Remark

 $\Pi_{\infty}(t)$ is also the unique solution of

$$\dot{\Pi}(t) = A\Pi(t) + BL - \Pi(t)\dot{\Lambda}(t,t_0)\Lambda(t,t_0)^{-1}$$

with the initial condition $\Pi(t_0) = \Pi_{\infty}(t_0)$. From a practical point of view, it is necessary to know the initial condition $\Pi_{\infty}(t_0)$. However, since the motion $\Pi_{\infty}(t)$ is attractive, any solution of the two equations converges to $\Pi_{\infty}(t)$.

The periodic case

Consider the signal generator

$$egin{aligned} &\omega(t) = \omega(t-T), \ &\omega(t) = h(t,t_0)\omega_0, \end{aligned} \qquad t_0 - T \leq t < t_0, \ &u = L\omega, \end{aligned}$$

then $\Pi_{\infty}(t)$ becomes

$$\Pi_{\infty}(t) = (I - e^{AT})^{-1} \left[\int_{t-T}^{t} e^{A(t-\tau)} BL\Lambda(\tau, t_0) d\tau \right] \Lambda(t, t_0)^{-1}$$

The periodic case

Consider the signal generator

$$egin{aligned} &\omega(t) = \omega(t-T), \ &\omega(t) = h(t,t_0)\omega_0, \end{aligned} \qquad t_0 - T \leq t < t_0, \ &u = L\omega, \end{aligned}$$

then $\Pi_{\infty}(t)$ becomes

$$\Pi_{\infty}(t) = (I - e^{AT})^{-1} \left[\int_{t-T}^{t} e^{A(t-\tau)} BL\Lambda(\tau, t_0) d\tau \right] \Lambda(t, t_0)^{-1}$$

A numerical example

Consider the matrix of square waves

$$\Lambda_{\sqcap}(t,0) = \left[egin{array}{c} \sqcap\left(rac{2\pi}{T}t+rac{\pi}{2}
ight) & -\sqcap\left(rac{2\pi}{T}t
ight) \ \sqcap\left(rac{2\pi}{T}t
ight) & \sqcap\left(rac{2\pi}{T}t+rac{\pi}{2}
ight) \end{array}
ight]$$

The previous equation computed for t = 0

$$\begin{aligned} \Pi_{\infty}(0) &= -A^{-1}(I - e^{AT})^{-1} \left[\left(e^{\frac{3}{4}AT} - e^{AT} + e^{\frac{1}{2}AT} - e^{\frac{1}{4}AT} \right) BL + \left(e^{\frac{1}{2}AT} - e^{\frac{3}{4}AT} + e^{\frac{1}{4}AT} - I \right) BL\Lambda_{\Box} \left(\frac{T}{4}, 0 \right) \right] \end{aligned}$$

Giordano Scarciotti Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems 35/56

Looking at new Π 's

Time history of the entries of the matrices Π_{\sim} (top), Π_{\wedge} (middle) and Π_{\Box} (bottom).

Time history of the output (solid lines) y_{\sim} (top), y_{\wedge} (middle) and y_{\Box} (bottom). Time histories of the steady-state of the output (dotted lines) computed as $C\Pi_{\sim}\omega$, $C\Pi_{\wedge}\omega$ and $C\Pi_{\Box}\omega$.

A new family of reduced order models

Definition

The system described by the equations

$$\begin{split} \xi(t) &= F(t,t_0)\xi_0 + \int_{t_0}^t G(t-\tau)u(\tau)d\tau, \\ \psi(t) &= H(t)\xi(t), \end{split}$$

is a model of the system, if there exists a unique solution $P_{\infty}(t)$ of the equation

$$P(t) = \left(F(t,t_0)P(t_0) + \int_{t_0}^t G(t-\tau)L\Lambda(\tau,t_0)d\tau\right)\Lambda^{-1}(t,t_0)$$

with $P(t_0)=P_\infty(t_0)$ such that for any $P(t_0), \lim_{t\to+\infty}P(t)-P_\infty(t)=0$ and $C\Pi_\infty(t)=H(t)P_\infty(t)$

A new family of reduced order models

Definition

The system described by the equations

$$\begin{split} \xi(t) &= F(t,t_0)\xi_0 + \int_{t_0}^t G(t-\tau)u(\tau)d\tau, \\ \psi(t) &= H(t)\xi(t), \end{split}$$

is a model of the system, if there exists a unique solution $P_{\infty}(t)$ of the equation

$$P(t) = \left(F(t,t_0)P(t_0) + \int_{t_0}^t G(t-\tau)L\Lambda(\tau,t_0)d\tau\right)\Lambda^{-1}(t,t_0)$$

with $P(t_0)=P_\infty(t_0)$ such that for any $P(t_0), \lim_{t\to+\infty}P(t)-P_\infty(t)=0$ and $C\Pi_\infty(t)=H(t)P_\infty(t)$

A new family of reduced order models

Definition

The system described by the equations

$$\begin{split} \xi(t) &= F(t,t_0)\xi_0 + \int_{t_0}^t G(t-\tau)u(\tau)d\tau, \\ \psi(t) &= H(t)\xi(t), \end{split}$$

is a model of the system, if there exists a unique solution $P_{\infty}(t)$ of the equation

$$P(t) = \left(F(t,t_0)P(t_0) + \int_{t_0}^t G(t-\tau)L\Lambda(\tau,t_0)d\tau\right)\Lambda^{-1}(t,t_0)$$

with $P(t_0)=P_\infty(t_0)$ such that for any $P(t_0),$ $\lim_{t\to+\infty}P(t)-P_\infty(t)=0$ and $C\Pi_\infty(t)=H(t)P_\infty(t)$

The periodic family

Definition

The system

$$\dot{\xi} = \widetilde{F}\xi + \widetilde{G}u$$

 $\psi(t) = C\Pi_{\infty}(t)P_{\infty}(t)^{-1}\xi(t),$

is a model of the system, if $\sigma(\widetilde{F}) \in \mathbb{C}_{<0}$ and

$$P_{\infty}(t) = (I - e^{\widetilde{F}T})^{-1} \left[\int_{t-T}^{t} e^{\widetilde{F}(t-\tau)} \widetilde{G}L\Lambda(\tau, t_0) d\tau \right] \Lambda(t, t_0)^{-1},$$

is non-singular for all $t \in \mathbb{R}_{\geq 0}$.

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Systems with unknown description

If we have the steady-state response $C\Pi\omega(t)$, how do we recover the moments Π ?

Imperial College Systems with unknown description

If we have the steady-state response $C\Pi\omega(t)$, how do we recover the moments Π ?

How do we obtain a reduced order model if we do not have the matrices A, B, C, but we have measurements of the input and output of the system?

Let's manipulate the response

Recall that the output of a linear system can be written as

$$y(t) = C\Pi\omega(t) + Ce^{At}(x(0) - \Pi\omega(0))$$

This can be rewritten as

$$\operatorname{vec}(C\Pi\omega(t)) - \operatorname{vec}(Ce^{At}\Pi\omega(0)) = \operatorname{vec}(y(t) - Ce^{At}x(0)),$$

and

$$(\omega(t)^{ op}\otimes \mathcal{C}-\omega(0)^{ op}\otimes \mathcal{C}e^{At})\operatorname{vec}(\Pi)=\operatorname{vec}(y(t)-\mathcal{C}e^{At}x(0)).$$

Finally

$$(\omega(0)^{ op}\otimes C)(e^{S^{ op}t}\otimes I-I\otimes e^{At})\operatorname{vec}(\Pi)=\operatorname{vec}(y(t)-Ce^{At}x(0))$$

Let's manipulate the response

Recall that the output of a linear system can be written as

$$y(t) = C\Pi\omega(t) + Ce^{At}(x(0) - \Pi\omega(0))$$

This can be rewritten as

$$\operatorname{vec}(C\Pi\omega(t)) - \operatorname{vec}(Ce^{At}\Pi\omega(0)) = \operatorname{vec}(y(t) - Ce^{At}x(0)),$$

and

$$(\omega(t)^{ op}\otimes \mathcal{C}-\omega(0)^{ op}\otimes \mathcal{C}e^{\mathcal{A}t})\operatorname{vec}(\Pi)=\operatorname{vec}(y(t)-\mathcal{C}e^{\mathcal{A}t}x(0)).$$

Finally

$$(\omega(0)^{ op}\otimes C)(e^{S^{ op}t}\otimes I-I\otimes e^{At})\operatorname{vec}(\Pi)=\operatorname{vec}(y(t)-Ce^{At}x(0))$$

Let's manipulate the response

Define the time-snapshots $R_k \in \mathbb{R}^{w imes n
u}$ and $\Upsilon_k \in \mathbb{R}^w$ as

$$R_{k} = \begin{bmatrix} (\omega(0)^{\top} \otimes C)(e^{S^{\top}t_{k-w+1}} \otimes I - I \otimes e^{At_{k-w+1}}) \\ \vdots \\ (\omega(0)^{\top} \otimes C)(e^{S^{\top}t_{k-1}} \otimes I - I \otimes e^{At_{k-1}}) \\ (\omega(0)^{\top} \otimes C)(e^{S^{\top}t_{k}} \otimes I - I \otimes e^{At_{k}}) \end{bmatrix},$$
$$\Upsilon_{k} = \begin{bmatrix} y(t_{k-w+1}) - Ce^{At_{k-w+1}}x(0) \\ \vdots \\ y(t_{k-1}) - Ce^{At_{k-1}}x(0) \\ y(t_{k}) - Ce^{At_{k}}x(0) \end{bmatrix}.$$

This yields the on-line estimate

$$\operatorname{vec}(\Pi_k) = (R_k^\top R_k)^{-1} R_k^\top \Upsilon_k$$

Let's manipulate the response

Define the time-snapshots $R_k \in \mathbb{R}^{w imes n
u}$ and $\Upsilon_k \in \mathbb{R}^w$ as

$$R_{k} = \begin{bmatrix} (\omega(0)^{\top} \otimes C)(e^{S^{\top}t_{k-w+1}} \otimes I - I \otimes e^{At_{k-w+1}}) \\ \vdots \\ (\omega(0)^{\top} \otimes C)(e^{S^{\top}t_{k-1}} \otimes I - I \otimes e^{At_{k-1}}) \\ (\omega(0)^{\top} \otimes C)(e^{S^{\top}t_{k}} \otimes I - I \otimes e^{At_{k}}) \end{bmatrix},$$
$$\Upsilon_{k} = \begin{bmatrix} y(t_{k-w+1}) - Ce^{At_{k-w+1}} \times (0) \\ \vdots \\ y(t_{k-1}) - Ce^{At_{k-1}} \times (0) \\ y(t_{k}) - Ce^{At_{k}} \times (0) \end{bmatrix}.$$

This yields the on-line estimate

$$\operatorname{vec}(\Pi_k) = (R_k^\top R_k)^{-1} R_k^\top \Upsilon_k$$
Exploiting the steady-state

Note that the equation can be written as

 $y(t) = C\Pi\omega(t) + \varepsilon(t),$

with $\varepsilon(t) = Ce^{At}(x(0) - \Pi\omega(0))$ an exponentially decaying signal.

Exploiting the steady-state

Note that the equation can be written as

$$y(t) = C\Pi\omega(t) + \varepsilon(t),$$

with $\varepsilon(t) = Ce^{At}(x(0) - \Pi\omega(0))$ an exponentially decaying signal.

Exploiting the steady-state

Note that the equation can be written as

$$y(t) = C\Pi\omega(t) + \varepsilon(t),$$

with $\varepsilon(t) = Ce^{At}(x(0) - \Pi\omega(0))$ an exponentially decaying signal.

Thus, let $\widetilde{C\Pi}$ be such that

$$y(t)=\widetilde{C\Pi}\omega(t),$$

and define the time-snapshots $\widetilde{R}_k \in \mathbb{R}^{w imes
u}$ and $\widetilde{\Upsilon}_k \in \mathbb{R}^w$ as

$$\widetilde{\textit{R}}_{k} = \left[egin{array}{ccc} \omega(t_{k-w+1}) & \ldots & \omega(t_{k-1}) & \omega(t_{k}) \end{array}
ight]^{ op}$$

and

$$\widetilde{\Upsilon}_k = \left[\begin{array}{cc} y(t_{k-w+1}) & \ldots & y(t_{k-1}) & y(t_k) \end{array}
ight]^ op.$$

Then

$$\operatorname{vec}(\widetilde{C\Pi}_k) = (\widetilde{R}_k^{\top}\widetilde{R}_k)^{-1}\widetilde{R}_k^{\top}\widetilde{\Upsilon}_k,$$

is an approximation of the on-line estimate $C\Pi_k$.

A recursive implementation

It is easy to derive a recursive least-squares estimation of $\widetilde{C\Pi}_k$. To this end, let

$$\begin{split} \Phi_k &= (\widetilde{R}_k^\top \widetilde{R}_k)^{-1}, \\ \Psi_k &= (\widetilde{R}_{k-1}^\top \widetilde{R}_{k-1} + \omega(t_k)\omega(t_k)^\top)^{-1}. \end{split}$$

Then

$$\begin{split} \widetilde{\mathsf{C}\mathsf{\Pi}}_k &= \widetilde{\mathsf{C}\mathsf{\Pi}}_{k-1} + \Phi_k \omega(t_k) (y(t_k) - \omega(t_k)^\top \widetilde{\mathsf{C}\mathsf{\Pi}}_{k-1}) \ & - \Phi_k \omega(t_{k-w}) (y(t_{k-w}) - \omega(t_{k-w})^\top \widetilde{\mathsf{C}\mathsf{\Pi}}_{k-1}), \end{split}$$

with

$$egin{aligned} \Phi_k &= \Psi_k - \Psi_k \omega(t_{k-w}) imes \ & imes (I + \omega(t_{k-w})^\top \Psi_k \omega(t_{k-w}))^{-1} \omega(t_{k-w})^\top \Psi_k \end{aligned}$$

and

$$egin{aligned} \Psi_k &= \Phi_{k-1} - \Phi_{k-1} \omega(t_k) imes \ & imes (I + \omega(t_k)^\top \Phi_{k-1} \omega(t_k))^{-1} \omega(t_k)^\top \Phi_{k-1}. \end{aligned}$$

For SISO systems the two matrix inversions are two divisions. The computation complexity of updating the estimate is $\mathcal{O}(1)$.

A family of reduced order models

Definition

The system described by the equations

$$\dot{\xi} = F_k \xi + G_k u, \qquad \phi = H_k \xi,$$

is a model of the system at (S,L) at time t_k , if there exists a unique solution P_k of the equation

$$F_k P_k + G_k L = P_k S,$$

such that

$$\widetilde{C\Pi}_k = H_k P_k,$$

Remark

Select $P_k = I$, for all $k \ge 0$. If $\sigma(F_k) \cap \sigma(S) = \emptyset$ for all $k \ge 0$, then the model

$$\dot{\xi} = (S - G_k L)\xi + G_k u,$$

$$\phi = \widetilde{C \Pi}_k \xi,$$

is a model of the system at (S,L) at time t_k .

A family of reduced order models

Definition

The system described by the equations

$$\dot{\xi} = F_k \xi + G_k u, \qquad \phi = H_k \xi,$$

is a model of the system at (S,L) at time t_k , if there exists a unique solution P_k of the equation

$$F_k P_k + G_k L = P_k S,$$

such that

$$\widetilde{C\Pi}_k = H_k P_k,$$

Remark

Select $P_k = I$, for all $k \ge 0$. If $\sigma(F_k) \cap \sigma(S) = \emptyset$ for all $k \ge 0$, then the model

$$\dot{\xi} = (S - G_k L)\xi + G_k u,$$
$$\phi = \widetilde{C\Pi}_k \xi,$$

is a model of the system at (S,L) at time t_k .

Linear time-delay systems

These resuls can be easily extended to linear time-delay systems. In fact, we have already seen that for linear time-delay systems the following holds

$$y(t) = \sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} \omega(t) + \varepsilon(t),$$

Then

$$\operatorname{vec}\left(\sum_{j=0}^{\varsigma} \widetilde{C_{j} \Pi e_{k}^{-S\tau_{j}}}\right) = (\widetilde{R}_{k}^{\top} \widetilde{R}_{k})^{-1} \widetilde{R}_{k}^{\top} \widetilde{\Upsilon}_{k},$$

is an approximation of the on-line estimate $\sum_{j=0}^{s} C_j \prod e_k^{-S\tau_j}$, and families of reduced order models at time t_k can be easily defined.

Linear time-delay systems

These resuls can be easily extended to linear time-delay systems. In fact, we have already seen that for linear time-delay systems the following holds

$$y(t) = \sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} \omega(t) + \varepsilon(t),$$

Then

$$\operatorname{vec}\left(\sum_{j=0}^{\varsigma}\widetilde{C_{j}\Pi e_{k}^{-S\tau_{j}}}\right) = (\widetilde{R}_{k}^{\top}\widetilde{R}_{k})^{-1}\widetilde{R}_{k}^{\top}\widetilde{\Upsilon}_{k},$$

is an approximation of the on-line estimate $\sum_{j=0}^{s} C_j \prod e_k^{-S\tau_j}$, and families of reduced order models at time t_k can be easily defined.

Imperial College Matching with prescribed eigenvalues

Determining at every k the matrix G_k such that $\sigma(F_k) = \{\lambda_{1,k}, \ldots, \lambda_{\nu,k}\}$ for some prescribed values $\lambda_{i,k}$. The solution of this problem is well-known and consists in selecting G_k such that

$$\sigma(S-G_kL)=\sigma(F_k).$$

This is possible for every k and for all $\lambda_{i,k} \notin \sigma(S)$ and note that G_k is independent from the estimate $\widetilde{C\Pi}_k$. Note also that by observability of (L, S), G_k is unique at every k.

Prescribed relative degree, zeros, compartmental constraints

These problems can be solved at each k if and only if

$$\operatorname{rank}\left[\begin{array}{c} sl-S\\\widetilde{C\Pi}_k\end{array}\right]=n,$$

for all $s \in \sigma(S)$ at k. Even though the asymptotic value of $\widetilde{C\Pi}_k$ satisfies this condition there is no guarantee that the condition holds for all k. However, if the condition holds for the asymptotic value, there exists $\overline{k} \gg 0$ such that for all $k \geq \overline{k}$ the equation has a solution.

System with n = 1006

80 Magnitude (dB) 60 40 0 180 90 Phase (deg) -90 -180 10^{2} 10^{3} Frequency (rad/s)

Bode Diagram

Figure: Bode plot of the system (solid line), of the reduced order model at $t_k = 90s$ (dotted line), of the reduced order model at $t_k = 110s$ (dash-dotted line) and of the reduced order model at $t_k = 140s$ (dashed line). The circles indicate the interpolation points.

A nonlinear example

The averaged model of the DC-to-DC Ćuk converter is given by the equations

$$L_{1}\frac{d}{dt}i_{1} = -(1-u)v_{2} + E, \quad L_{3}\frac{d}{dt}i_{3} = -uv_{2} - v_{4},$$

$$C_{2}\frac{d}{dt}v_{2} = (1-u)i_{1} + ui_{3}, \quad C_{4}\frac{d}{dt}v_{4} = i_{3} - Gv_{4},$$

$$y = v_{4},$$

Giordano Scarciotti Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems 50/56

A nonlinear example

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Imperial College A matlab toolbox for moment matching

Imperial College A matlab toolbox for moment matching

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research

Remarks and further research

Remarks and further research

The topics presented today have been extracted from the following papers

Model reduction by moment matching for linear time-delay systems (IFAC '14)

Remarks and further research

- Model reduction by moment matching for linear time-delay systems (IFAC '14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC '14)

Remarks and further research

- Model reduction by moment matching for linear time-delay systems (IFAC '14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC '14)
- Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays (TAC, conditionaly accepted)

Remarks and further research

- Model reduction by moment matching for linear time-delay systems (IFAC '14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC '14)
- Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays (TAC, conditionaly accepted)
- Characterization of the moments of a linear system driven by explicit signal generators (ACC '15, to appear)

Remarks and further research

- Model reduction by moment matching for linear time-delay systems (IFAC '14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC '14)
- Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays (TAC, conditionaly accepted)
- Characterization of the moments of a linear system driven by explicit signal generators (ACC '15, to appear)
- Model reduction by matching the steady-state response of explicit signal generators (TAC, submitted)

Remarks and further research

- Model reduction by moment matching for linear time-delay systems (IFAC '14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC '14)
- Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays (TAC, conditionaly accepted)
- Characterization of the moments of a linear system driven by explicit signal generators (ACC '15, to appear)
- Model reduction by matching the steady-state response of explicit signal generators (TAC, submitted)
- Model Reduction for linear systems and linear time-delay systems from input/output data (ECC '15, to appear)

Remarks and further research

- Model reduction by moment matching for linear time-delay systems (IFAC '14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC '14)
- Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays (TAC, conditionaly accepted)
- Characterization of the moments of a linear system driven by explicit signal generators (ACC '15, to appear)
- Model reduction by matching the steady-state response of explicit signal generators (TAC, submitted)
- Model Reduction for linear systems and linear time-delay systems from input/output data (ECC '15, to appear)
- Model reduction for nonlinear systems and nonlinear time-delay systems from input/output data (CDC '15 submitted)

Thank you for your attention!

