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→ At the state of the art, Reduced Order Modelling (ROM) in CFD is finding
a good growth in methodological and computational developments (RB,
POD, PGD), and several real applications;

→ Stability of the reduced approximation, error bounds, sampling
techniques have been studied and improved in the past few years;

→ The current goal is to increase Reynolds number and to have a deeper
knowledge of complex Fluid Dynamics phenomena such as flow
bifurcations and stability (also in cardiovascular flows) through reduced
eigenproblems.
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Preliminaries: what is a bifurcation in a system?

Many physical systems show a sudden change in behaviour as one or more
control parameters are smoothly varied.

First example: Rayleigh-Benard convection problem (X-roll(s)-flow)

This kind of behaviour is studied in bifurcation theory [Ambrosetti, Prodi].
Focus:

→ Nonlinearities;
→ Non-uniqueness of the solution.

This will be used as model problem (other cases: buckling of a structure and
critical loads, “squeal” in automotive disk brakes: noise after resonance
frequency [V.Mehrmann]).
Reduced basis method is used in nonlinear structural mechanics, POD is
born in CFD (turbulence), HPC was a dream [Noor et al., 1981], [Peterson, 1989].
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Why do some problems bifurcate?

We consider problems dependent on a parameter λ ∈ Rn.

Abstract setting

Given λ ∈ Rn, find u ∈ X such that

F(λ, u) = 0

F : Rn × X → Y

With X, Y Banach spaces.

Typical case: Y = X, F(λ, u) = λLu +N (u). Often the parameter affects
only the linear part L of the operator.

The nonlinearity N (u) can produce a loss of uniqueness for u, and introduce
multiple branches of solutions, at least for some ranges of the parameters.

When multiple solutions start branching from a known solution, we say that a
bifurcation point has appeared.
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Focus: computational reduction strategies for viscous and thermal flows

Goal

To achieve the accuracy and reliability of a high fidelity approximation but at
a greatly reduced cost of a low order model.

Real-time or many-query computational settings related with bifurcation
problems:

→ evaluation of flow stability under perturbations;
→ identification of steady bifurcation points;
→ identification of Hopf bifurcation points;
→ many possible applications: tribology, micro-fluid dynamics,

aerodynamics, industrial flows, haemodynamics, . . .

before bifurcation after steady bifurcation
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Leading motivation (with Annalisa Quaini, University of Houston)

Mitral valve Regurgitation (MR) is a valvular heart disease associated with
the abnormal leaking of blood from the left ventricle into the left atrium of the
heart.

central jet

eccentric jet

Acknowledgments: S. Canic, R. Glowinski, S. Little MD, S. Igo MD, W.
Zoghbi MD, Dr. C. Hartley (U. of Houston and their medical partners)
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The Coanda effect in aerodynamics and cardiology

The COANDA EFFECT is the tendency of
a fluid jet to be attracted to a nearby sur-
face.
It is named after aerodynamics pioneer
Henri Coanda (patent 1934).

The YC-14 uses the Coanda effect to increase the lift for a short take off and
landing.

One of the biggest challenges in the echocardiographic assessment of MR is
the Coanda effect.
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2D contraction-expansion channel

Let us simplify the geometry and understand under which conditions the
Coanda effect is generated.

We consider the flow of an incompressible fluid in this 2D geometry

Re = 0.01

Re = 7.8

Re = 31.1
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Computational reduction: the idea

Acknowledgement: Anthony T. Patera (MIT) - augustine.mit.edu
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Reduced Basis Methods: Construction

µ-PDE, weak formulation

u(µ) ∈ V : FNS(µ;u(µ), v) = 0 ∀v ∈ V

Truth approximation (FEM, SEM, . . . )

uN (µ) ∈ VN : FNS(µ;uN (µ), v) = 0 ∀v ∈ VN

→ Truth Hypothesis: uN (µ) “indistinguishable” from u(µ).
→ RB Motivation: µ→ uN (µ) too expensive and slow in many-query and

real-time contexts.
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Reduced Basis Methods: Construction

µ-PDE, weak formulation

u(µ) ∈ V : FNS(µ;u(µ), v) = 0 ∀v ∈ V

Truth approximation (FEM, SEM, . . . )

uN (µ) ∈ VN : FNS(µ;uN (µ), v) = 0 ∀v ∈ VN

Sampling (Greedy, CVT, . . . ) SN = {µi, i = 1, . . . ,N}
Space construction VN = span{uN (µi), i = 1, . . . ,N}
(Hierarchical Lagrange basis)
OFFLINE

Reduced basis (RB) approximation:
Galerkin projection

uN(µ) ∈ VN : FNS(µ;uN(µ), v) = 0 ∀v ∈ VN

ONLINE
N ≡ dim VN ≪ N ≡ dim VN

Review: [Rozza et al., 2008]
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Parametrized weak formulation of the Navier-Stokes equations

For a given µ ∈ D, find (u, p) ∈ V × Q such that{
m(µ;u, v) + c(µ;u,u, v) + a(µ;u, v) + b(µ; v, p) = f(µ; v) ∀v ∈ V
b(µ;u, q) = 0 ∀q ∈ Q.

where

a(µ;u, v) =
∫
Ω(µ)

∇u : ∇v dx b(v, q) =
∫
Ω(µ)

q div v dx

m(µ;u, v) =
∫
Ω(µ)

v · ∂u
∂t dx c(µ;u,w, v) =

∫
Ω(µ)

v · (u · ∇w) dx

f(µ; v) =
∫
Ω(µ)

Grϑȷ · v dx

Grashof number Gr = gβ∆ϑH4

ν2L .

The parametrized (original) domain Ω(µ) is the image of a fixed (reference)
domain Ω through a parametric map T aff(x,µ) : Ω → Ω(µ).
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A very important assumption is the affine parameter dependence, that allows
to express the transformation as:

x = T aff
i (x, µ) = Caff

i +

d∑
j=1

Gaff
ij (µ)xj

for each subdomain Ωi(µ). Using the standard change of variable theorems,
the variational forms can be expressed on the reference domain:

∂

∂xi
=

∂xj

∂xi

∂

∂xj
= Gji(µ)

∂

∂xj
dx = Jaff(µ) dx

Jaff(µ) ≡ | det(Gaff(µ))|

T aff(µ)

Ω Ω(µ)

[several works on geometrical parametrization by FFD, RBF, TM,. . . , DD]
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Reduced Basis Methods: smooth parametric dependency

How to be rigorous, rapid and reliable?

i depends on the sampling procedure for parameter exploration;
ii exploits an Online/Offline stratagem based on the affinity assumption:

a(µ; v;w) =

Qa∑
q=1

Θq
a(µ)aq(v,w), · · · ;

iii relies on a posteriori error analysis.
18
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Truth approximation (high-resolution)

High order approximation

Find uN (µ) ∈ VN s. t.:
mh(µ;uN (µ), v) + ch(µ;uN (µ),uN (µ), v) + ah(µ;uN (µ), v)

+bh(µ; v, pN (µ)) = fh(µ; v) ∀v ∈ VN

bh(µ;uN (µ), q) = 0 ∀q ∈ QN .

We choose the Legendre Spectral Element Method, as implemented in the
Nek5000 open source software [Fischer et al., http://nek5000.mcs.anl.gov].

Main features:

→ spectral accuracy (if u ∈ C∞):

∥u(µ)− uN (µ)∥H1(Ω(µ)) ≤ C exp(−γn), γ > 0

→ very small dispersion error even for non-smooth solutions [Gottlieb and
Orszag, 1977];

→ Pn − Pn couple for velocity-pressure discretization, n = 20, 3rd order
operator splitting in time [Tomboulides et al, 1997];
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Reduced Basis Method: approximation stability and spaces

Reduced Basis approximation

Find uN(µ) ∈ VN s. t.:
mh(µ;uN(µ), v) + ch(µ;uN(µ),uN(µ), v) + ah(µ;uN(µ), v)

+bh(µ; v, pN(µ)) = fh(µ; v) ∀v ∈ VN

bh(µ;uN(µ), q) = 0 ∀q ∈ QN.

Reduced basis spaces:

VN = span{ξi ≡ uN (µi), i = 1, . . . ,N} QN = span{σi ≡ pN (µi), i = 1, . . . ,N}

The reduced basis spaces must fulfill a parametrized LBB inf-sup condition

inf
q∈QN

sup
v∈VN

b(µ; q,w)

∥q∥QN∥v∥VN
= βN > 0.

in general the inf-sup is not guaranteed: approximation stability is needed.
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Reduced Basis Method: approximation stability and spaces

How to fulfill the LBB inf-sup condition for the Reduced Basis case?

inf
q∈QN

sup
v∈VN

b(µ; q,w)

∥q∥QN∥v∥VN
= βN > 0.

Some possibilities:

→ supremizer enrichment of the velocity space [Rozza and Veroy, 2007];
→ Petrov-Galerkin projection during online phase [Carlberg and Farhat, 2011],

[Dahmen, 2014];
→ Leray projection

21
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Reduced Basis Method: approximation stability and spaces

How to fulfill the LBB inf-sup condition for the Reduced Basis case?

inf
q∈QN

sup
v∈VN

b(µ; q,w)

∥q∥QN∥v∥VN
= βN > 0.

Some possibilities:

→ supremizer enrichment of the velocity space [Rozza and Veroy, 2007];
+ straightforward implementation;
+ standard finite dimensional Galerkin theory holds;
+ reliable, proven method [Ballarin et al., 2014];
− larger RB spaces (and matrices);

→ Petrov-Galerkin projection during online phase [Carlberg and Farhat, 2011],
[Dahmen, 2014];
+ simple online phase;
− different sampling strategies for trial and test spaces;
− very few results available;

→ Leray projection
+ no need to worry about compatibility conditions;
+ smaller RB spaces;
− needs online pre-processing stage (mxm);
− difficult implementation for complex geometries;

22



Outline Motivation Methodology Formulation of the problem Branching prediction Numerical results

Leray projection

Helmholtz-Leray decomposition

Given a vector field w, there is a unique decomposition: (see [Foias et al.,
2001])

w = ∇φ+ v such that div v = 0

This can be seen as a special instance of the Piola transformation [Boffi et al.,
2013]. Then, we define the Leray projector PL : w 7→ v. Applying PL to the
reduced order formulation, the form b(µ; q, v) is removed, and there is no
need of the QN space.

Apply PL to each basis function ζi, in order to obtain a new, divergence-free
basis {ζdiv}.

The reduced basis solution will be in the form:

uN(µ) =

N∑
i=1

uN
i (µ)ζ

div
i

23
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Leray projection

The snapshots are divergence free on the original domain:∫
Ω(µ)

q div u(µ) dx = 0 ∀q ∈ Q,

not on the reference domain, with a transformed divergence constraint:∫
Ω

q
( d∑

j=1

d∑
k=1

Gjk(µ, x)
∂uj(µ)

∂xk

)
Jaff(µ)−1 dx = 0.

To make them divergence-free on the reference domain, compute the
projection: {

uN ,div
1 = PL,1uN = G11(µ)uN

1 + G12(µ)uN
2

uN ,div
2 = PL,2uN = G21(µ)uN

1 + G22(µ)uN
2 .

Then, an orthonormal divergence-free basis {ζdiv
i } on the reference domain

is obtained applying the Gram-Schmidt orthogonalization method on the
projected snapshots:

zi = uN (µi)−
i−1∑
j=1

(uN (µi), ζj)0ζj ζi =
zi

∥zi∥0
.
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Leray projection

What if we want to know pressure?

Two possibilities:

→ recover from the velocity coefficients:

pN(µ) =

N∑
k=1

uN
k (µ)σk

→ solve a Poisson problem (online):

∆pN(µ) = −div
(

uN(µ) · ∇uN(µ)
)
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Leray projection

The cooperation of the parametrized Leray projection PL(µ) and the affine
mapping T aff(µ) can be visualized through the diagram:

ζi
T (µ)−−−−−→ ζi

PL(µ)

y yPL(µ)

ζdiv
i

PL(µ)◦T (µ)−−−−−−−−→ ζ
div
i

And the relationships between the spaces introduced this far are the
following:

V × Q High Order−−−−−−−−−−→
Galerkin projection

VN × QN Reduced Basis−−−−−−−−−−→
Galerkin projection

VN × QN

PL

y PL

y yPL

Vdiv
High Order−−−−−−−−−−→

Galerkin projection
VN

div
Reduced Basis−−−−−−−−−−→

Galerkin projection
VN

div
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Reduced Basis Method: sampling technique

Centroidal Voronoi Tessellation

Given a distance function ϱ : D → R+ and a sequence of parameters
{µi}n−1

i=1 , find the next element of the sequence µ
n s. t.:∑

i∈τj

ϱ(µi)∥uN (µi)− uN (µn)∥20 = min
ν∈D

∑
i∈τj

ϱ(µi)∥uN (µi)− uN (ν)∥20

with τj triangle in {µi}n−1
i=1 with largest sum of ϱ(µi). [Burkardt and Gunzburger,

2006]

As distance function, we choose

ϱ(µi) =

∫
Ω(µi)

[
uN (µi)− INu(µi)

]2
dx

Two different CVTs, for steady state and time-dependent snapshots.

CVT gives hierarchical spaces (like POD and Greedy).

Alternatively: random sampling, Greedy (steady) [Prudhomme et
al.,2003],[Rozza et al. 2008] and POD-Greedy (time-dependent) [Nguyen et al.,
2009], [Haasdonk and Ohlberger, 2008]
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Reduced Basis Method: sampling technique

Example of CVT sampling

step 1 step 3

→ new point at barycenter of triangle with larger residuals;
→ weighted residual projection as error indicator;
→ special care needed for steady snapshots (if not, the CVT would sample only the

high-Gr part of the parameter space D).
28
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Reduced Basis Method: sampling technique

Numerical example: a cavity flow with parametrized aspect ratio and Grashof
number. This data refers to 55 offline runs, leading to 109 snapshots.

Parameters selected by the CVT sampling algorithm. With the red square mark we denote the steady state
snapshots, with the black circle mark the time-dependent snapshots. The Grashof number is expressed in
thousands.
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Computational reduction of time-dependent snapshots

What to do with time-periodic snapshots? Proper Orthogonal Decomposition
(POD). Given a series of snapshots uN (µi; x, tk) for k = 1,Nsn, extract the
more relevant information by finding the modes Ψi such that

Ψi = arg min
Ψ1,...,Ψi−1∈L2

(v−
i∑

j=1

(v,Ψj)0Ψj) ∀v ∈ L2 such that (Ψi,Ψj)0 = δij.

Practically, a possible algorithm is [Volkwein, Lecture notes]

i for each time-series, compute the correlation matrix

Cnm =

∫
Ω(µ)

uN (µi; x, tn)uN (µi; x, tm) dx

ii compute the eigenpairs (λk,ψk) of Cnm
iii compute the modes

Ψk =

Nsn∑
j=1

ψk,ju
N (µi; x, tj)

In this work, we keep the modes sufficient to store 99.9% of the energy (3
modes are sufficient for most cases).

The snapshots obtained with the POD are then passed to the
orthogonalization procedure to build a reduced order basis. 30
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Reduced Basis Method: Certification

Brezzi-Rappaz-Raviart theory. Main ingredients:

→ continuity constant

γ2(µ) = sup
w∈V

sup
z∈V

sup
v∈W

c(µ;w, z, v)
∥w∥V∥z∥V∥v∥W

→ inf-sup constant

βN
LB ≤ βN ≡ inf

w∈V
sup
v∈W

DuFNS(µ;w,uN(µ), v)
∥w∥V∥v∥W

→ dual norm of residual

∥rN(µ)∥V′ = sup
v∈W

FNS(µ;uN(µ), v)
∥v∥W

→ adimensional residual measure

τN(µ) ≡ 4γ2(µ)

(βN
LB)

2
∥rN(µ)∥V′

Error estimate:

∥uN (µ)− uN(µ)∥V ≤ ∆N(µ) ≡ βN
LB

2γ2(µ)

(
1−

√
1− τN(µ)

)
32
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Reduced Basis Method: Certification

A posteriori error estimate

∥uN (µ)− uN(µ)∥V ≤ ∆N(µ)

Works well for:

→ steady Stokes, [Rozza et al., 2013];
→ steady Navier-Stokes, sufficiently far from bifurcation points [Veroy and

Patera, 2005], [Deparis 2008], [Manzoni, 2012];
→ time-dependent Navier-Stokes, space-time framework [Urban and Patera,

2012], [Yano and Patera, 2013] main idea: Petrov-Galerkin projection on
time-space functional settings e.g. W ≡ L2(I;H1

0)× L2.
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Reduced Basis Method: Certification

For the bifurcation point: let (µ∗,u∗) simple bifurcation point, (µN
∗ ,uN

∗ ) its
approximation.

→ if branches intersect, let (µi(s),ui(s)), i = 1, 2 be their parametrization
for each branch. We have:

|µ(s)− µN(s)|+ ∥u(s)− uN(s)∥X ≤ C inf
vN∈XN

∥u(s)− v∥X

→ if branches do not intesect (numerically), the distance between the
solutions spaces is bounded:

d(SN,S) ≤ chk−1/2;

If (µ0,u0) simple quadratic fold, [Brezzi et al., 1986], there are estimates of the
type:

|µN
0 (s)− µ0| ≤ c|s|k.
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Steady bifurcations

Variational problem associated to the steady-state Navier-Stokes equations:

FS(µ;u(µ), p(µ)) = 0

with

FS(µ;u(µ), p(µ))
{

c(µ;u,u, v) + a(µ;u, v) + b(µ; v, p) = f(µ; v)
b(µ;u, q)

Tangent advection operator

Taking the Fréchet derivative of the convection term u · ∇u about a steady
solution u0, we have the linear operator T (u0) : V → V:

T (u0)[v] ≡ DuFS(u0)[v] = u0 · ∇v + v · ∇u0. (1)

If u0(µ
∗) is a bifurcation point, in a neighbourhood of µ∗ ∈ D there is a

change of sign for an eigenvalue σi of

Tij(u0) = T ((u0, ζ
div
j )0ζ

div
j )[ζ

div
i ].

[Cliffe et al. 2012]
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Numerical example: critical eigenvalue analysis

Eigenvalues of the operator T (u0) in a neighbourhood of a steady
bifurcation point.

Real part of the critical eigenvalue of the operator T (u0) in a
neighbourhood of a steady bifurcation point.
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Hopf bifurcation: unsteady solutions

Assuming a flow of period ω, formulate the time-dependent problem as

ω
du
dt = FS(µ;u(µ), p(µ))

and we reconduce to the previous case [Ambrosetti and Prodi, 1992]:

FNS(ω,µ;u(µ), p(µ)) = 0

where FNS : R×D× V × Q → V × Q is obtained from FS by adding the time
derivative.

Global linearized operator

Linearize the Navier-Stokes equations about a steady state u0 + small time
perturbation u′(x)eσt:

L(u0)[u′] = u0 · ∇u′ + u′ · ∇u0 −∆u′ = −σu′

→ find eigenvalues of the operator L : V → V:

L(u0)[u′] = −σu′.

and if ℜσ0 > 0, the perturbation will grow.
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Hopf bifurcation

Global linearized operator

Linearize the Navier-Stokes equations about a steady state u0 + small time
perturbation u′(x)eσt:

L(u0)[u′] = u0 · ∇u′ + u′ · ∇u0 −∆u′ = −σu′

→ find eigenvalues of the operator L : V → V:

L(u0)[u′] = −σu′.

and if ℜσ0 > 0, the perturbation will grow.

In the reduced-basis context, find the eigenvalues of the matrix

Lij =

Nu∑
k=1

(ζ
div
i , ζ

div
k ·∇ζdiv

j )0Uk
N+

Nu∑
k=1

(ζ
div
i , ζ

div
j ·∇ζdiv

k )0Uk
N+(∇ζdiv

i ,∇ζdiv
j )0.

L ∈ RN×N, and N is small, hence the eigenvalues can be computed with a
good accuracy.
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Time-dependent results

Frequencies at the onset of oscillatory solutions are determined by the
imaginary part of the eigenvalues.
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Frequences for the 1, 2 and 3-roll flows at the Hopf bifurcation.

frequency qualitative behaviour follows expectations;

some phase dispersion is present, better sampling might be needed near
bifurcation values;
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Description of the benchmark problem

To validate the branching detection methods in a ROM context, we choose
the GAMM benchmark on a buoyancy driven cavity flow [Roux, 1990].

The cavity has unitary height and parametrized length µ. In the limit of
Prandtl → 0, the forcing term is simply

f = Gr xȷ

with ȷ vertical versor, Gr the Grashof number. Velocity b. c. are
homogeneous Dirichlet.

Hence, µ = (Gr , µ), D = [50 · 103, 1 · 106]× [2, 10], as used in the reference
work of [Gelfgat et al., 1999].

Similar problem studied with POD and Reduced Basis by [Herrero et al., 2013].
Their approach: use different basis for each branch.
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Some representative snapshots

µ = 2, Gr = 50 S µ = 3.37, Gr = 264.9 U

µ = 8.36, Gr = 50.77 S

µ = 10, Gr = 1 U

µ = 5.52, Gr = 132.1 U
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Example: ROM for bifurcation diagram with µ = 4

→ N = 13 (7 steady, 6 from POD with 99.9% energy threshold from two
time-periodic snapshots);

→ reference works [Gelfgat et al., 1999] predict steady solutions with 1-roll,
2-roll and 3-roll flows;

→ continuation method during the offline phase;
→ computational time reduction: from 24-cpu hours on a cluster (PLX), to a

few cpu-minutes per run on a personal PC.

Results agree with the reference results both in terms of the steady and the
Hopf bifurcations; some hysteresis is shown also in the online phase.

CPU hours provided by CINECA (Consorzio Interuniversitario per
l’Elaborazione ed il Calcolo Automatico) - ISCRA (Italian Super-Computing
Resource Allocation) - project IsC13 - ID POOLSMR
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Bifurcation diagram for µ = 4

Bifurcation diagram for an aspect ratio of 4. The three lines are associated to the solutions with 1, 2, and 3 rolls. The
horizontal velocity is taken at the point (0.7, 0.7).

From [Pitton, Rozza, submitted, 2015]
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Stability regions, reference: [Gelfgat et al., 1999]

Stability regions for the 1-roll flows (in black), the 2-roll flows (red) and the 3-roll flows (blue). The Hopf
bifurcation points are marked with the circles, the steady bifurcation points with the square marks. The
Grashof number is expressed in thousands.

rough interpretation: 1-roll flows exist below the black line; 2-roll flows exist
between the two red lines; 3-roll flows exist between the two blue lines. 46
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Stability regions

We restrict ourselves to the region (µ,Gr ) ∈ [50 · 103, 1 · 106]× [2, 6].

This time N = 108, but each simulation is run with a lower number of basis
functions, depending on the parameter zone of interest.

Hopf bifurcations are detected by using a set of basis (deriving from
snapshots) with an equal number of rolls.

Steady bifurcations are detected by using basis with an equal number of rolls,
plus some different basis close to the parameter range.

Computational gain: reduced order computing time is ≃ 0.35% of the full
order (5 minutes on a personal computer vs 24 cpu-hours on a cluster).
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Time-dependent results

Comparison of the horizontal velocity at a the point (0.7, 0.7) vs time for the high order (in red) and reduced order
(in black) simulations. The parameters are Gr = 963791, A = 2.22, and the resulting flow has a single roll.
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Time-dependent results

High-Order solution Reduced-Order solution

49



Outline Motivation Methodology Formulation of the problem Branching prediction Numerical results

2D sudden expansion channel

Onset of Coanda effect in mitral valves (benchmark from [Drikakis, 1996])

Symmetry breaking bifurcation for a channel with orifice. Vertical velocity is taken at the mean horizontal line, at distance 1 from the inlet.

From [Pitton, Rozza, Quaini, submitted, 2015]
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2D variable geometry

First step: 2D parametrization

A = 1/3, Re = 45 A = 1/3, Re = 100

A = 1/4, Re = 30 A = 1/4, Re = 50

A = 1/8, Re = 40 A = 1/8, Re = 40
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3D sudden expansion channel

Second step: reference 3D simplified geometry (benchmark from [Oliveira et
al., 2008])

Re = 7.8

Re = 100
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3D sudden expansion channel

Second step: reference 3D simplified geometry (benchmark from [Oliveira et
al., 2008])

Re = 7.3 Re = 18.2

Re = 25.5 Re = 43.7
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Perspectives

→ goal: investigate the possibility of using ROM techniques for bifurcation
problems in Fluid Dynamics (first results are encouraging);

→ application: provide computational reduction tools for Coanda effect in
haemodynamics applications;

→ combine precision of high order schemes (e.g. SEM) with low cost of
Reduced Basis methods;

→ future investigation areas (with University of Houston):
→ geometrical parametrization;
→ 2D/3D effects;
→ more complex model/tests with elastic wall/valve (FSI).

Scheme of prolapse geometry Scheme of elastic valve
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Collaborations & Sponsors

Collaborations in ROM framework (2003-2015)
A. Quarteroni A. T. Patera Y. Maday P. Huynh

K. Veroy T. Lassila F. Ballarin J. Hesthaven

A. Manzoni P. Chen L. Iapichino B. Stamm

F. Negri D. Devaud D. Forti K. Urban

P. Pacciarini G. Pitton F. Salmoiraghi A. Sartori

A. Quaini L. Heltai C. Nguyen S. Deparis

I. Maier B. Haasdonk S. Volkwein A. De Simone

M. Grepl M. Ohlberger L. Dedè

Sponsors
SISSA NOFYSAS Excellence Grant, PRIN 2012 MIUR,
European Cooperation in Science and Technology COST: EU-MORNET TD1307,
Swiss National Science Foundation, INdAM-GNCS, Regione Friuli Venezia Giulia,
DITENAVE, Danieli RC, European Research Council - Mathcard Project,
MIT-Italy Program, Area Science Park Innovation Network.
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SISSA mathLab

• A new center for
mathematical modelling
and numerical simulation
at SISSA: mathLab

• A new PhD program:
Mathematical Analysis,
Modelling and
Applications

• A new master in High
Performance Computing

• A new supercomputing
center in Miramare:
Ulysses cluster
(100TFlops)

Faculties: 3, Research Staff: 8, PhD+grad+postgrad: 8
Director: A. De Simone, Head Scientific Com.: A. Quarteroni
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