Closed-loop turbulence control using machine learning

B. Noack³, T. Duriez^{1,3}, L. Cordier³, K. von Krbek³,
E. Kaiser^{3,4}, V. Parezanovic³, J.-P. Bonnet³,
M. Segond³, M. Abel³, N. Gautier³, J.-L. Aider³,
C. Raibaudo³, C. Cuvier³, M. Stanislas³, A. Debien³,
N. Mazellier³, A. Kourta³, S. Brunton¹ & R. Niven²
......¹Argentinia, ²Australia, ³Europe & ⁴USA

— supported by ANR, DFG, ERC & ADFA@UNSW —

Berlin Workshop on Model Reduction for Transport-dominated Phenomena Einstein Foundation, Berlin Institute of Technology, Germany 2015-05-19..20

Friends / core team

Machine

learning

M. Abel M. Segond Ambrosys Control

theory

S. Brunton N. Kutz U Washington

Closed-loop turbulence control theory

L. Cordier, T. Duriez, E. Kaiser, B. Noack, M. Schlegel, et al. P' + Berlin + Buenos Aires**Closed-loop turbulence control** – experimental demonstrators

P'

Rudi King et al. TU Berlin

Statistical physics

Robert Niven UNSW Australia CFD +Stab.anal.

Marek Morzyński TU Poznań

More friends (experiments)

• A. Spohn, V. Parezanovic, E. Kaiser (PPRIME, Poitiers)
• J. Borée, D. Barros, C. Li, Y. Cao
of an Ahmed body
in combustion engine learning modelling in combustion engine
• F. Harambat, T. Ruiz (PSA, Peugeot-Citroën, Velizy)
of a realistic car model
• N. Gautier, N., JL. Aider,
of backward facing step
• M. Stanislas, C. Raibaudo, C. Cuvier,
• A. Kourta, A. Debien & N. Mazellier (PRISM, Orléans)
• C.O. Paschereit, C.N. Nayeri, K. Oberleithner, J. Moeck \dots (TU
Berlin)
combustion-related experiments, soon: MLC in wind-turbine, cars
• R. Radespiel, R. Semaan, P. Scholz, (TU Braunschweig)
MLC in drag reduction of a d-shaped body
MLC in highlift airfoil with ${\sim}100$ actuators and ${\sim}$ 500 sensors

MLC experiments in this talk

• PPRIME Poitiers

:

- PMMH Paris
- LML Lille
- PRISME, Orléans
- V. Parezanovic, J. Delville (t), K. Fourment (t), J.-P. Bonnet
- N. Gautier, N., J.-L. Aider
- M. Stanislas, C. Raibaudo, C. Cuvier
- s 📕: A. Kourta, A. Debien & N. Mazellier

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

3. Machine learning control (MLC) as magic bullet

4. Recent MLC applications Demonstrations in shear turbulence experiments

5. Turbulence control strategies revisited

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

3. Machine learning control (MLC) as magic bullet

4. Recent MLC applications Demonstrations in shear turbulence experiments

5. Turbulence control strategies revisited

Turbulence control \mapsto **transport vehicles**

Control goals

- lift increase
- drag reduction
- acoustic noise reduction
- mixing/combustion control

Control strategies

- aerodynamic design
- passive (e.g. riblets)
- active, open-loop
- (e.g. periodic blowing)
- active, closed-loop (largest opportunities!)

Turbulence control \mapsto **other applications**

Turbulence control \mapsto **even more applications**

Simple prototype flows

Production etc.

Overview

1. An eldorado of engineering applications

3. Machine learning control (MLC) as magic bullet

4. Recent MLC applications Demonstrations in shear turbulence experiments

5. Turbulence control strategies revisited

von Kármán vortex street in nature

Rear side of the island Guadalupe (20 Aug. 1999)

von Kármán vortex street in technology

Damaged tanker — oil visualization

Van Dyke (1982), page 100

von Kármán vortex street in technology

Tacoma Narrows Bridge (7 Nov. 1940)

D-shaped body: Experimental setup

 \equiv Pastoor, Henning, Noack, King & Tadmor 2008 JFM

D-shaped body: Un-actuated flow

E Pastoor, Henning, Noack, King & Tadmor 2008 JFM

smoke visualization, $Re_H = 40\,000$

 $St_n = 0.20$ $c_{D,0} = 1.2$ $\bar{c}_{P,0} = -0.5$

D-shaped body: Open-loop control

📃 Pastoor, Henning, Noack, King & Tadmor 2008 JFM

Symmetric actuation $St_a = 0.63St_n$ suggested by ROM

 $Re_{H} = 40\,000$

J.-L. Aider et al. \mapsto backward facing step

 $c_{\mu} = 0.015$ $St_a = 0.126$ $c_D/c_{D,0} = 0.85$ $\overline{c_D}/|\overline{c}_{P,0}| = -0.6$

40% increase in base pressure.

20% decrease in drag.

D-shaped body: Closed-loop control

 \equiv Pastoor, Henning, Noack, King & Tadmor (2008) JFM

Phase control derived from ROM

$Re_H = 40\,000$

 $c_{\mu} = 0.015$ $St_A = 0.17$ $c_D/c_{D,0} = 0.85$ $\overline{c_D}/|\overline{c}_{P,0}| = -0.6$ Same drag reduction, but at all Re [20000,60000] ... and with 40% less actuation energy.

D-shaped body: Closed-loop control *II*

📃 Pastoor, Henning, Noack, King & Tadmor 2008 JFM

Phase control derived from ROM

$Re_{H} = 40\,000$

 $c_{\mu} = 0.015$ $St_A = 0.126$ $c_D/c_{D,0} = 0.85$ $\overline{c_D}/|\overline{c}_{P,0}| = -0.6$ Same drag reduction at same actuation energy. But only one (!) actuator.

Generalized mean field model

 \equiv Luchtenburg et al. 2009 JFM & \equiv Aleksić et al. 2010 AIAA

Dynamical system structure:

$$\frac{d}{dt} \begin{bmatrix} a_1\\a_2\\a_3\\a_4 \end{bmatrix} = \begin{bmatrix} \tilde{\sigma}^n & -\tilde{\omega}^n & 0 & 0\\ \tilde{\omega}^n & \tilde{\sigma}^n & 0 & 0\\ 0 & 0 & \tilde{\sigma}^a & -\tilde{\omega}^a\\ 0 & 0 & \tilde{\omega}^a & \tilde{\sigma}^a \end{bmatrix} \begin{bmatrix} a_1\\a_2\\a_3\\a_4 \end{bmatrix} + \begin{bmatrix} 0 & 0\\0 & 0\\\kappa & -\lambda\\\lambda & \kappa \end{bmatrix} \mathbf{b}.$$

with state-dependent coefficients

$$\begin{aligned} \tilde{\sigma}^{n} &= \sigma^{n} - \sigma^{n,n} (A^{n})^{2} - \sigma^{n,a} (A^{a})^{2}, \\ \tilde{\omega}^{n} &= \omega^{n} + \omega^{n,n} (A^{n})^{2} + \omega^{n,a} (A^{a})^{2}, \\ \tilde{\sigma}^{a} &= \sigma^{a} - \sigma^{a,n} (A^{n})^{2} - \sigma^{a,a} (A^{a})^{2}, \\ \tilde{\omega}^{a} &= \omega^{a} + \omega^{a,n} (A^{n})^{2} + \omega^{a,a} (A^{a})^{2}, \\ a_{5} &= c + c^{n} (A^{n})^{2} + c^{a} (A^{a})^{2}, \end{aligned}$$

with $A^n = \sqrt{a_1^2 + a_2^2}$, $A^a = \sqrt{a_3^2 + a_4^2}$ and $\mathbf{b} = (b, \dot{b} / \tilde{\omega}^a)$

Prototypic model of frequency cross-talk \equiv Luchtenburg et al. 2009 JFM & \equiv Aleksić et al. 2010 AIAA

Simplified generalized mean-field model:

$$\frac{d}{dt} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} \sigma_1 & -1 & 0 & 0 \\ 1 & \sigma_1 & 0 & 0 \\ 0 & 0 & -0.1 & -10 \\ 0 & 0 & 10 & -0.1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ b \end{bmatrix}$$
$$\sigma_1 = 0.1 - a_1^2 - a_2^2 - a_3^2 - a_4^2$$

Goal = mitigate instability $J = \overline{a_1^2 + a_2^2} + 0.01\overline{b^2} \stackrel{!}{=} \min$

Linear control \Rightarrow first oscillator uncontrollable!

- Fixed point $a_1 = a_2 = a_3 = a_4 = 0$
- Linearized system around fixed point $\dots \sigma_1 = 0.1$ Nonlinear control: Excite 2nd osc. $a_3^2 + a_4^2 > 0.1 \Rightarrow \sigma_1 < 0$

Frequency cross-talk = show stopper for model-based control

Reynolds stress

at any frequency changes mean flow Reynolds + Hussain 1972 JFMs

- Normal turbulence cascade Dominant \mapsto high frequencies
- Inverse turbulence cascade Dominant \mapsto lower frequencies
- High frequency forcing can mitigate the dominant frequency
 ■ Glezer+ 2005 AIAA-J, ■ Luchtenburg+ 2009 JFM, ...
- Low-frequency forcing too

 ■ Aider+ 2014, Pastoor+ 2008 JFM, …

Turbulence control \rightarrow **decision tree**

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

4. Recent MLC applicationsDemonstrations in shear turbulence experiments

5. Turbulence control strategies revisited

Machine learning control I□ Duriez et al. 2014 AIAA, □ Wahde 2008

MLC = model-free optimization of control laws Similar approaches exist for robotic missions, etc. **Step 1:** 1st generation with random nonlinear control laws

 $b_m^1 = K_m^1(s), m = 1, ..., 100$

Step 2–50:

Biologically inspired

optimization of the

control laws based

on the 'fitness grades'

 $J\left[\boldsymbol{b}=\boldsymbol{K}(\boldsymbol{s})\right]$

E J.R. Koza 1992 Genetic Programming, The MIT Press **Detailed description**

Machine learning control III \equiv Duriez et al. 2014 AIAA, \equiv Gautier et al. 2015 JFM

Gradient search

requires structure identification of the control law and yields parameter identification (local minimization)

Genetic algorithm/programming

= evolutionary algorithm for regression with parameter/structure identification of the control law (global minimization)

Example of an evolutionary minimization

$MLC \mapsto generalized mean-field model$

 \equiv Luchtenburg, Günther, Noack, King & Tadmor 2009 JFM & \equiv Duriez et al. 2014 AIAA

$\textbf{MLC} \mapsto \textbf{Lorenz equation}$

 \equiv Duriez et al. 2014 AIAA

Forced Lorenz system

$$\frac{da_1}{dt} = \sigma (a_2 - a_1),
\frac{da_2}{dt} = a_1 (\rho - a_3) - a_2,
\frac{da_3}{dt} = a_1 a_2 - \beta a_3 + b,
\sigma = 10, \ \beta = 8/3 \text{ and } \rho = 20$$

MLC goal:

Find a control law $\frac{b(a)}{a}$ with mimimizes the max. Lyapunov exponent

$$J = \exp(-\lambda_1) + \frac{\gamma}{T} \int_0^T dt \, b^2$$

Controlled Lorenz attractors

 $\begin{array}{l} \gamma = 1 \\ \lambda_1 = 0.715, \end{array}$

$$\gamma = 0.01$$

 $\lambda_1 = 2.072,$

 $\gamma = 0$ $\lambda_1 = 17.613$

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

3. Machine learning control (MLC) as magic bullet

4. Recent MLC applications

..... Demonstrations in shear turbulence experiments

5. Turbulence control strategies revisited

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

3. Machine learning control (MLC) as magic bullet

4. Recent MLC applications Demonstrations in shear turbulence experiments

5. Turbulence control strategies revisited

Conclusions

Noack+ 2011 Springer (\mapsto ROM); Kaiser+ 2014 JFM (\mapsto CROM); Gautier+ 2015 JFM (\mapsto MLC)

Turbulence control = attractor control

Physics mechanisms are strongly nonlinear.

- Model-based control design
 - \rightarrow one or two frequencies
- Model-free machine learning control design
 - \rightarrow broadband turbulence
 - shear turbulence control, drag reduction, ...
 - MLC consistently outperformed best open-loop forcing
 - Even when a linear dynamics was invalidated.

In Progress: Cluster-based control (CROM, RL, ...) \rightarrow model-based alternative for MLC More info

More information or any ideas

Call 24h/7d

... or read

E Kaiser+ 2014 JFM	Gautier+ 2015 JFM
	machine learning control
Pastoor+ 2008 JFM	Luchtenburg + 2009
bluff-body control	JFMairfoil control

... or ask now!!!

In any case, stay tuned in for news + publications:

- http://MachineLearningControl.com
- http://ClusterModelling.com