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Outline

This talk is organised into three main parts 
Structure-preserving Spatial Discretisation of 
Distributed Port-Hamiltonian Systems 

Basic Results on Model Reduction for Port-
Hamiltonian Systems  

Control Synthesis for Implicit Port-Hamiltonian 
Systems 

These topics are strongly related, and they 
show how it is possible to treat different 
problems within the same methodological 
framework 

Some academic examples are presented, and 
also one real-world industrial application



Part I

Structure-preserving Spatial Discretisation of 
Distributed Port-Hamiltonian Systems



Spatial discretisation of distributed pH systems

A fundamental problem in the simulation and control of systems 
containing distributed-parameter components concerns finite-
dimensional approximation 

Numerical methods usually assume the boundary conditions to be given; 

Finite dimensional approximation methods are not easily relatable to 
numerical techniques for solving PDEs, 

and are mainly confined to linear PDEs 

We propose a method for spatial discretisation of boundary control 
systems based on a particular type of finite elements 

The spatially discretised system is again a port-Hamiltonian system 

Examples: 
Ideal transmission line; 

Two dimensional wave equation; 

Nonlinear flexible link



Spatial discretisation of distributed pH systems

Let us start from a system of two conservation laws: 
Bond space: 
 
 
 
 
 

Stokes-Dirac structure: 
 
 
with respect to the scalar pairing 
 

Energy balance:
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Spatial discretisation of distributed pH systems

For a transmission line, n = q = p = 1 and 
 

The spatial discretisation procedure consists of two steps: 
First, the interconnection structure is spatially discretised; 

Secondly, the constitutive relations are approximated 

STEP#1: spatial discretisation of the interconnection structure 
Consider a part of the transmission line between two points a and b: the 
spatial manifold corresponding to this part of line is Zab = [a, b]
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Assumption 1. Approximation 
of fq and fϕ on Zab 
 
 
where

fq(t, z) = fq,ab(t)!q,ab(z)

f�(t, z) = f�,ab(t)!�,ab(z)
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e@,a(t) = eq(t, a)
e@,b(t) = eq(t, b)
f@,a(t) = e�(t, a)
f@,b(t) = e�(t, b)

Assumption 2. Approximation of eq and eϕ 
on Zab 
 
 
where

eq(t, z) = eq,a(t)!q,a(z) + eq,b(t)!q,b(z)

e�(t, z) = e�,a(t)!�,a(z) + e�,b(t)!�,b(z)

!q,a(a) = !q,b(b) = !�,a(a) = !�,b(b) = 1

!q,a(b) = !q,b(a) = !�,a(b) = !�,a(b) = 0



fq,ab(t)!q,ab(z) = �e�,a(t)d!�,a(z)� e�,b(t)d!�,b(z)

f�,ab(t)!�,ab(z) = �eq,a(t)d!q,a(z)� eq,b(t)d!q,b(z)
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Assumption 1

Assumption 2

1

Assumption 3 (Compatibility of forms). (1) The 1-form 
ωq,ab and functions ωϕ,a and ωϕ,b should be chosen in 
such way that for every eϕ,a and eϕ,b we can find fq,ab such 
that 1 is satisfied. 
(2) The 1-form ωϕ,ab and functions ωq,a and ωq,b should 
be chosen in such way that for every eq,a and eq,b we can 
find fϕ,ab such that 2 is satisfied.

2

d!�,a = �!q,ab
d!�,b = !q,ab
d!q,a = �!�,ab
d!q,b = !�,ab

Proposition. ωq,a, ωq,b, ωϕ,a, ωϕ,b, ωq,ab and 
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e.g., linear spline
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fq,ab(t) = e�,a(t)� e�,b(t)

f�,ab(t) = eq,a(t)� eq,b(t)
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Integration over Zab leads to 
 
 
 
 

Net power of the considered part of the transmission line:
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Fig. 1. Bond graph of the finite dimensional approximation
of the Stokes-Dirac structure of Example 3.
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where fab =
(

fab,q, fab,p
)T

, eab =
(

eab,q, eab,p
)T

, fB
a =

−ep(a), fB
b = ep(b), eBa = eq(a) and eBb = eq(b). Note

that the boundary terms have been chosen as in the gen-
eral case (14). The bond graph of this Dirac structure
is reported in Fig. 1, in which it is assumed that αab =
αab,1 = αab,2

1 . Moreover, note the orientation of the
bond associated to the port (fB

a , eBa ) and the correspond-
ing minus on the flow variable to make the power balance
coherent with respect to (15). It is worth mentioning that
such choice is justified by the necessity of interconnecting
several bond-graphs in the form of Fig. 1 in order to ob-
tain the complete finite element model of the system. It is
clear that having a different orientation at the extremities
of the sub-domain Zab facilitates this step. Otherwise,
the interconnection would be possible via a 0-junction .

If the simulation package is not able to deal with a-causal
systems, it is necessary to get an explicit form of the
finite dimensional dynamics by choosing an input and
its dual output. Generally speaking, for any particular
choice, the resulting system is described by a differen-
tial equation with algebraic constraints, [?]. However, it
is possible to verify that algebraic constraints do not ex-
plicitly appear if inputs and outputs are properly cho-

1 In this and all the following bond graphs, the discretized
variables are inserted in the graph structure according to
the role they play with respect to the boundary variables.
For example, in Fig. 1, fab,p (resp. eab,p) is linked to the
boundary efforts eBa and eBb (resp. flows fB

a and fB
b ) and

therefore it appears as the “effort” (resp. “flow”) of its power
port, as indicated by the labels around the bond.

sen. A possible choice is the following:
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It is now necessary to investigate if and under which con-
ditions a finite dimensional port-Hamiltonian system in
input/output form [?] can be deduced from (20). Gener-
ally speaking, it is necessary to take into account the fact
that more than a single effort variable may be related to
any given flow. If, at first, the inter-dependencies among
the α variables are considered, from (16) we have that
αi
ab,1 = αj

ba,2 for every i and j. Therefore,

ᾱ−1
ab,1 = ᾱ−1

ba,2 ᾱ−1
ab,2 = ᾱ−1

ba,1 (22)

As for the input/output map, it is useful to rewrite (19)
in the following form:

{

−fab = J∆eab +G∆u

y = GT
∆eab +D∆u

(23)

where u and y have been defined in (21), while the ex-
pression of J∆, G∆ and D∆ is reported in Appendix A.
Finally, since from (22) it is possible to prove that J∆
andD∆ are skew-symmetric, the power balance relation
for the system is eTabfab + yTu = 0, as expected.

4 Extension to higher order derivatives

Let us now consider a larger class of systems, by allowing
N ≥ 2 in (6). This involves the presence of higher or-
der derivatives, and the necessity to consider as bound-
ary variables also the restriction on the boundary itself
of the efforts’ derivatives up to the (N − 1)-th order.
The discretization problem may be solved by introduc-
ing a number of auxiliary variables so that it is possi-
ble to write the system equations in a form where only

7

bond graph

After simple computations:
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STEP#2: approximation of the energy part 
Since fq and fϕ are related to q and ϕ, it is consistent to impose 
 
 
 

The approximation of the electric energy of the part of the line is  
 

Similarly, the magnetic energy is approximated by: 
 

Total energy:
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Spatial discretisation of the transmission line: 
The transmission line is split into n parts 

The i-th part (Si−1; Si) is discretised as explained in the previous two sub- 
sections, where a = Si−1 and b = Si 

Since the interconnection of port-Hamiltonian systems is a port-
Hamiltonian system, the total discretised system is also a port-Hamiltonian 
system 

The total Hamiltonian is given by the sum of the individual Hamiltonians 
 

Energy balance:
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Two-dimensional case: the wave equation 

Port-Hamiltonian description: 
State (energy) variables: 
 

Hamiltonian function: 
 

Port-Hamiltonian formulation:
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f@(t, z) = f@,a(t)!v,a(z) + f@,b(t)!v,b(z) + f@,c(t)!v,c(z)

e@(t, z) = e@,ab(t)!�,ab(z) + e@,bc(t)!�,bc(z) + e@,ca(t)!�,ca(z)
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Passing from the interval grid for the 1-D case, we move onto the 
simplest possible grid for the 2-D example, i.e. the triangular grid 

Approximation of flow variables:  
 

Approximation of efforts: 
 

Boundary variables:
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Similarly to the 1D case and after some time, you obtain the 
following relation, that defines a Dirac structure:

Fabcz }| {0

BBBBBB@

↵a,abc 0 0 0 0 0
↵b,abc 0 0 0 0 0
↵c,abc 0 0 0 0 0
0 ↵b,abc � �b,ab �c,ab � ↵c,abc 1 0 0
0 ↵b,abc � �b,bc �c,bc � ↵c,abc 0 1 0
0 ↵b,abc � �b,ca �c,ca � ↵c,abc 0 0 1

1

CCCCCCA

fabcz }| {0

BBBBBB@

fp,abc
f✏,ab
f✏,ca
f@,ab
f@,bc
f@,ca

1

CCCCCCA
+

+

0

BBBBBB@

0 �1 1 �a,ab �a,bc �a,ca

0 1 0 �b,ab �b,bc �b,ca

0 0 �1 �c,ab �c,bc �c,ca

�1 0 0 0 0 0
�1 0 0 0 0 0
�1 0 0 0 0 0

1

CCCCCCA

| {z }
Eabc

0

BBBBBB@

ep,abc
e✏,ab
e✏,ca
e@,ab
e@,bc
e@,ca

1

CCCCCCA

| {z }
eabc

= 0



Spatial discretisation of distributed pH systems

Approximation of the constitutive relations: 
Kinetic energy:  
 
 
 
 

Potential elastic energy:
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The port-behaviour 
is the same!!!
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and by ⟨e, f⟩ the power associated to the port
(f, e) ∈ F × E , where ⟨·, ·⟩ is the dual product
between f and e. Based on the dual product,
the following symmetric bi-linear form (+pairing
operator) is well-defined:

≪ (f1, e1), (f2, e2) ≫= ⟨e1, f2⟩ + ⟨e2, f1⟩ (1)

Definition 1. (Dirac structure). Consider the spa-
ce of power variables F × E and denote by ⊥

the orthogonal complement with respect to (1).
A (constant) Dirac structure on F is a linear
subspace D ⊂ F × E such that D = D⊥.

Note 1. If (f, e) ∈ D, then ⟨e, f⟩ = 0, i.e. the D

defines a power-conserving relation on F × E .

Example 2. If F ≡ E = Rn, given J = −JT, then

D =
{

(f, e) ∈ F × E | − f = Je
}

is a Dirac structure, with (1) given by eT
1 f2+eT

2 f1.

Once the Dirac structure is given, the dynamics
follows from the port behavior of the energy stor-
ing elements. In finite dimensions, denote by X
the space of energy variables and by H : X → R

the energy function. Then, the port behavior is:

f = −ẋ e =
∂H

∂x
(2)

and, if the Dirac structure of Example 2 is con-
sidered, the associated dynamics is expressed by

ẋ = J
∂H

∂x
, x(0) = x0 ∈ X

In this case, Ḣ = 0, i.e. energy is conserved. This
is due to the fact that this Dirac structure does
not consider any further port to which dissipative
elements or sources can be interconnected. Refer
to (van der Schaft, 2000) for a general formula-
tion of port Hamiltonian systems and to (van der
Schaft and Maschke, 2002) for a generalization to
distributed parameter systems. Key issue, in this
case, is the notion of interconnection structure
when the space of power variables is an infinite
dimensional vector space. This leads to the def-
inition of Stokes–Dirac structures which are the
kernel of distributed port Hamiltonian systems;
examples can be found in (van der Schaft and
Maschke, 2002).

3. FLEXIBLE LINK MODEL

In (Macchelli et al., 2006), the following model of
a flexible beam in port Hamiltonian form has been
introduced:
{

∂tq = dδpH + ad(q+n̂)δpH

∂tp = dδqH− ad∗
(q+n̂)δqH + p ∧ δpH

(3)

E0

Eb(s)

s = 0

s = L

h0
b(s)

ĥ0
b(s)

Fig. 1. Representation of the flexible link in the
deformed and unstressed configurations.

If L is the length of the link, as illustrated in
Fig. 1, for every s ∈ Z ≡ [0, L], position and
orientation of the cross section with respect to an
inertial reference E0 is given by h0

b(s) ∈ SE0
b (3),

where the subscript b denotes the body reference
Eb(s) attached to the cross section, (Simo, 1985;
Golo et al., 2003). The unstressed configuration,
which is not required to be a straight line, is
denoted by ĥ0

b(s). The motion of the cross section

is due to a wrench wb,0
b (s) ∈ se∗b(3) and described

by a twist tb,0
b (s) ∈ seb(3). Both quantities are

expressed in Eb(s).

In (3), q and p denote the infinitesimal deforma-
tion and momentum of the cross-section, math-
ematically described by se(3)-valued and se∗(3)-
valued one-forms 1 , i.e. p ∈ Ω1

se∗(3)(Z) and q ∈

Ω1
se(3)(Z). Moreover, for any s ∈ Z, n̂ describes

the direction along which the unstressed configu-
ration evolves. All these quantities are expressed
in the body frame Eb(s). H is the Hamiltonian
(energy) function given by the integration on Z
of the sum of a kinetic energy density K(p) =
1
2∗ ⟨∗p | ∗p⟩Y and a potential elastic energy den-
sity W (q) = 1

2∗ ⟨∗q | ∗q⟩C :

H(p, q) =
1

2

∫

Z

∗
(

⟨∗p | ∗p⟩Y + ⟨∗q | ∗q⟩C−1

)

(4)

Here, Y denotes the inverse of the inertia tensor
I of the cross section, i.e. Y = I−1, which
defines a quadratic form on se∗b(3), while C is
the compliance tensor describing the (supposed
linear) elastic behavior of the link, whose inverse
C−1 defines a quadratic form on seb(3). Moreover,
∗ is the Hodge star operator mapping, in this case,
one-forms (densities) to zero-forms (functions) on
Z, while ⟨· | ·⟩ is the inner product defined by a
proper metric, i.e. by Y on se∗b(3) or by C−1 on
seb(3). In (3), d denotes the exterior derivative of
forms, δ the variational derivative (van der Schaft
and Maschke, 2002), while p ∧ δpH ≡ ad∗

δpH
p,

(Stramigioli, 2001). Finally,

n̂ =
(

ĥ0
b

)−1
dĥ0

b

(

∈ Ω1
se(3)(Z)

)

(5)

1 Given a closed and compact subset D ⊂ Rd, d ≥ 1,
which acts as d-dimensional spatial domain and a finite
dimensional vector space V, the space of V-valued k-forms
on D is denoted by Ωk

V
(D).

total energy

Dirac structure

energy balance

port-behaviour

A nonlinear flexible link



f̃q,ab = fq,ab + adqab+n̂abep,ab

f̃p,ab = fp,ab � ad⇤qab+n̂ab
eq,ab

Spatial discretisation of distributed pH systems
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(c) Finite elements approxima-
tion.

Fig. 2. Bond graphs resulting from each of the main step of the discretization procedure.

4.2 Energy discretization

The choice made in (13) and (24) for the flow
densities imposes the approximation (25) of the
energy variables p and q. Then, from (9), we have:

−fq
ab = q̇ab − fp

ab = ṗab − pab ∧ ep
ab (29)

in which ep
ab is the twist of the portion Zab of the

link, expressed in body reference.

From (4) and (25), the kinetic energy of Zab is:

Kab =
1

2
⟨pab | pab⟩Y

∫

Zab

∗ωp
abω

p
ab

=:
1

2
⟨pab | pab⟩Yab

(30)

In the same way, the potential elastic energy due
to deformation (4) is approximated as:

Wab =
1

2
⟨qab | qab⟩C−1

∫

Zab

∗ωq
abω

q
ab

=:
1

2
⟨qab | qab⟩C−1

ab

(31)

Taking into account (30) and (31), on Zab the
Hamiltonian function (4) can be approximated as:

Hab(pab, qab) = Kab(pab) + Wab(qab) (32)

and, from (9b), the discrete efforts as

eq
ab =

∂Hab

∂qab
ep
ab =

∂Hab

∂pab
(33)

The Dirac structure Dab resulting from (23) and
(28), together with the port behavior of the energy
storing part specified by (29) and (33), defines
the port Hamiltonian approximation of (3) on
Zab. This system interacts with the environment
through the power ports (fB

a , eB
a ) and (fB

b , eB
b )

defined in s = a and in s = b. Clearly,

dHab

dt
=
〈

eB
b , fB

b

〉

−
〈

eB
a , fB

a

〉

(34)

The bond graph of this port Hamiltonian system
is represented in Fig. 2(c).

4.3 Discrete port Hamiltonian model of the link

The power conserving interconnection of port
Hamiltonian systems results into another port
Hamiltonian system and this suggests an efficient
way to build the finite dimensional port Hamilto-
nian approximation of the flexible link. At first, it
is necessary to divide the spatial domain Z into N
compact subsets, denoted by Zℓi−1ℓi

= [ℓi−1, ℓi].
Clearly ℓ0 = 0 and ℓN = L. On each Zℓi−1ℓi

, it
is possible to create a finite dimensional approxi-
mation of the link dynamics with a bond graphs
of Fig. 2(c) and these port Hamiltonian systems
are going to be interconnected through the ports
(fB

ℓi
, eB

ℓi
). The result is a system with power ports

(fB
0 , eB

0 ) and (fB
L , eB

L ), the discrete counterpart of
the boundary conditions (6) of (3).

The state (energy) variable is the collection of the
discretized momenta and deformations:

pdiscr =
(

p0ℓ1 , pℓ1ℓ2 , . . . , pℓN−1L

)T

qdiscr =
(

q0ℓ1 , qℓ1ℓ2 , . . . , qℓN−1L

)T

The total Hamiltonian Hdiscr is the sum of the
individual Hamiltonians (32), that is

Hdiscr(pdiscr, qdiscr) =
N
∑

i=1

Hℓi−1ℓi
(pℓi−1ℓi

, qℓi−1ℓi
)

From (34), Ḣdiscr =
〈

eB
L , fB

L

〉

−
〈

eB
0 , fB

0

〉

, which is
the discrete counterpart of (7).

5. SIMULATIONS

In these simulations, a flexible link is intercon-
nected to a fixed base by means of a rotational
joint. The rotation with respect to a given ref-
erence is denoted by θ. Moreover, it is supposed
that no interaction between the flexible link and
the environment takes place in s = L, i.e. the
external wrench is set equal to zero.

transmission line flexible link

The algebraic coupling is easily tackled by defining 

In this way, the Stokes-Dirac structure of the transmission line appears 
and the boundary conditions are not changed
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(c) Finite elements approxima-
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Fig. 2. Bond graphs resulting from each of the main step of the discretization procedure.

4.2 Energy discretization

The choice made in (13) and (24) for the flow
densities imposes the approximation (25) of the
energy variables p and q. Then, from (9), we have:

−fq
ab = q̇ab − fp

ab = ṗab − pab ∧ ep
ab (29)

in which ep
ab is the twist of the portion Zab of the

link, expressed in body reference.

From (4) and (25), the kinetic energy of Zab is:

Kab =
1

2
⟨pab | pab⟩Y

∫

Zab

∗ωp
abω

p
ab

=:
1

2
⟨pab | pab⟩Yab

(30)

In the same way, the potential elastic energy due
to deformation (4) is approximated as:

Wab =
1

2
⟨qab | qab⟩C−1

∫

Zab

∗ωq
abω

q
ab

=:
1

2
⟨qab | qab⟩C−1

ab

(31)

Taking into account (30) and (31), on Zab the
Hamiltonian function (4) can be approximated as:

Hab(pab, qab) = Kab(pab) + Wab(qab) (32)

and, from (9b), the discrete efforts as

eq
ab =

∂Hab

∂qab
ep
ab =

∂Hab

∂pab
(33)

The Dirac structure Dab resulting from (23) and
(28), together with the port behavior of the energy
storing part specified by (29) and (33), defines
the port Hamiltonian approximation of (3) on
Zab. This system interacts with the environment
through the power ports (fB

a , eB
a ) and (fB

b , eB
b )

defined in s = a and in s = b. Clearly,

dHab

dt
=
〈

eB
b , fB

b

〉

−
〈

eB
a , fB

a

〉

(34)

The bond graph of this port Hamiltonian system
is represented in Fig. 2(c).

4.3 Discrete port Hamiltonian model of the link

The power conserving interconnection of port
Hamiltonian systems results into another port
Hamiltonian system and this suggests an efficient
way to build the finite dimensional port Hamilto-
nian approximation of the flexible link. At first, it
is necessary to divide the spatial domain Z into N
compact subsets, denoted by Zℓi−1ℓi

= [ℓi−1, ℓi].
Clearly ℓ0 = 0 and ℓN = L. On each Zℓi−1ℓi

, it
is possible to create a finite dimensional approxi-
mation of the link dynamics with a bond graphs
of Fig. 2(c) and these port Hamiltonian systems
are going to be interconnected through the ports
(fB

ℓi
, eB

ℓi
). The result is a system with power ports

(fB
0 , eB

0 ) and (fB
L , eB

L ), the discrete counterpart of
the boundary conditions (6) of (3).

The state (energy) variable is the collection of the
discretized momenta and deformations:

pdiscr =
(

p0ℓ1 , pℓ1ℓ2 , . . . , pℓN−1L

)T

qdiscr =
(

q0ℓ1 , qℓ1ℓ2 , . . . , qℓN−1L

)T

The total Hamiltonian Hdiscr is the sum of the
individual Hamiltonians (32), that is

Hdiscr(pdiscr, qdiscr) =
N
∑

i=1

Hℓi−1ℓi
(pℓi−1ℓi

, qℓi−1ℓi
)

From (34), Ḣdiscr =
〈

eB
L , fB

L

〉

−
〈

eB
0 , fB

0

〉

, which is
the discrete counterpart of (7).

5. SIMULATIONS

In these simulations, a flexible link is intercon-
nected to a fixed base by means of a rotational
joint. The rotation with respect to a given ref-
erence is denoted by θ. Moreover, it is supposed
that no interaction between the flexible link and
the environment takes place in s = L, i.e. the
external wrench is set equal to zero.

↵ab
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The constitutive equations are treated in the usual way 
Kinetic energy:  
 
 
 

Potential elastic energy:

U(qab) =
1

2
hqab | qabiC�1
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Fig. 2. Bond graphs resulting from each of the main step of the discretization procedure.

4.2 Energy discretization

The choice made in (13) and (24) for the flow
densities imposes the approximation (25) of the
energy variables p and q. Then, from (9), we have:

−fq
ab = q̇ab − fp

ab = ṗab − pab ∧ ep
ab (29)

in which ep
ab is the twist of the portion Zab of the

link, expressed in body reference.

From (4) and (25), the kinetic energy of Zab is:

Kab =
1

2
⟨pab | pab⟩Y

∫

Zab

∗ωp
abω

p
ab

=:
1

2
⟨pab | pab⟩Yab

(30)

In the same way, the potential elastic energy due
to deformation (4) is approximated as:

Wab =
1

2
⟨qab | qab⟩C−1

∫

Zab

∗ωq
abω

q
ab

=:
1

2
⟨qab | qab⟩C−1

ab

(31)

Taking into account (30) and (31), on Zab the
Hamiltonian function (4) can be approximated as:

Hab(pab, qab) = Kab(pab) + Wab(qab) (32)

and, from (9b), the discrete efforts as

eq
ab =

∂Hab

∂qab
ep
ab =

∂Hab

∂pab
(33)

The Dirac structure Dab resulting from (23) and
(28), together with the port behavior of the energy
storing part specified by (29) and (33), defines
the port Hamiltonian approximation of (3) on
Zab. This system interacts with the environment
through the power ports (fB

a , eB
a ) and (fB

b , eB
b )

defined in s = a and in s = b. Clearly,

dHab

dt
=
〈

eB
b , fB

b

〉

−
〈

eB
a , fB

a

〉

(34)

The bond graph of this port Hamiltonian system
is represented in Fig. 2(c).

4.3 Discrete port Hamiltonian model of the link

The power conserving interconnection of port
Hamiltonian systems results into another port
Hamiltonian system and this suggests an efficient
way to build the finite dimensional port Hamilto-
nian approximation of the flexible link. At first, it
is necessary to divide the spatial domain Z into N
compact subsets, denoted by Zℓi−1ℓi

= [ℓi−1, ℓi].
Clearly ℓ0 = 0 and ℓN = L. On each Zℓi−1ℓi

, it
is possible to create a finite dimensional approxi-
mation of the link dynamics with a bond graphs
of Fig. 2(c) and these port Hamiltonian systems
are going to be interconnected through the ports
(fB

ℓi
, eB

ℓi
). The result is a system with power ports

(fB
0 , eB

0 ) and (fB
L , eB

L ), the discrete counterpart of
the boundary conditions (6) of (3).

The state (energy) variable is the collection of the
discretized momenta and deformations:

pdiscr =
(

p0ℓ1 , pℓ1ℓ2 , . . . , pℓN−1L

)T

qdiscr =
(

q0ℓ1 , qℓ1ℓ2 , . . . , qℓN−1L

)T

The total Hamiltonian Hdiscr is the sum of the
individual Hamiltonians (32), that is

Hdiscr(pdiscr, qdiscr) =
N
∑

i=1

Hℓi−1ℓi
(pℓi−1ℓi

, qℓi−1ℓi
)

From (34), Ḣdiscr =
〈

eB
L , fB

L

〉

−
〈

eB
0 , fB

0

〉

, which is
the discrete counterpart of (7).

5. SIMULATIONS

In these simulations, a flexible link is intercon-
nected to a fixed base by means of a rotational
joint. The rotation with respect to a given ref-
erence is denoted by θ. Moreover, it is supposed
that no interaction between the flexible link and
the environment takes place in s = L, i.e. the
external wrench is set equal to zero.

K(pab) =
1

2
hpab | pabiY

Z

Zab

?!p,ab(z)!p,ab(z)

=
1

2
hpab | pabiYab

the complete model follows again via 
power conserving interconnection of 
such “simpler” elements



Spatial discretisation of distributed pH systems

How the discretisation procedure works? Is it accurate and does it 
assure a certain convergence as far as the number N of finite elements 
increases? 

The model is non-linear, so it is not possible to perform a spectral analysis 
nor compute an exact solution 

...but for “small deformation” it is equivalent to the Timoshenko beam

Introduction
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Flexible link model
Flexible link spatial discretization

Simulations and applications
Conclusions and final remarks

Finite dimensional Dirac structure
Energy discretization
Discrete port Hamiltonian model of the link

Flexible link spatial discretization
Discrete port Hamiltonian model of the link

Frequency equation and eigenfrequencies in the free-clamped case
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Simulation: flexible link 10

(a) Finite element dynamics. (b) Implementation of the finite element approximation of the link (N = 20 elements).

(c) 20-Sim c⃝ scheme for the mechanism of Fig. 3(a).

Fig. 4. Modeling the mechanical systems of Fig. 3(a) in 20-Sim c⃝.

TABLE I

EIGENFREQUENCIES CORRESPONDENCE BETWEEN (LINEARIZED) BEAM

MODEL AND FINITE ELEMENTS APPROXIMATIONS.

N ω1, . . . , ω5 [rad/s]

6 8.4085 50.8229 141.7407 293.6579 532.5828

9 8.3693 48.2608 124.5600 228.5422 365.4776

12 8.3556 47.4113 119.3055 210.9628 321.2388

15 8.3492 47.0260 116.9909 203.5459 303.5649

18 8.3457 46.8187 115.7633 199.6910 294.6171

21 8.3436 46.6945 115.0329 197.4233 289.4292

∞ (exact) 8.3378 46.3530 113.0483 191.3562 275.8244

reported in Fig. 4(b).

Since it is not possible to find an explicit solution of the PDE
(12), the numerical properties of the finite elements description
of the link cannot be easily determined and, consequently,
also the accuracy of a multi-body simulation. However, it
is easy to prove that (12) reduces to the Timoshenko beam
equation in port-Hamiltonian form [26], [53] after linearization
around the unstressed configuration. Such PDE is linear and

the resonant modes can be easily determined numerically as
solution of a frequency equation, see [54] for more details.
On the other hand, this PDE can be discretized by following
the same algorithm applied here to (12), and it is possible to
prove that the method is accurate and rapidly converges. For
example, consider a link of length L = 1m, mass per unit
length ρ = 873 kg/m, mass moment of inertia of the cross
section Iρ = 2.1797 kgm, Young’s modulus E and moment
of inertia of the cross section I , with EI = 5143Nm2,
modulus of elasticity in shear G, cross sectional area A and
constant depending on the shape of the cross section k, with
K = kGA = 656625N. In the free-clamped case, the first 5
modes, that are the solution of the corresponding frequency
equation, are reported in the last row of Table I. It can be
noted that with N = 9 elements, the first 3 resonant modes
are captured with satisfactory precision (the error for the third
resonant mode is about 10%), while with N = 21 the all first
5 modes are determined quite accurately (the maximum error,
for ω5, is less than 5%). More details in Table I.

As suggested in Note 3.1, if position and orientation of the
cross section is required for animation purposes, for including

10

(a) Finite element dynamics. (b) Implementation of the finite element approximation of the link (N = 20 elements).

(c) 20-Sim c⃝ scheme for the mechanism of Fig. 3(a).

Fig. 4. Modeling the mechanical systems of Fig. 3(a) in 20-Sim c⃝.

TABLE I

EIGENFREQUENCIES CORRESPONDENCE BETWEEN (LINEARIZED) BEAM

MODEL AND FINITE ELEMENTS APPROXIMATIONS.

N ω1, . . . , ω5 [rad/s]

6 8.4085 50.8229 141.7407 293.6579 532.5828

9 8.3693 48.2608 124.5600 228.5422 365.4776

12 8.3556 47.4113 119.3055 210.9628 321.2388

15 8.3492 47.0260 116.9909 203.5459 303.5649

18 8.3457 46.8187 115.7633 199.6910 294.6171

21 8.3436 46.6945 115.0329 197.4233 289.4292

∞ (exact) 8.3378 46.3530 113.0483 191.3562 275.8244

reported in Fig. 4(b).

Since it is not possible to find an explicit solution of the PDE
(12), the numerical properties of the finite elements description
of the link cannot be easily determined and, consequently,
also the accuracy of a multi-body simulation. However, it
is easy to prove that (12) reduces to the Timoshenko beam
equation in port-Hamiltonian form [26], [53] after linearization
around the unstressed configuration. Such PDE is linear and

the resonant modes can be easily determined numerically as
solution of a frequency equation, see [54] for more details.
On the other hand, this PDE can be discretized by following
the same algorithm applied here to (12), and it is possible to
prove that the method is accurate and rapidly converges. For
example, consider a link of length L = 1m, mass per unit
length ρ = 873 kg/m, mass moment of inertia of the cross
section Iρ = 2.1797 kgm, Young’s modulus E and moment
of inertia of the cross section I , with EI = 5143Nm2,
modulus of elasticity in shear G, cross sectional area A and
constant depending on the shape of the cross section k, with
K = kGA = 656625N. In the free-clamped case, the first 5
modes, that are the solution of the corresponding frequency
equation, are reported in the last row of Table I. It can be
noted that with N = 9 elements, the first 3 resonant modes
are captured with satisfactory precision (the error for the third
resonant mode is about 10%), while with N = 21 the all first
5 modes are determined quite accurately (the maximum error,
for ω5, is less than 5%). More details in Table I.

As suggested in Note 3.1, if position and orientation of the
cross section is required for animation purposes, for including

Finite element dynamics

Finite element approximation



Spatial discretisation of distributed pH systems

Simulation: complete system

10

(a) Finite element dynamics. (b) Implementation of the finite element approximation of the link (N = 20 elements).

(c) 20-Sim c⃝ scheme for the mechanism of Fig. 3(a).

Fig. 4. Modeling the mechanical systems of Fig. 3(a) in 20-Sim c⃝.

TABLE I

EIGENFREQUENCIES CORRESPONDENCE BETWEEN (LINEARIZED) BEAM

MODEL AND FINITE ELEMENTS APPROXIMATIONS.

N ω1, . . . , ω5 [rad/s]

6 8.4085 50.8229 141.7407 293.6579 532.5828

9 8.3693 48.2608 124.5600 228.5422 365.4776

12 8.3556 47.4113 119.3055 210.9628 321.2388

15 8.3492 47.0260 116.9909 203.5459 303.5649

18 8.3457 46.8187 115.7633 199.6910 294.6171

21 8.3436 46.6945 115.0329 197.4233 289.4292

∞ (exact) 8.3378 46.3530 113.0483 191.3562 275.8244

reported in Fig. 4(b).

Since it is not possible to find an explicit solution of the PDE
(12), the numerical properties of the finite elements description
of the link cannot be easily determined and, consequently,
also the accuracy of a multi-body simulation. However, it
is easy to prove that (12) reduces to the Timoshenko beam
equation in port-Hamiltonian form [26], [53] after linearization
around the unstressed configuration. Such PDE is linear and

the resonant modes can be easily determined numerically as
solution of a frequency equation, see [54] for more details.
On the other hand, this PDE can be discretized by following
the same algorithm applied here to (12), and it is possible to
prove that the method is accurate and rapidly converges. For
example, consider a link of length L = 1m, mass per unit
length ρ = 873 kg/m, mass moment of inertia of the cross
section Iρ = 2.1797 kgm, Young’s modulus E and moment
of inertia of the cross section I , with EI = 5143Nm2,
modulus of elasticity in shear G, cross sectional area A and
constant depending on the shape of the cross section k, with
K = kGA = 656625N. In the free-clamped case, the first 5
modes, that are the solution of the corresponding frequency
equation, are reported in the last row of Table I. It can be
noted that with N = 9 elements, the first 3 resonant modes
are captured with satisfactory precision (the error for the third
resonant mode is about 10%), while with N = 21 the all first
5 modes are determined quite accurately (the maximum error,
for ω5, is less than 5%). More details in Table I.

As suggested in Note 3.1, if position and orientation of the
cross section is required for animation purposes, for including

Introduction

Main components

Mechanism topology

Direct Kinematics

Interconnection equations

Dynamical model of the manipulator

Conclusions and Final remarks

Mechanism topology

0

1

2

3

4

5

6

(a) Manipulator.

0

1′
1′′

2

3′

4′

3′′

4′′

5 6

(b) The set of vertex VB .

0

1′
1′′

2

3′

4′

3′′

4′′

5 6

(c) Lagrangian tree GB .

0

1′
1′′

2

3′

4′

3′′

4′′

5 6

(d) Kinem. pairs gr. GK .

0

1′
1′′

2

3′

4′

3′′

4′′

5 6

(e) Flexible links gr. GF .

0

1′
1′′

2

3′

4′

3′′

4′′

5 6

(f) Interaction graph GI .

kinematic graph: GKIN = (VB ∪ {0}, EF ∪ EK )

total graph: GT = (VB ∪ {0}, EK ∪ EF ∪ EI )

Alessandro Macchelli, Stefano Stramigioli, Claudio Melchiorri Port-based Modelling of Manipulators with Flexible Links



Part II

Basic Results on Model Reduction for  
Port-Hamiltonian Systems 



Model reduction of port-Hamiltonian systems

The idea is to illustrate a novel procedure for the model 
reduction of high-order port-Hamiltonian systems 

The method can be applied to port-Hamiltonian systems not 
necessarily in input-state-output form 

A typical application is an high-order systems obtained 
from the spatial discretisation of distributed port-
Hamiltonian systems 

The approximating system turns out to be completely a-causal 
and able to deal with time varying boundary conditions 

“A-causality” implies that (boundary) inputs and outputs are 
determined by the causality of the interconnected subsystems 

The plant dynamics are given as a set of DAEs 

The model-reduction technique is able to deal with such 
systems without loosing the port-Hamiltonian structure and 
related properties



Model reduction of port-Hamiltonian systems

Fig. 2. Full order system.

3 Model reduction of port-Hamiltonian sys-
tems

Consider a port-Hamiltonian system with constant
Dirac structure in the form (7) and quadratic Hamilto-
nian function

H(x) =
1

2
xTLx (16)

in which x ∈ X ≡ RN is the state variable, with N
“large”, and L = LT > 0 is a symmetric and positive
definite matrix. The resulting port-Hamiltonian system
is clearly linear. For simplicity, suppose that FR = ∅,
i.e. no dissipative effect is present. This system is rep-
resented in Fig. 2. However, the presented results can
be extended to port-Hamiltonian systems with dissipa-
tion in a straightforward manner. For clarity, the Dirac
structure is reported here:

D =
{

(fS , fC , fI , eS , eC , eI) ∈ F × E |

| FSfS + FCfC + FIfI+

+ ESeS + ECeC + EIeI = 0
}

(17)

where now F = FS × FC × FI and E = ES × EC ×
EI . For simplicity, assume that FS ≡ ES = RN , FC ≡
EC = RnC and FI ≡ EI = RnI . The port-Hamiltonian
dynamics follows once the port behavior of the energy
storing elements is specified. In the same way as in (5),
since the Hamiltonian function is (16), it is possible to
write that

fS = −ẋ eS =
∂H

∂x
= Lx (18)

As in [5,6], suppose that based on “some” criteria, which
depend on the particular system and/or on the particu-
lar application, a reduced order model can be deduced
from (17) and (18) by imposing a set of (constant) con-
straints at the energy-storage port:

AT
f fS = 0 AT

e eS = 0 (19)

Here,Ae andAf are a couple of full-rankN×ne andN×
nf matrices respectively, with ne + nf < N . Moreover,
suppose that

AT
e Ae = Ine

AT
f Af = Inf

AT
e Af = 0 (20)

The reduced order model is obtained once the con-
straints (19) have been explicitly removed from the
system dynamics. It is worth mentioning that (19)
act on both the Hamiltonian (16) and the full-order
Dirac structure (17). Similarly to the procedure for the
elimination of nonholomic constraints from mechani-
cal systems in port-Hamiltonian form proposed in [23],
there exists a full-rank N × r matrix S = KerAT, with
r = N − ne − nf , such that

ATS = 0 STS = Ir (21)

being

A =
(

Ae Af

)

The reduction step is performed by using S as projection
matrix on the Dirac structure and Hamiltonian function
of the full-order system to explicitly eliminate the con-
traints (19). As in [23] and also in [5, 6], this is possible
by defining the following coordinate transformation on
the space of power variables at the energy-storage port:

f̃S =

⎛

⎜
⎜
⎝
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If

T =
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)

(23)

it is easy to prove that

T−1 = TT =

⎛

⎜
⎜
⎝

AT
e

AT
f

ST

⎞

⎟
⎟
⎠

(24)

and (22) can be equivalently written as f̃S = T−1fS and
ẽS = T−1eS .

Once this coordinate transformation is performed on the
Dirac structure (17), the following relation between the
power variables is obtained:

F̃S f̃S +FCfC +FIfI + ẼS ẽS +ECeC +EIeI = 0 (25)

with

F̃S = FST =
(

FSAe FSAf FSS
)

ẼS = EST =
(

ESAe ESAf ESS
) (26)

4

Fig. 2. Full order system.

3 Model reduction of port-Hamiltonian sys-
tems

Consider a port-Hamiltonian system with constant
Dirac structure in the form (7) and quadratic Hamilto-
nian function

H(x) =
1

2
xTLx (16)

in which x ∈ X ≡ RN is the state variable, with N
“large”, and L = LT > 0 is a symmetric and positive
definite matrix. The resulting port-Hamiltonian system
is clearly linear. For simplicity, suppose that FR = ∅,
i.e. no dissipative effect is present. This system is rep-
resented in Fig. 2. However, the presented results can
be extended to port-Hamiltonian systems with dissipa-
tion in a straightforward manner. For clarity, the Dirac
structure is reported here:

D =
{

(fS , fC , fI , eS , eC , eI) ∈ F × E |

| FSfS + FCfC + FIfI+

+ ESeS + ECeC + EIeI = 0
}

(17)

where now F = FS × FC × FI and E = ES × EC ×
EI . For simplicity, assume that FS ≡ ES = RN , FC ≡
EC = RnC and FI ≡ EI = RnI . The port-Hamiltonian
dynamics follows once the port behavior of the energy
storing elements is specified. In the same way as in (5),
since the Hamiltonian function is (16), it is possible to
write that

fS = −ẋ eS =
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ẽS,f
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ction step is perform

ed by using S
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system to explicitly

eliminate the con-
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9). As in

[23] and also in [5, 6], this
is possibl
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of power

variables
at the en
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Fig. 2. Full order system.

3 Model reduction of port-Hamiltonian sys-
tems

Consider a port-Hamiltonian system with constant
Dirac structure in the form (7) and quadratic Hamilto-
nian function

H(x) =
1

2
xTLx (16)

in which x ∈ X ≡ RN is the state variable, with N
“large”, and L = LT > 0 is a symmetric and positive
definite matrix. The resulting port-Hamiltonian system
is clearly linear. For simplicity, suppose that FR = ∅,
i.e. no dissipative effect is present. This system is rep-
resented in Fig. 2. However, the presented results can
be extended to port-Hamiltonian systems with dissipa-
tion in a straightforward manner. For clarity, the Dirac
structure is reported here:

D =
{

(fS , fC , fI , eS , eC , eI) ∈ F × E |

| FSfS + FCfC + FIfI+

+ ESeS + ECeC + EIeI = 0
}

(17)

where now F = FS × FC × FI and E = ES × EC ×
EI . For simplicity, assume that FS ≡ ES = RN , FC ≡
EC = RnC and FI ≡ EI = RnI . The port-Hamiltonian
dynamics follows once the port behavior of the energy
storing elements is specified. In the same way as in (5),
since the Hamiltonian function is (16), it is possible to
write that

fS = −ẋ eS =
∂H

∂x
= Lx (18)

As in [5,6], suppose that based on “some” criteria, which
depend on the particular system and/or on the particu-
lar application, a reduced order model can be deduced
from (17) and (18) by imposing a set of (constant) con-
straints at the energy-storage port:

AT
f fS = 0 AT

e eS = 0 (19)

Here,Ae andAf are a couple of full-rankN×ne andN×
nf matrices respectively, with ne + nf < N . Moreover,
suppose that

AT
e Ae = Ine

AT
f Af = Inf

AT
e Af = 0 (20)

The reduced order model is obtained once the con-
straints (19) have been explicitly removed from the
system dynamics. It is worth mentioning that (19)
act on both the Hamiltonian (16) and the full-order
Dirac structure (17). Similarly to the procedure for the
elimination of nonholomic constraints from mechani-
cal systems in port-Hamiltonian form proposed in [23],
there exists a full-rank N × r matrix S = KerAT, with
r = N − ne − nf , such that

ATS = 0 STS = Ir (21)

being

A =
(

Ae Af

)

The reduction step is performed by using S as projection
matrix on the Dirac structure and Hamiltonian function
of the full-order system to explicitly eliminate the con-
traints (19). As in [23] and also in [5, 6], this is possible
by defining the following coordinate transformation on
the space of power variables at the energy-storage port:

f̃S =
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If
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ST
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⎟
⎟
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(24)

and (22) can be equivalently written as f̃S = T−1fS and
ẽS = T−1eS .

Once this coordinate transformation is performed on the
Dirac structure (17), the following relation between the
power variables is obtained:

F̃S f̃S +FCfC +FIfI + ẼS ẽS +ECeC +EIeI = 0 (25)

with

F̃S = FST =
(

FSAe FSAf FSS
)

ẼS = EST =
(

ESAe ESAf ESS
) (26)
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Dirac structure in the form (7) and quadratic Hamilto-
nian function

H(x) =
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2
xTLx (16)

in which x ∈ X ≡ RN is the state variable, with N
“large”, and L = LT > 0 is a symmetric and positive
definite matrix. The resulting port-Hamiltonian system
is clearly linear. For simplicity, suppose that FR = ∅,
i.e. no dissipative effect is present. This system is rep-
resented in Fig. 2. However, the presented results can
be extended to port-Hamiltonian systems with dissipa-
tion in a straightforward manner. For clarity, the Dirac
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}
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EI . For simplicity, assume that FS ≡ ES = RN , FC ≡
EC = RnC and FI ≡ EI = RnI . The port-Hamiltonian
dynamics follows once the port behavior of the energy
storing elements is specified. In the same way as in (5),
since the Hamiltonian function is (16), it is possible to
write that

fS = −ẋ eS =
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As in [5,6], suppose that based on “some” criteria, which
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act on both the Hamiltonian (16) and the full-order
Dirac structure (17). Similarly to the procedure for the
elimination of nonholomic constraints from mechani-
cal systems in port-Hamiltonian form proposed in [23],
there exists a full-rank N × r matrix S = KerAT, with
r = N − ne − nf , such that

ATS = 0 STS = Ir (21)

being

A =
(
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)

The reduction step is performed by using S as projection
matrix on the Dirac structure and Hamiltonian function
of the full-order system to explicitly eliminate the con-
traints (19). As in [23] and also in [5, 6], this is possible
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ẽS,f
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Dirac structure (17), the following relation between the
power variables is obtained:

F̃S f̃S +FCfC +FIfI + ẼS ẽS +ECeC +EIeI = 0 (25)

with

F̃S = FST =
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)
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coordinate change

which defines, clearly, a Dirac structure on the power
variables (f̃S , fC , fI , ẽS , eC , eI). In these new power
variables, the constraints (19) can now be expressed as

f̃S,f = 0 ẽS,e = 0 (27)

which corresponds to a zero-source of flow and effort on
(f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e), respectively. From a physi-
cal point of view, conditions (27) fix the causality on
the corresponding power ports, thus implying that the
dual quantities ẽS,f and f̃S,e can be treated as “out-
puts” of the final port-Hamiltonian system. On the other
hand, such ports do no play any role in the energy bal-
ance of the system since (27) implies that the associated
power flow is equal to zero. Consequently, it is possible
to eliminate such power variables from (25) and obtain a
reduced-order Dirac structure. In fact, if G⊥ is the max-
imal rank left-annihilator of

G =
(

FSAe ESAf

)

(28)

i.e. G⊥G = 0, multiplication of (25) leads to

FS,rf̃S,r + FC,rfC + FI,rfI+
+ ES,r ẽS,r + EC,reC + EI,reI = 0 (29)

where

FS,r = G⊥FSS FC,r = G⊥FC FI,r = G⊥FI

ES,r = G⊥ESS EC,r = G⊥EC EI,r = G⊥EI

(30)

Note that the dimension of the power port associated to
the energy storage elements is equal to r.

Proposition 2 Relations (29) and (30) provide a re-
laxed kernel representation of a Dirac structure in the
sense of [1].

PROOF. It is obvious that (25) with the port behavior
specified by (27) provides a Dirac structure. Then, it is
necessary to verify that (29) and (30) define a relaxed
kernel representation. From the image representation (3)
of a Dirac structure, we have that

f̃S,f = AT
f E

T
S λ ẽS,e = AT

e F
T
S λ

with λ ∈ RN+nC+nI . On the other hand, conditions
(27) are satisfied iff λ ∈ KerGT or, equivalently, if λ =
(

G⊥
)T

λ̃, for some λ̃ ∈ RÑ+nC+nI , being Ñ ≤ N and G
defined in (28). The expression (30) of the other matri-
ces that define the reduced order Dirac structure easily
follows from the image representation, where now λ is
given as a function of λ̃. An alternative proof can be ob-
tained by applying directly [1, Th. 4], since (27) define a

pair of trivial Dirac structures, whose kernel/image rep-
resentations can be immediately computed.

Due to the port behavior (18), the coordinate transfor-
mation on the energy storage flows in (22) induces a
similar transformation on the energy storage variables:

x̃ =

⎛

⎜
⎜
⎝

x̃e

x̃f

x̃r

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

AT
e

AT
f

ST

⎞

⎟
⎟
⎠

x = T−1x (31)

and on the Hamiltonian function (16):

H̃(x̃) = H(x̃) =
1

2
x̃TL̃x̃ (32)

with

L̃ = TTLT =

⎛

⎜
⎜
⎝

AT
e LAe AT

e LAf AT
e LS

AT
f LAe AT

f LAf AT
f LS

STLAe STLAf STLS

⎞

⎟
⎟
⎠

(33)

An immediate consequence of (27) and (31) is that

x̃f = κ
∂H̃

∂x̃e
= 0 (34)

where κ ∈ Rnf is a constant. The second condition in
(34) implies that H̃ is independent from x̃e. Define

Se =
(

Af S
)

x̄ =

(

x̃f

x̃r

)

and note that from (20) and (21)

ST
e Se = Ir+ne

ST
e Ae = 0 SeS

T
e +AeA

T
e = IN (35)

The second condition in (34) can be now written as

∂H̃

∂x̃e
= AT

e LAex̃e +AT
e LSex̄ = 0

which implies that (32) written as a function of x̄ =
(x̃f , x̃r) only reads

H̃(x̃f , x̃r) =
1

2

(

x̃T
f x̃T

r

)

L̃′

(

x̃f

x̃r

)

(36)

with

L̃′ = ST
e

[

L− LAe

(

AT
e LAe

)−1
AT

e L
]

Se (37)
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The reduction step is performed by using S as projection matrix on the 
Dirac structure and Hamiltonian function of the full-order system 
 
 
 
 
 

In these new coordinates the constraints can be expressed as 

These conditions fix the causality on the corresponding power ports 
Since these port variables do not play any role in the energy balance, they 
can be removed to obtain the reduced order Dirac structure
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which defines, clearly, a Dirac structure on the power
variables (f̃S , fC , fI , ẽS , eC , eI). In these new power
variables, the constraints (19) can now be expressed as

f̃S,f = 0 ẽS,e = 0 (27)

which corresponds to a zero-source of flow and effort on
(f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e), respectively. From a physi-
cal point of view, conditions (27) fix the causality on
the corresponding power ports, thus implying that the
dual quantities ẽS,f and f̃S,e can be treated as “out-
puts” of the final port-Hamiltonian system. On the other
hand, such ports do no play any role in the energy bal-
ance of the system since (27) implies that the associated
power flow is equal to zero. Consequently, it is possible
to eliminate such power variables from (25) and obtain a
reduced-order Dirac structure. In fact, if G⊥ is the max-
imal rank left-annihilator of

G =
(

FSAe ESAf

)

(28)

i.e. G⊥G = 0, multiplication of (25) leads to

FS,rf̃S,r + FC,rfC + FI,rfI+
+ ES,r ẽS,r + EC,reC + EI,reI = 0 (29)

where

FS,r = G⊥FSS FC,r = G⊥FC FI,r = G⊥FI

ES,r = G⊥ESS EC,r = G⊥EC EI,r = G⊥EI

(30)

Note that the dimension of the power port associated to
the energy storage elements is equal to r.

Proposition 2 Relations (29) and (30) provide a re-
laxed kernel representation of a Dirac structure in the
sense of [1].

PROOF. It is obvious that (25) with the port behavior
specified by (27) provides a Dirac structure. Then, it is
necessary to verify that (29) and (30) define a relaxed
kernel representation. From the image representation (3)
of a Dirac structure, we have that

f̃S,f = AT
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with λ ∈ RN+nC+nI . On the other hand, conditions
(27) are satisfied iff λ ∈ KerGT or, equivalently, if λ =
(
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)T

λ̃, for some λ̃ ∈ RÑ+nC+nI , being Ñ ≤ N and G
defined in (28). The expression (30) of the other matri-
ces that define the reduced order Dirac structure easily
follows from the image representation, where now λ is
given as a function of λ̃. An alternative proof can be ob-
tained by applying directly [1, Th. 4], since (27) define a

pair of trivial Dirac structures, whose kernel/image rep-
resentations can be immediately computed.

Due to the port behavior (18), the coordinate transfor-
mation on the energy storage flows in (22) induces a
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An immediate consequence of (27) and (31) is that
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(34) implies that H̃ is independent from x̃e. Define

Se =
(

Af S
)

x̄ =

(

x̃f

x̃r

)

and note that from (20) and (21)

ST
e Se = Ir+ne

ST
e Ae = 0 SeS

T
e +AeA

T
e = IN (35)

The second condition in (34) can be now written as

∂H̃

∂x̃e
= AT

e LAex̃e +AT
e LSex̄ = 0

which implies that (32) written as a function of x̄ =
(x̃f , x̃r) only reads

H̃(x̃f , x̃r) =
1

2

(

x̃T
f x̃T

r

)

L̃′

(

x̃f

x̃r

)

(36)

with

L̃′ = ST
e

[

L− LAe

(

AT
e LAe

)−1
AT

e L
]

Se (37)

5

which defines, clearly, a Dirac structure on the power
variables (f̃S , fC , fI , ẽS , eC , eI). In these new power
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f̃S,f = 0 ẽS,e = 0 (27)
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(f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e), respectively. From a physi-
cal point of view, conditions (27) fix the causality on
the corresponding power ports, thus implying that the
dual quantities ẽS,f and f̃S,e can be treated as “out-
puts” of the final port-Hamiltonian system. On the other
hand, such ports do no play any role in the energy bal-
ance of the system since (27) implies that the associated
power flow is equal to zero. Consequently, it is possible
to eliminate such power variables from (25) and obtain a
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which defines, clearly, a Dirac structure on the power
variables (f̃S , fC , fI , ẽS , eC , eI). In these new power
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f̃S,f = 0 ẽS,e = 0 (27)

which corresponds to a zero-source of flow and effort on
(f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e), respectively. From a physi-
cal point of view, conditions (27) fix the causality on
the corresponding power ports, thus implying that the
dual quantities ẽS,f and f̃S,e can be treated as “out-
puts” of the final port-Hamiltonian system. On the other
hand, such ports do no play any role in the energy bal-
ance of the system since (27) implies that the associated
power flow is equal to zero. Consequently, it is possible
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where
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which defines, clearly, a Dirac structure on the power
variables (f̃S , fC , fI , ẽS , eC , eI). In these new power
variables, the constraints (19) can now be expressed as

f̃S,f = 0 ẽS,e = 0 (27)

which corresponds to a zero-source of flow and effort on
(f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e), respectively. From a physi-
cal point of view, conditions (27) fix the causality on
the corresponding power ports, thus implying that the
dual quantities ẽS,f and f̃S,e can be treated as “out-
puts” of the final port-Hamiltonian system. On the other
hand, such ports do no play any role in the energy bal-
ance of the system since (27) implies that the associated
power flow is equal to zero. Consequently, it is possible
to eliminate such power variables from (25) and obtain a
reduced-order Dirac structure. In fact, if G⊥ is the max-
imal rank left-annihilator of

G =
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)
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i.e. G⊥G = 0, multiplication of (25) leads to

FS,rf̃S,r + FC,rfC + FI,rfI+
+ ES,r ẽS,r + EC,reC + EI,reI = 0 (29)

where
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ES,r = G⊥ESS EC,r = G⊥EC EI,r = G⊥EI
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Note that the dimension of the power port associated to
the energy storage elements is equal to r.

Proposition 2 Relations (29) and (30) provide a re-
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sense of [1].

PROOF. It is obvious that (25) with the port behavior
specified by (27) provides a Dirac structure. Then, it is
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Simple computations show that the reduced Dirac structure is  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The coordinate change on the storage flows induces a similar 
transformation on the energy variables and on the Hamiltonian:

which defines, clearly, a Dirac structure on the power
variables (f̃S , fC , fI , ẽS , eC , eI). In these new power
variables, the constraints (19) can now be expressed as

f̃S,f = 0 ẽS,e = 0 (27)

which corresponds to a zero-source of flow and effort on
(f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e), respectively. From a physi-
cal point of view, conditions (27) fix the causality on
the corresponding power ports, thus implying that the
dual quantities ẽS,f and f̃S,e can be treated as “out-
puts” of the final port-Hamiltonian system. On the other
hand, such ports do no play any role in the energy bal-
ance of the system since (27) implies that the associated
power flow is equal to zero. Consequently, it is possible
to eliminate such power variables from (25) and obtain a
reduced-order Dirac structure. In fact, if G⊥ is the max-
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which defines, clearly, a Dirac structure on the power
variables (f̃S , fC , fI , ẽS , eC , eI). In these new power
variables, the constraints (19) can now be expressed as

f̃S,f = 0 ẽS,e = 0 (27)

which corresponds to a zero-source of flow and effort on
(f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e), respectively. From a physi-
cal point of view, conditions (27) fix the causality on
the corresponding power ports, thus implying that the
dual quantities ẽS,f and f̃S,e can be treated as “out-
puts” of the final port-Hamiltonian system. On the other
hand, such ports do no play any role in the energy bal-
ance of the system since (27) implies that the associated
power flow is equal to zero. Consequently, it is possible
to eliminate such power variables from (25) and obtain a
reduced-order Dirac structure. In fact, if G⊥ is the max-
imal rank left-annihilator of

G =
(

FSAe ESAf

)

(28)

i.e. G⊥G = 0, multiplication of (25) leads to

FS,rf̃S,r + FC,rfC + FI,rfI+
+ ES,r ẽS,r + EC,reC + EI,reI = 0 (29)

where

FS,r = G⊥FSS FC,r = G⊥FC FI,r = G⊥FI

ES,r = G⊥ESS EC,r = G⊥EC EI,r = G⊥EI

(30)

Note that the dimension of the power port associated to
the energy storage elements is equal to r.

Proposition 2 Relations (29) and (30) provide a re-
laxed kernel representation of a Dirac structure in the
sense of [1].

PROOF. It is obvious that (25) with the port behavior
specified by (27) provides a Dirac structure. Then, it is
necessary to verify that (29) and (30) define a relaxed
kernel representation. From the image representation (3)
of a Dirac structure, we have that

f̃S,f = AT
f E

T
S λ ẽS,e = AT

e F
T
S λ

with λ ∈ RN+nC+nI . On the other hand, conditions
(27) are satisfied iff λ ∈ KerGT or, equivalently, if λ =
(

G⊥
)T

λ̃, for some λ̃ ∈ RÑ+nC+nI , being Ñ ≤ N and G
defined in (28). The expression (30) of the other matri-
ces that define the reduced order Dirac structure easily
follows from the image representation, where now λ is
given as a function of λ̃. An alternative proof can be ob-
tained by applying directly [1, Th. 4], since (27) define a

pair of trivial Dirac structures, whose kernel/image rep-
resentations can be immediately computed.

Due to the port behavior (18), the coordinate transfor-
mation on the energy storage flows in (22) induces a
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The following proposition provides a simpler expression
for (37), and generalizes an analogous result valid for
linear mechanical systems in Lagrangian form presented
in [10] to generic linear port-Hamiltonian systems.

Proposition 3 The matrix L̃′ defined in (37) can be
equivalently written as

L̃′ =
(

ST
e L

−1Se

)−1
(38)

PROOF. Starting from the properties (35) of Ae and
Se, with simple manipulations it is possible to verify that
(

ST
e L

−1Se

)

L̃′ = Ine+r. In fact

(

ST
e L

−1Se

)

L̃′ = ST
e L

−1
(

IN −AeA
T
e

)

L ·

·
(

L−1 −Ae

(

AT
e LAe

)−1
AT

e

)

LSe

= ST
e

(

L−1 −Ae

(

AT
e LAe

)−1
Ae

)

LSe−

− ST
e L

−1AeAe
TLSe + ST

e L
−1Ae ·

·Ae
TLAe

(

AT
e LAe

)−1
AeLSe

= ST
e L

−1LSe

= Ine+r

In order to take into account the condition on x̃f in (34),
it is convenient to write L̃′ as

L̃′ =

(

L̃ff L̃fr

L̃T
fr L̃rr

)

(39)

On the other hand, the constant κ in (34) takes into
account some energy stored in the system but associated
to a dynamics that is not playing any “important” role in
the reduced system. Usually, it is correct to assume that
κ = 0, which implies that just the quadratic term in the
x̃r variable is present in (36). This is the state variable of
the reduced order system, whose Hamiltonian function
can be written as follows:

H̃r(x̃r) =
1

2
x̃T
r L̃rrx̃r (40)

The reduced-order port-Hamiltonian system follows
once the Dirac structure (29) is paired with the port
behavior of the energy-storage port. Keeping in mind
(18), it is possible to write that

f̃S,r = − ˙̃xr ẽS,r =
∂H̃r

∂x̃r
= L̃rrx̃r (41)

where H̃r is reported in (40). The intuition and the phys-
ical interpretation behind the proposed model-reduction

scheme is reported in Fig. 3. The starting point has
been the port-Hamiltonian system without dissipation of
Fig. 2. The MTF performs the power-conserving trans-
formation (22), which allows to decompose the power-
flowing at the energy storage port into three main con-
tribution. Then, the ports (f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e) are
terminated over a zero source of flow and effort respec-
tively to impose the constraints (27), while the last port
is interconnected to the energy storage element C with
energy function (40), that takes into account the reduced
dynamics. Since the effort and flow constraints have been
eliminated from the Dirac structure, the reduced order
model is described by a set of DAEs that correspond to
the grey part of the bond-graph in Fig. 3.

4 Examples

4.1 Piezo-electric active structures

The model reduction procedure is now applied to a
generic mechanical system embedding active piezo-
electric structures. It is now shown that the result pre-
sented in [5, 6] are just a particular case of the method-
ology described in this paper. A mechanical system
embedding piezo-electric actuators and sensors can be
dynamically described using finite elements as, [17]:

(

Mww 0

0 0

)(

ẅ

φ̈

)

+

(

Kww KT
φw

Kφw Kφφ

)(

w

φ

)

=

(

F

G

)

(42)

where, if nN denotes the number of nodes of the finite ele-
ments model,w ∈ R3nN are themechanical dof, φ ∈ RnN

the electric potential dof, Mww = MT
ww > 0 is the iner-

tia matrix, Kww = KT
ww > 0 is the mechanical stiffness

matrix, Kφw describes the coupling between mechani-
cal and electrical domain, Kφφ = KT

φφ is the electric ca-
pacitance matrix, F collects the input forces and G the
charges imposed as forcing action.

The inputs of the system are forces F and voltages φC ,
which represents the effective input voltage over the elec-
tric dof. In view of this consideration, it is possible to
write that

φ = BCφC +BFφF (43)

where φC ∈ RnC represents the effective nC input volt-
age dof while φF ∈ RnF , with nF = nN−nC all the other
electric dof. Finally, BC and BF are suitably defined
mapping matrices such thatBT

CBC = InC
,BT

FBF = InF

and BT
CBF = 0. The second set of equations in (42) rep-

resents the algebraic constraints defined by the charge G
imposed as forcing action. Due to the fact that there is
no electric charge imposed on the free electrical dof, i.e.
BT

FG = 0, it is possible to “eliminate” φF in (42), which
leads to a port-Hamiltonian representation of the piezo-
electric active structure dynamics in the form (13), with
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terminated over a zero source of flow and effort respec-
tively to impose the constraints (27), while the last port
is interconnected to the energy storage element C with
energy function (40), that takes into account the reduced
dynamics. Since the effort and flow constraints have been
eliminated from the Dirac structure, the reduced order
model is described by a set of DAEs that correspond to
the grey part of the bond-graph in Fig. 3.

4 Examples

4.1 Piezo-electric active structures

The model reduction procedure is now applied to a
generic mechanical system embedding active piezo-
electric structures. It is now shown that the result pre-
sented in [5, 6] are just a particular case of the method-
ology described in this paper. A mechanical system
embedding piezo-electric actuators and sensors can be
dynamically described using finite elements as, [17]:

(

Mww 0

0 0

)(

ẅ
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terminated over a zero source of flow and effort respec-
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The model reduction procedure is now applied to a
generic mechanical system embedding active piezo-
electric structures. It is now shown that the result pre-
sented in [5, 6] are just a particular case of the method-
ology described in this paper. A mechanical system
embedding piezo-electric actuators and sensors can be
dynamically described using finite elements as, [17]:

(

Mww 0

0 0

)(

ẅ

φ̈

)

+

(

Kww KT
φw

Kφw Kφφ

)(

w

φ

)

=

(

F

G

)

(42)

where, if nN denotes the number of nodes of the finite ele-
ments model,w ∈ R3nN are themechanical dof, φ ∈ RnN

the electric potential dof, Mww = MT
ww > 0 is the iner-

tia matrix, Kww = KT
ww > 0 is the mechanical stiffness

matrix, Kφw describes the coupling between mechani-
cal and electrical domain, Kφφ = KT

φφ is the electric ca-
pacitance matrix, F collects the input forces and G the
charges imposed as forcing action.

The inputs of the system are forces F and voltages φC ,
which represents the effective input voltage over the elec-
tric dof. In view of this consideration, it is possible to
write that

φ = BCφC +BFφF (43)

where φC ∈ RnC represents the effective nC input volt-
age dof while φF ∈ RnF , with nF = nN−nC all the other
electric dof. Finally, BC and BF are suitably defined
mapping matrices such thatBT

CBC = InC
,BT

FBF = InF

and BT
CBF = 0. The second set of equations in (42) rep-

resents the algebraic constraints defined by the charge G
imposed as forcing action. Due to the fact that there is
no electric charge imposed on the free electrical dof, i.e.
BT

FG = 0, it is possible to “eliminate” φF in (42), which
leads to a port-Hamiltonian representation of the piezo-
electric active structure dynamics in the form (13), with
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which defines, clearly, a Dirac structure on the power

variables (f̃S , fC , fI , ẽS , eC , eI ). In these new power

variables, the constraints (19) can now be expressed asf̃S,f = 0
ẽS,e = 0

(27)
which corresponds to a zero-source of flow and effort on

(f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e), respectively. From a physi-

cal point of view, conditions (27) fix the causality on

the corresponding power ports, thus implying that the

dual quantities ẽS,f and f̃S,e can be treated as “out-

puts” of the final port-Hamiltonian system. On the other

hand, such ports do no play any role in the energy bal-

ance of the system since (27) implies that the associated

power flow is equal to zero. Consequently, it is possible

to eliminate such power variables from (25) and obtain a

reduced-order Dirac structure. In fact, if G⊥ is the max-

imal rank left-annihilator of

G =
(

FSAe ESAf

)

(28)i.e. G⊥G = 0, multiplication of (25) leads toFS,r f̃S,r + FC,rfC + FI,rfI++ ES,r ẽS,r + EC,reC + EI,reI = 0 (29)
where

FS,r = G⊥FSS FC,r = G⊥FC FI,r = G⊥FI

ES,r = G⊥ESS EC,r = G⊥EC EI,r = G⊥EI
(30)Note that the dimension of the power port associated to

the energy storage elements is equal to r.Proposition 2 Relations (29) and (30) provide a re-

laxed kernel representation of a Dirac structure in the

sense of [1].

PROOF. It is obvious that (25) with the port behavior

specified by (27) provides a Dirac structure. Then, it is

necessary to verify that (29) and (30) define a relaxed

kernel representation. From the image representation (3)

of a Dirac structure, we have that
f̃S,f = AT

f ET
S λ ẽS,e = AT

e F T
S λwith λ ∈ RN+nC+nI . On the other hand, conditions

(27) are satisfied iff λ ∈ KerGT or, equivalently, if λ =

(

G⊥
)T
λ̃, for some λ̃ ∈ RÑ+nC+nI , being Ñ ≤ N and G

defined in (28). The expression (30) of the other matri-

ces that define the reduced order Dirac structure easily

follows from the image representation, where now λ is

given as a function of λ̃. An alternative proof can be ob-

tained by applying directly [1, Th. 4], since (27) define a

pair of trivial Dirac structures, whose kernel/image rep-

resentations can be immediately computed.
Due to the port behavior (18), the coordinate transfor-

mation on the energy storage flows in (22) induces a

similar transformation on the energy storage variables:

x̃ =

⎛

⎜
⎜
⎝

x̃e

x̃f

x̃r

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

AT
e

AT
f

ST

⎞

⎟
⎟
⎠ x = T −1x

(31)
and on the Hamiltonian function (16):

H̃(x̃) = H(x̃) = 1

2
x̃TL̃x̃

(32)
with

L̃ = T TLT =

⎛

⎜
⎜
⎝

AT
e LAe AT

e LAf AT
e LSAT

f LAe AT
f LAf AT

f LSSTLAe STLAf STLS

⎞

⎟
⎟
⎠ (33)

An immediate consequence of (27) and (31) is that
x̃f = κ ∂H̃

∂x̃e
= 0

(34)
where κ ∈ Rnf is a constant. The second condition in

(34) implies that H̃ is independent from x̃e. Define
Se =

(

Af S
)

x̄ =

(

x̃f

x̃r

)

and note that from (20) and (21)ST
e Se = Ir+ne ST

e Ae = 0 SeST
e +AeAT

e = IN (35)
The second condition in (34) can be now written as∂H̃

∂x̃e
= AT

e LAex̃e +AT
e LSex̄ = 0which implies that (32) written as a function of x̄ =

(x̃f , x̃r) only reads

H̃(x̃f , x̃r) = 1

2

(

x̃T
f x̃T

r

)

L̃′

(

x̃f

x̃r

)

(36)with

L̃′ = ST
e

[

L− LAe

(

AT
e LAe

)−1
AT

e L
]

Se (37)
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FI,r
= G⊥FI

ES,r
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(25) with
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specified
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e. Then,
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(27) are
satisfied

iff λ ∈ KerG
T or, equiv

alently,
if λ =

(
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)T λ̃, for so

me λ̃ ∈ R
Ñ+nC+nI , being Ñ ≤ N and G

defined
in (28). Th
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sion (30) of t

he other
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ces that
define th
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x̃ =

⎛

⎜
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⎝
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x̃f

x̃r

⎞

⎟
⎟
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=

⎛

⎜
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⎝

AT
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AT
f

ST

⎞

⎟
⎟
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x = T−1x

(31)

and on the Ham
iltonian

function
(16):

H̃(x̃) = H(x̃) =
1

2
x̃T L̃x̃

(32)

with

L̃ = TTLT =

⎛

⎜
⎜
⎝

AT
eLAe AT

eLAf AT
eLS

AT
f
LAe AT

f
LAf AT

f
LS

STLAe STLAf STLS

⎞

⎟
⎟
⎠

(33)

An immediate co
nsequen

ce of (27
) and (31) is t

hat

x̃f = κ

∂H̃

∂x̃e

= 0
(34)

where κ ∈ R
nf is a constant

. The second conditio
n in

(34) implies tha
t H̃ is indepe

ndent fr
om x̃e. Define

Se =
(

Af S
) x̄ =

(

x̃f

x̃r

)

and note tha
t from (20) and

(21)

ST
e
Se = Ir+ne

ST
e
Ae = 0 SeS

T
e
+AeA

T
e
= IN (35)

The seco
nd conditio

n in (34) can
be now written

as

∂H̃

∂x̃e

= AT
eLAex̃e +AT

eLSex̄ = 0

which implies that (32) written
as a function

of x̄ =

(x̃f , x̃r) only
reads

H̃(x̃f , x̃r) =
1

2

(

x̃Tf x̃Tr

)

L̃′

(

x̃f

x̃r

)

(36)

with

L̃′ = ST
e

[

L− LAe

(
AT

eLAe

)−1
AT

eL
]

Se
(37)
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Model reduction of port-Hamiltonian systems

Fig. 3. Intuitive and physical interpretation of the model-reduction procedure.

n = 3nN , i.e. with a “mechanical system”-like structure,

where the Hamiltonian is

H(p, q) =
1

2
pTM−1p+

1

2
qTKq
︸ ︷︷ ︸

=V (q)

and

q = w

M = Mww

p = Mẇ

K = Kww −KT
φwBF

(

BT
FKφφBF

)−1
BT

FKφw

BT =

⎛

⎝

I3nN

BT
C

(

KφφBF

(

BT
FKφφBF

)−1
BT

F − InC

)

Kφw

⎞

⎠

u =
(

F φC

)T

Note that the inputs are the applied forces F and elec-

trical potential φC . The corresponding outputs are the

(node) velocities and the piezo currents.

In [5, 6] a reduced order model has been computed for

a particular piezo-electric active structure, namely the

so-called Compact Transducer, i.e. the core element of

an Ultrasonic Sealing System (USS), a complex elec-

tromechanical system used to seal aseptic packages for

liquid foods that is the core of the most advanced fill-

ing machines. Due to the particular operative condi-

tions of this device, the reduced order model has been

computed in such a way that the frequency behavior of

the original system in a neighborhood of a predefined

set of frequencies of interest has been preserved. This

has been achieved by solving an eigenvalue/eigenvector

problem for k eigenvalues in a neighborhood of the spec-

ified set, so that k normalized eigenvectors S̄i are ob-

tained. These eigenvectors shape a basis for the projec-

tion subspace, for which the projection matrix can be

defined as S̄ =
(

S̄1, · · · , S̄k

)

. If Ā = Ker S̄T, the reduced

order model followed once the constraint

ĀTq̇ = 0 (44)

has been imposed on the full-order system. Since q̇ =

−fq = ep as discussed in Example 2, relation (44) implies

a set of independent constraints on both the flows and

efforts of the full order dynamics, i.e. (19) have to hold

with

Af =

(

Ā

0

)

Ae =

(

0

Ā

)

(45)

which leads to

S =

(

S̄ 0

0 S̄

)

(46)

The reduced Hamiltonian function can be easily ob-

tained by taking into account (38) and (39) with

L =

(

K 0

0 M−1

)

Se =

(

Ā S̄ 0

0 0 S̄

)

In fact,

L̃′ =

⎛

⎜
⎜
⎝

ĀTK−1Ā ĀTK−1S̄ 0

S̄TK−1Ā S̄TK−1S̄ 0

0 0 S̄TMS̄

⎞

⎟
⎟
⎠

−1

=

=

⎛

⎜
⎜
⎝

ĀTKĀ ĀTKS̄ 0

S̄TKĀ S̄TKS̄ 0

0 0
(

S̄TMS̄
)−1

⎞

⎟
⎟
⎠

which leads a reduced Hamiltonian (40) where

L̃rr =

(

Kr 0

0 M−1
r

)

=

(

S̄TKS̄ 0

0
(

S̄TMS̄
)−1

)

(47)

beingKr andMr the reduced stiffness and
inertia matrix

respectively. As far as the reduced order Dirac structure
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Model reduction of port-Hamiltonian systems

Application to a piezo-active structure: the activity aimed at 
developing a model reduction procedure able to preserve the 
frequency behaviour of the original system in a neighbourhood of a 
predefined set of frequencies of interest 

This research is carried out in collaboration with TetraPak and deals with 
modelling and simulation of the Ultrasonic Sealing System (USS) 

Due to the presence of a Compact Transducer (CT), it is not possible 
to perform a simulation of the complete system to 

Test the validity of the controller; 

Perform the diagnosis of the sealing process in detail 

The proposed procedure drastically reduces the simulation time 
without loosing the essential dynamical information

Introduction and motivations
Background

Model reduction for high-order port-Hamiltonian systems
Conclusions and future work

Introduction and motivations

The idea is to illustrate a model reduction procedure able to preserve the
frequency behavior of the original system in a neighborhood of a
predefined set of frequencies of interest

This research is part of a wider activity carried out in collaboration with
Tetra Pak concerning the modelling and simulation of the Ultrasonic
Sealing System (USS)

Due to the presence of a Compact Transducer (CT) that can be modelled
only by means of commercial finite element CAE software it is not possible
to perform a simulation of the complete system to

+ Test the validity of the controller;

+ Perform the diagnosis of the sealing process in detail

The proposed procedure drastically reduces the simulation time without
loosing the essential dynamical information

L. Gentili, et al. A model reduction algorithm for high-order port-Hamiltonian systems



Model reduction of port-Hamiltonian systems

The Ultrasonic Sealing System (USS) is a key technology used in the 
sealing process and based on ultrasounds for multi-layered packaging 
materials 

The most complex part of the USS is the a Compact Transducer (CT) which 
is responsible of the sealing process 

Physically, it is a piezo-electric actuator excited with high frequency 
sinusoidal inputs

Introduction and motivations
BackgroundModel reduction for high-order port-Hamiltonian systemsConclusions and future work

Port-Hamiltonian systemsCompact transducer and ultrasonic sealingBackground
Compact transducer and ultrasonic sealing

This research deals with the problem of modeling and simulating theUltrasonic Sealing System (USS), a key technology used in the sealingprocess and based on ultrasounds for multi-layered packaging materialsThe most complex part of the USS is the a Compact Transducer (CT)
which is responsible of the sealing process+
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Model reduction of port-Hamiltonian systems

Introduction and motivations
Background

Model reduction for high-order port-Hamiltonian systems
Conclusions and future work

Port-Hamiltonian systems
Compact transducer and ultrasonic sealing

Background
Compact transducer and ultrasonic sealing

Complete USS scheme

L. Gentili, et al. A model reduction algorithm for high-order port-Hamiltonian systems

Complete USS scheme



Model reduction of port-Hamiltonian systems

The following proposition provides a simpler expression
for (37), and generalizes an analogous result valid for
linear mechanical systems in Lagrangian form presented
in [10] to generic linear port-Hamiltonian systems.

Proposition 3 The matrix L̃′ defined in (37) can be
equivalently written as

L̃′ =
(

ST
e L

−1Se

)−1
(38)

PROOF. Starting from the properties (35) of Ae and
Se, with simple manipulations it is possible to verify that
(

ST
e L

−1Se

)

L̃′ = Ine+r. In fact

(

ST
e L

−1Se

)

L̃′ = ST
e L

−1
(

IN −AeA
T
e

)

L ·

·
(

L−1 −Ae

(

AT
e LAe

)−1
AT

e

)

LSe

= ST
e

(

L−1 −Ae

(

AT
e LAe

)−1
Ae

)

LSe−

− ST
e L

−1AeAe
TLSe + ST

e L
−1Ae ·

·Ae
TLAe

(

AT
e LAe

)−1
AeLSe

= ST
e L

−1LSe

= Ine+r

In order to take into account the condition on x̃f in (34),
it is convenient to write L̃′ as

L̃′ =

(

L̃ff L̃fr

L̃T
fr L̃rr

)

(39)

On the other hand, the constant κ in (34) takes into
account some energy stored in the system but associated
to a dynamics that is not playing any “important” role in
the reduced system. Usually, it is correct to assume that
κ = 0, which implies that just the quadratic term in the
x̃r variable is present in (36). This is the state variable of
the reduced order system, whose Hamiltonian function
can be written as follows:

H̃r(x̃r) =
1

2
x̃T
r L̃rrx̃r (40)

The reduced-order port-Hamiltonian system follows
once the Dirac structure (29) is paired with the port
behavior of the energy-storage port. Keeping in mind
(18), it is possible to write that

f̃S,r = − ˙̃xr ẽS,r =
∂H̃r

∂x̃r
= L̃rrx̃r (41)

where H̃r is reported in (40). The intuition and the phys-
ical interpretation behind the proposed model-reduction

scheme is reported in Fig. 3. The starting point has
been the port-Hamiltonian system without dissipation of
Fig. 2. The MTF performs the power-conserving trans-
formation (22), which allows to decompose the power-
flowing at the energy storage port into three main con-
tribution. Then, the ports (f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e) are
terminated over a zero source of flow and effort respec-
tively to impose the constraints (27), while the last port
is interconnected to the energy storage element C with
energy function (40), that takes into account the reduced
dynamics. Since the effort and flow constraints have been
eliminated from the Dirac structure, the reduced order
model is described by a set of DAEs that correspond to
the grey part of the bond-graph in Fig. 3.

4 Examples

4.1 Piezo-electric active structures

The model reduction procedure is now applied to a
generic mechanical system embedding active piezo-
electric structures. It is now shown that the result pre-
sented in [5, 6] are just a particular case of the method-
ology described in this paper. A mechanical system
embedding piezo-electric actuators and sensors can be
dynamically described using finite elements as, [17]:

(

Mww 0

0 0

)(

ẅ

φ̈

)

+

(

Kww KT
φw

Kφw Kφφ

)(

w

φ

)

=

(

F

G

)

(42)

where, if nN denotes the number of nodes of the finite ele-
ments model,w ∈ R3nN are themechanical dof, φ ∈ RnN

the electric potential dof, Mww = MT
ww > 0 is the iner-

tia matrix, Kww = KT
ww > 0 is the mechanical stiffness

matrix, Kφw describes the coupling between mechani-
cal and electrical domain, Kφφ = KT

φφ is the electric ca-
pacitance matrix, F collects the input forces and G the
charges imposed as forcing action.

The inputs of the system are forces F and voltages φC ,
which represents the effective input voltage over the elec-
tric dof. In view of this consideration, it is possible to
write that

φ = BCφC +BFφF (43)

where φC ∈ RnC represents the effective nC input volt-
age dof while φF ∈ RnF , with nF = nN−nC all the other
electric dof. Finally, BC and BF are suitably defined
mapping matrices such thatBT

CBC = InC
,BT

FBF = InF

and BT
CBF = 0. The second set of equations in (42) rep-

resents the algebraic constraints defined by the charge G
imposed as forcing action. Due to the fact that there is
no electric charge imposed on the free electrical dof, i.e.
BT

FG = 0, it is possible to “eliminate” φF in (42), which
leads to a port-Hamiltonian representation of the piezo-
electric active structure dynamics in the form (13), with
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The following proposition provides a simpler expression
for (37), and generalizes an analogous result valid for
linear mechanical systems in Lagrangian form presented
in [10] to generic linear port-Hamiltonian systems.

Proposition 3 The matrix L̃′ defined in (37) can be
equivalently written as

L̃′ =
(

ST
e L

−1Se

)−1
(38)

PROOF. Starting from the properties (35) of Ae and
Se, with simple manipulations it is possible to verify that
(
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)

L̃′ = Ine+r. In fact
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In order to take into account the condition on x̃f in (34),
it is convenient to write L̃′ as

L̃′ =

(

L̃ff L̃fr

L̃T
fr L̃rr

)

(39)

On the other hand, the constant κ in (34) takes into
account some energy stored in the system but associated
to a dynamics that is not playing any “important” role in
the reduced system. Usually, it is correct to assume that
κ = 0, which implies that just the quadratic term in the
x̃r variable is present in (36). This is the state variable of
the reduced order system, whose Hamiltonian function
can be written as follows:

H̃r(x̃r) =
1

2
x̃T
r L̃rrx̃r (40)

The reduced-order port-Hamiltonian system follows
once the Dirac structure (29) is paired with the port
behavior of the energy-storage port. Keeping in mind
(18), it is possible to write that

f̃S,r = − ˙̃xr ẽS,r =
∂H̃r

∂x̃r
= L̃rrx̃r (41)

where H̃r is reported in (40). The intuition and the phys-
ical interpretation behind the proposed model-reduction

scheme is reported in Fig. 3. The starting point has
been the port-Hamiltonian system without dissipation of
Fig. 2. The MTF performs the power-conserving trans-
formation (22), which allows to decompose the power-
flowing at the energy storage port into three main con-
tribution. Then, the ports (f̃S,f , ẽS,f ) and (f̃S,e, ẽS,e) are
terminated over a zero source of flow and effort respec-
tively to impose the constraints (27), while the last port
is interconnected to the energy storage element C with
energy function (40), that takes into account the reduced
dynamics. Since the effort and flow constraints have been
eliminated from the Dirac structure, the reduced order
model is described by a set of DAEs that correspond to
the grey part of the bond-graph in Fig. 3.

4 Examples

4.1 Piezo-electric active structures

The model reduction procedure is now applied to a
generic mechanical system embedding active piezo-
electric structures. It is now shown that the result pre-
sented in [5, 6] are just a particular case of the method-
ology described in this paper. A mechanical system
embedding piezo-electric actuators and sensors can be
dynamically described using finite elements as, [17]:

(

Mww 0

0 0

)(

ẅ

φ̈

)

+

(

Kww KT
φw

Kφw Kφφ

)(

w

φ

)

=

(

F

G

)

(42)

where, if nN denotes the number of nodes of the finite ele-
ments model,w ∈ R3nN are themechanical dof, φ ∈ RnN

the electric potential dof, Mww = MT
ww > 0 is the iner-

tia matrix, Kww = KT
ww > 0 is the mechanical stiffness

matrix, Kφw describes the coupling between mechani-
cal and electrical domain, Kφφ = KT

φφ is the electric ca-
pacitance matrix, F collects the input forces and G the
charges imposed as forcing action.

The inputs of the system are forces F and voltages φC ,
which represents the effective input voltage over the elec-
tric dof. In view of this consideration, it is possible to
write that

φ = BCφC +BFφF (43)

where φC ∈ RnC represents the effective nC input volt-
age dof while φF ∈ RnF , with nF = nN−nC all the other
electric dof. Finally, BC and BF are suitably defined
mapping matrices such thatBT

CBC = InC
,BT

FBF = InF

and BT
CBF = 0. The second set of equations in (42) rep-

resents the algebraic constraints defined by the charge G
imposed as forcing action. Due to the fact that there is
no electric charge imposed on the free electrical dof, i.e.
BT

FG = 0, it is possible to “eliminate” φF in (42), which
leads to a port-Hamiltonian representation of the piezo-
electric active structure dynamics in the form (13), with

6

BT
FG = 0

Fig. 3. Intuitive and physical interpretation of the model-reduction procedure.

n = 3nN , i.e. with a “mechanical system”-like structure,
where the Hamiltonian is

H(p, q) =
1

2
pTM−1p+

1

2
qTKq
︸ ︷︷ ︸

=V (q)

and

q = w
M = Mww

p = Mẇ

K = Kww −KT
φwBF

(

BT
FKφφBF

)−1
BT

FKφw

BT =

⎛

⎝
I3nN

BT
C

(

KφφBF

(

BT
FKφφBF

)−1
BT

F − InC

)

Kφw

⎞

⎠

u =
(

F φC

)T

Note that the inputs are the applied forces F and elec-
trical potential φC . The corresponding outputs are the
(node) velocities and the piezo currents.

In [5, 6] a reduced order model has been computed for
a particular piezo-electric active structure, namely the
so-called Compact Transducer, i.e. the core element of
an Ultrasonic Sealing System (USS), a complex elec-
tromechanical system used to seal aseptic packages for
liquid foods that is the core of the most advanced fill-
ing machines. Due to the particular operative condi-
tions of this device, the reduced order model has been
computed in such a way that the frequency behavior of
the original system in a neighborhood of a predefined
set of frequencies of interest has been preserved. This
has been achieved by solving an eigenvalue/eigenvector
problem for k eigenvalues in a neighborhood of the spec-
ified set, so that k normalized eigenvectors S̄i are ob-
tained. These eigenvectors shape a basis for the projec-
tion subspace, for which the projection matrix can be
defined as S̄ =

(

S̄1, · · · , S̄k

)

. If Ā = Ker S̄T, the reduced
order model followed once the constraint

ĀTq̇ = 0 (44)

has been imposed on the full-order system. Since q̇ =
−fq = ep as discussed in Example 2, relation (44) implies
a set of independent constraints on both the flows and
efforts of the full order dynamics, i.e. (19) have to hold
with

Af =

(

Ā

0

)

Ae =

(

0

Ā

)

(45)

which leads to

S =

(

S̄ 0

0 S̄

)

(46)

The reduced Hamiltonian function can be easily ob-
tained by taking into account (38) and (39) with

L =

(

K 0

0 M−1

)

Se =

(

Ā S̄ 0

0 0 S̄

)

In fact,

L̃′ =

⎛

⎜
⎜
⎝

ĀTK−1Ā ĀTK−1S̄ 0

S̄TK−1Ā S̄TK−1S̄ 0

0 0 S̄TMS̄

⎞

⎟
⎟
⎠

−1

=

=

⎛

⎜
⎜
⎝

ĀTKĀ ĀTKS̄ 0

S̄TKĀ S̄TKS̄ 0

0 0
(

S̄TMS̄
)−1

⎞

⎟
⎟
⎠

which leads a reduced Hamiltonian (40) where

L̃rr =

(

Kr 0

0 M−1
r

)

=

(

S̄TKS̄ 0

0
(

S̄TMS̄
)−1

)

(47)

beingKr andMr the reduced stiffness and inertia matrix
respectively. As far as the reduced order Dirac structure
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n = 3nN , i.e. with a “mechanical system”-like structure,
where the Hamiltonian is

H(p, q) =
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u =
(
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Note that the inputs are the applied forces F and elec-
trical potential φC . The corresponding outputs are the
(node) velocities and the piezo currents.
In [5, 6] a reduced order model has been computed for
a particular piezo-electric active structure, namely the
so-called Compact Transducer, i.e. the core element of
an Ultrasonic Sealing System (USS), a complex elec-
tromechanical system used to seal aseptic packages for
liquid foods that is the core of the most advanced fill-
ing machines. Due to the particular operative condi-
tions of this device, the reduced order model has been
computed in such a way that the frequency behavior of
the original system in a neighborhood of a predefined
set of frequencies of interest has been preserved. This
has been achieved by solving an eigenvalue/eigenvector
problem for k eigenvalues in a neighborhood of the spec-
ified set, so that k normalized eigenvectors S̄i are ob-
tained. These eigenvectors shape a basis for the projec-
tion subspace, for which the projection matrix can be
defined as S̄ =

(

S̄1, · · · , S̄k

)

. If Ā = Ker S̄T, the reduced
order model followed once the constraint

ĀTq̇ = 0
(44)

has been imposed on the full-order system. Since q̇ =−fq = ep as discussed in Example 2, relation (44) implies
a set of independent constraints on both the flows and
efforts of the full order dynamics, i.e. (19) have to hold
with

Af =

(

Ā

0

)

Ae =

(

0

Ā

)

(45)

which leads to

S =

(

S̄ 0

0 S̄

)

(46)
The reduced Hamiltonian function can be easily ob-
tained by taking into account (38) and (39) with

L =
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)
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S̄TK−1Ā S̄TK−1S̄ 0

0 0 S̄TMS̄

⎞

⎟
⎟
⎠

−1

=

=

⎛

⎜
⎜
⎝
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which leads a reduced Hamiltonian (40) where
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Kr 0
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)

=

(
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0
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)

(47)

beingKr andMr the reduced stiffness and inertia matrix
respectively. As far as the reduced order Dirac structure
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S̄ =
�
S̄1 · · · S̄k

�
Ā = Ker S̄T ĀTq̇ = 0

Fig. 3. Intuitive and physical interpretation of the model-reduction procedure.
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Note that the inputs are the applied forces F and elec-
trical potential φC . The corresponding outputs are the
(node) velocities and the piezo currents.

In [5, 6] a reduced order model has been computed for
a particular piezo-electric active structure, namely the
so-called Compact Transducer, i.e. the core element of
an Ultrasonic Sealing System (USS), a complex elec-
tromechanical system used to seal aseptic packages for
liquid foods that is the core of the most advanced fill-
ing machines. Due to the particular operative condi-
tions of this device, the reduced order model has been
computed in such a way that the frequency behavior of
the original system in a neighborhood of a predefined
set of frequencies of interest has been preserved. This
has been achieved by solving an eigenvalue/eigenvector
problem for k eigenvalues in a neighborhood of the spec-
ified set, so that k normalized eigenvectors S̄i are ob-
tained. These eigenvectors shape a basis for the projec-
tion subspace, for which the projection matrix can be
defined as S̄ =

(

S̄1, · · · , S̄k

)

. If Ā = Ker S̄T, the reduced
order model followed once the constraint

ĀTq̇ = 0 (44)

has been imposed on the full-order system. Since q̇ =
−fq = ep as discussed in Example 2, relation (44) implies
a set of independent constraints on both the flows and
efforts of the full order dynamics, i.e. (19) have to hold
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The reduced Hamiltonian function can be easily ob-
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beingKr andMr the reduced stiffness and inertia matrix
respectively. As far as the reduced order Dirac structure
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Note that the inputs are the applied forces F and elec-
trical potential φC . The corresponding outputs are the
(node) velocities and the piezo currents.

In [5, 6] a reduced order model has been computed for
a particular piezo-electric active structure, namely the
so-called Compact Transducer, i.e. the core element of
an Ultrasonic Sealing System (USS), a complex elec-
tromechanical system used to seal aseptic packages for
liquid foods that is the core of the most advanced fill-
ing machines. Due to the particular operative condi-
tions of this device, the reduced order model has been
computed in such a way that the frequency behavior of
the original system in a neighborhood of a predefined
set of frequencies of interest has been preserved. This
has been achieved by solving an eigenvalue/eigenvector
problem for k eigenvalues in a neighborhood of the spec-
ified set, so that k normalized eigenvectors S̄i are ob-
tained. These eigenvectors shape a basis for the projec-
tion subspace, for which the projection matrix can be
defined as S̄ =

(
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)

. If Ā = Ker S̄T, the reduced
order model followed once the constraint

ĀTq̇ = 0 (44)

has been imposed on the full-order system. Since q̇ =
−fq = ep as discussed in Example 2, relation (44) implies
a set of independent constraints on both the flows and
efforts of the full order dynamics, i.e. (19) have to hold
with
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beingKr andMr the reduced stiffness and inertia matrix
respectively. As far as the reduced order Dirac structure
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Due to the particular operative conditions of this device, the reduced 
order model preserves the behaviour of the original system in a 
neighbourhood of a predefined set of frequencies of interest 

Solve an eigenvalue/eigenvector problem for k eigenvalues in a 
neighbourhood of the specified set  
 

The result is a set of independent constraints on both the flows and 
the efforts of the full-order dynamics  
 

Simple computations show that



Model reduction of port-Hamiltonian systems

Abaqus FEM CAD software has been used 

A sufficiently fine mesh have been designed: 
128322 nodes with 389286 d.o.f. 

Reduction platform: 
Core i7 940 (4 core + 4ht core) 2.93 Mhz 

12 Gb DDR3 Ram 

Linux ubuntu 9.04 64bit 

Matlab 2009a 

Reduction algorithm runs in 17 min 

Abaqus FEM CAD is able to simulate 0.5 ms in 24 hours 
Max step size 10-7 sec; 

Complete sealing phase 150 ms; 1 year to perform a simulation! 

Reduced order model considering 10 eigenvalues around 28 KHz is 
able to simulate 150 ms in 30 sec
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Model reduction for high-order port-Hamiltonian systems
Conclusions and future work

Structure-preserving model reduction for port-Hamiltonian systems
Piezo-electric systems
Simulation results

Model reduction for high-order port-Hamiltonian systems
Simulations results

Abaqus FEM CAD software has been used
A su�ciently fine mesh have been designed:

+ 128322 nodes with 389286 dofs

Reduction platform:
+ Core i7 940 (4 core + 4ht core) 2.93Mhz
+ 12 Gb DDR3 Ram
+ Linux ubuntu 9.04 64bit
+ Matlab 2009a

Reduction algorithm runs in 17min

Abaqus FEM CAD is able to simulate 0.5ms in 24 hours
+ Max step size 10-7 sec
+ Complete sealing phase 150ms; 1 year to perform a simulation!

Reduced order model considering 10 eigenvalues around 28KHz is able to
simulate 150ms in 30 sec

L. Gentili, et al. A model reduction algorithm for high-order port-Hamiltonian systems
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Simulation results 
Sinusoidal input: 100 V @28640 Hz, 0÷10 ms  

Head displacement
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Model reduction for high-order port-Hamiltonian systems
Simulations results

Sinusoidal input: 100V @28640Hz, 0÷10ms

Head displacement

Full order (Abaqus) Reduced order (Matlab)

L. Gentili, et al. A model reduction algorithm for high-order port-Hamiltonian systems

full order (Abaqus) reduced order (Matlab)
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Experimental results

Introduction and motivations
Background

Model reduction for high-order port-Hamiltonian systems
Conclusions and future work

Structure-preserving model reduction for port-Hamiltonian systems
Piezo-electric systems
Simulation results

Model reduction for high-order port-Hamiltonian systems
Simulations results

Measured and simulated
displacement during the
sealing process of the
center of the head

Measured and simulated
displacement during the
sealing process of the top
of the screw the
piezo-electric actuator

Measured and simulated
voltage input

L. Gentili, et al. A model reduction algorithm for high-order port-Hamiltonian systems

Measured and simulated 
displacement during the sealing 
process of the center of the head

Measured and simulated 
displacement during the sealing 
process of the top of the screw 
the piezo-electric actuator

Measured and simulated 
input voltage



Part III

Control Synthesis for  
Implicit Port-Hamiltonian Systems 



Dirac structures

The idea is to develop a general theory for the energy-based control 
of implicit port-Hamiltonian systems, i.e. written as a set of DAEs 

Denote by F × E the space of power variables, and by ⟨ e, f ⟩ the 
power associated to the port (f, e) ∈ F × E 

Definition. A (constant) Dirac structure on F is a linear subspace D ⊂ 
F × E such that  

Coordinate representations:

Passivity-based Control of Implicit Port-Hamiltonian Systems

Alessandro Macchelli

Abstract— The main contribution of this paper is the gener-
alisation of well-known energy-based control techniques (i.e.,
energy-balancing passivity-based control and passivity-based
control with state modulated source), to the case in which the
plant is a port-Hamiltonian system in implicit form. A typical
situation is when (part of) the system is obtained from the spa-
tial discretization of an infinite dimensional port-Hamiltonian
system: in this case, the dynamics is not given in standard
input-state-output form, but as a set of DAEs. Consequently,
the control by energy-shaping has to be extended to deal with
dynamical systems with constraints. The general methodology
is discussed with the help of a simple but illustrative example,
i.e. a transmission line interconnected with an RLC circuit.

I. INTRODUCTION

This paper deals with the extension of classical energy
based control techniques (energy-balancing passivity-based
control and passivity-based control with state-modulated
source, [1], [2]) to port-Hamiltonian systems [3] in implicit
form, i.e. not written in standard input-state-output form but
as a set of DAEs, [4], [5]. The motivating application is when
the port-Hamiltonian dynamics follows from the spatial dis-
cretization of a distributed port-Hamiltonian system carried
out according to the technique proposed in [6].

In a recent work [7], the control by interconnection and
energy shaping via Casimir generation [2], [5], [8] has been
extended to this scenario, and the stabilization of the system
in a non-zero equilibrium is accomplished by looking or
generating a set of Casimir functions in the closed-loop
system that robustly (i.e. independently from the Hamiltonian
function) relates the state of the infinite dimensional port
Hamiltonian system with the state of the controller. The
shape of the energy function of the closed-loop system can
be changed by properly choosing the Hamiltonian function
of the controller in order to introduce a (possibly global)
minimum in a desired configuration. This approach has
shown its potentialities in the stabilisation of finite-element
models of distributed port-Hamiltonian systems, [7], [9].

In this paper, energy-balancing passivity-based control
and passivity-based control via state-modulated source are
extended to implicit port-Hamiltonian systems, with the final
goal of being applied to a finite element approximation
of the distributed parameter plant. In this way, standard
tools for studying the stability of finite dimensional port
Hamiltonian systems can be used to prove the validity of
the boundary controller. Implicit port-Hamiltonian systems
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have been introduced at the very beginning of the port-
Hamiltonian theory, but not so many results have been pre-
sented as far as their control is concerned, with the noticeable
exceptions of [10], where the energy-shaping control via
Casimir generation has been approached by starting from
the properties of the Dirac structure of the plant both in
the finite and infinite dimensional case, and of [11]–[13]. In
case of input-state-output port-Hamiltonian systems, a state-
modulated source is the simplest way for dealing with the
stabilisation of equilibria that require an infinite amount of
supplied energy, i.e. with the so-called dissipation obstacle
that limits the applicability of the control by interconnection
via Casimir generation and of energy-balancing passivity-
based control. The general methodology is illustrated with
reference to a particular example, i.e. a trasmission line with
RLC load, both in the series and parallel configuration.

The paper is organized as follows. In Sect. II, Dirac struc-
tures and associated port-Hamiltonian systems are briefly
presented. Then, Sect. III contains the main theoretical
contributions. More precisely, in Sect. III-A, the energy-
balancing passivity-based control, and in Sect. III-B, the
control with state-modulated source are extended to im-
plicit port-Hamiltonian systems. The examples is reported
in Sect. IV, while conclusions and a discussion about future
activities are in Sect. V.

II. BACKGROUND

A. Dirac structures
A Dirac structure is a linear space which describes internal

power flows and the power exchange between the system
and the environment. Denote by F ⇥ E the space of power
variables, with F an n-dimensional linear space, the space
of flows (e.g. velocities and currents) and E ⌘ F⇤ its dual,
the space of efforts (e.g. forces and voltages), and by he, fi
the power associated to the port (f, e) 2 F ⇥ E , where h·, ·i
is the dual product between f and e.

Definition 2.1: Consider the space of power variables F⇥
E . A (constant) Dirac structure on F is a linear subspace
D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

A Dirac structure defines a power-conserving relation
on F ⇥ E , and different representations in coordinates are
possible, [14]. For example, every Dirac structure D can be
given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)
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II. BACKGROUND

A. Dirac structures
A Dirac structure is a linear space which describes internal

power flows and the power exchange between the system
and the environment. Denote by F ⇥ E the space of power
variables, with F an n-dimensional linear space, the space
of flows (e.g. velocities and currents) and E ⌘ F⇤ its dual,
the space of efforts (e.g. forces and voltages), and by he, fi
the power associated to the port (f, e) 2 F ⇥ E , where h·, ·i
is the dual product between f and e.

Definition 2.1: Consider the space of power variables F⇥
E . A (constant) Dirac structure on F is a linear subspace
D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

A Dirac structure defines a power-conserving relation
on F ⇥ E , and different representations in coordinates are
possible, [14]. For example, every Dirac structure D can be
given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such thatEF T + FET = 0 rank
�

F | E �= n (3)
and, in this case, he, fi = eTf .B. Port-Hamiltonian systemsIn case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from

the port behavior of the energy storing elements. Denote by

X the space of energy variables and by H : X ! R the

energy function. Then, the port behavior is:
f = �ẋ

e = @H

@x (4)
and, if the kernel representation (1) is adopted, the associated

dynamics is expressed by �Fẋ + E @H
@x = 0, with x(0) =

x0 2 X . Note that, Ḣ = 0, i.e. energy is conserved, which is

coherent with the fact that no external ports and dissipative

effects have been modelled.In the general case, the Dirac structure D associated to

the port-Hamiltonian system defines a power conserving

relation between several port variables, e.g. two internal

ports S and R, which correspond to energy-storage and

dissipation respectively, and two external ports C and I,

which are devoted to an exchange of energy with a controller

and the environment respectively. If (fS , eS) 2 FS ⇥ ES ,

(fR, eR) 2 FR ⇥ ER, (fC , eC ) 2 FC ⇥ EC and (fI , eI ) 2
FI ⇥ EI denote the power variables of the energy-storage,

dissipative, control and interaction ports respectively, in the

kernel representation (1) the Dirac structure D is given by

the following subset of F⇥E , with F = FS⇥FR⇥FC⇥FI

and E = ES ⇥ ER ⇥ EC ⇥ EI :D =
n

(fS , fR, fC , fI , eS , eR, eC , eI ) 2 F ⇥ E |FSfS + FRfR + FCfC + FIfI++ ESeS + EReR + ECeC + EIeI = 0
o

(5)
where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a

set of conditions similar to (3). If the behavior at the energy

storing port is given as in (4) and the dissipative port satisfies

the (linear) resistive relation
Rf fR +ReeR = 0

(6)
where Rf and Re are square matrices such that RfRT

e =

ReRT
f > 0, and rank(Rf | Re) = dimFR, then the port-

Hamiltonian dynamics results into the following set of DAEs:
�FS ẋ+ ES

@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0
Rf fR +ReeR = 0

(7)with x(0) = x0 2 X . Note that, in this case,d

dt
H  eTCfC + eTI fI

(8)
which means that the variation of internal energy is bounded

by the incoming power flows through the control and inter-

action ports.

(a) Series configuration.
(b) Parallel configuration.Fig. 1. RLC circuits.

Example 2.1 (RLC circuits): The series RLC circuit of

Fig. 1a is characterised by the Dirac structure
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On the other hand, the Dirac stricture of the RLC circuit in

parallel configuration of Fig. 1b is defined by
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In both cases, the Hamiltonian is given by
HL(xQ, x�) = 1

2

 

x2
Q

CL
+ x2

�

LL

!

(11)where xQ and x� are the charge in the capacitor and the

magnetic field in the inductor, respectively. Moreover, the

resistive relation (6) takes the form
RLfR + eR = 0

(12)
Finally, the dynamics follows from (4), that now reads fQ =

�ẋQ, f� = �ẋ�, eQ = @HL
@xQ

, and e� = @HL
@x�

.
Example 2.2 (Trasmission line): The distributed port-

Hamiltonian description of the lossless transmission line

has been given in [15], but in this paper its finite element

approximation discussed in [6] is adopted for control

purposes. It is beyond the scope of this paper to provide a

detailed description on how this approximation is obtained.

Roughly speaking, the spatial domain Z = [0, L] of

the trasmission line is divided into N segments, and

on each segment the dynamics is approximated by a

where F and E are n⇥ n matrices such thatEF T + FET = 0 rank
�

F | E �= n (3)
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On the other hand, the Dirac stricture of the RLC circuit in

parallel configuration of Fig. 1b is defined by
0

B

B

@

1 0
0 1
0 0
0 0

1

C

C

A

|

{

z

}

=:FS,p

✓

fQ
f�

◆

+

0

B

B

@

0 1
�1 0
1 0
0 1

1

C

C

A

|

{

z

}

=:ES,p

✓

eQ
e�

◆

+

0

B

B

@

1
0
0
0

1

C

C

A

|

{

z

}

=:FR,p

fR+

+

0

B

B

@

0
0

�1
0

1

C

C

A

|

{

z

}

=:ER,p

eR +

0

B

B

@

0
0
0

�1

1

C

C

A

f +

0

B

B

@

0
1
0
0

1

C

C

A

e = 0 (10)

In both cases, the Hamiltonian is given by
HL(xQ, x�) =

1

2

 

x2
Q

CL
+

x2
�

LL

!

(11)where xQ and x� are the charge in the capacitor and the

magnetic field in the inductor, respectively. Moreover, the

resistive relation (6) takes the form
RLfR + eR = 0

(12)
Finally, the dynamics follows from (4), that now reads fQ =
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kernel
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Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

It is clear from the previous definition that the Dirac
structure defines a power-conserving relation on F⇥E . Dirac
structures admit different representations in coordinates, [13].
For example, every Dirac structure D on an n-dimensional
space of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such that

(a) EFT + FET = 0
(b) rank

�

F | E�

= n
(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems
In case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from
the port behavior of the energy storing elements. Denote by
X the space of energy variables and by H : X ! R the
energy function. Then, the port behavior is:

f = �ẋ e =
@H

@x
(4)

and, if the kernel representation (1) for a Dirac structure
is adopted, the associated dynamics is expressed by the
following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent
with the fact that no external ports and dissipative effects
have been modelled. Moreover, F and E may also depend
on x, and most of the results presented in this paper remain
valid in this situation.

In the general case a port-Hamiltonian system can be
represented as in Fig. 1. The Dirac structure D defines a
power conserving relation between several port variables.
In particular, there are two internal ports S and R, which
correspond to energy-storage and dissipation respectively,
and two external ports C and I, which are devoted to an
exchange of energy with a controller and the environment
respectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2
FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variables
of the energy-storage, dissipative, control and interaction
ports respectively, in the kernel representation (1) the Dirac
structure D is given by the following subset of F ⇥ E , with
F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
n

(fS , fR, fC , fI , eS , eR, eC , eI) 2 F ⇥ E |
FSfS + FRfR + FCfC + FIfI+

+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a
set of conditions similar to (3). If the behavior at the energy
storing port is given as in (4) and the dissipative port satisfies
the (linear) resistive relation

RffR +ReeR = 0 (6)

where Rf and Re are square matrices such that

(a) RfR
T
e = ReR

T
f > 0

(b) rank
�

Rf | Re

�

= dimFR
(7)

then the port-Hamiltonian dynamics results into the follow-
ing set of DAEs:

�FS ẋ+ ES
@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0

RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI (9)

which means that the variation of internal energy is bounded
by the incoming power flows through the control and interac-
tion ports. In particular cases, it is possible to explicitly get
rid of the algebraic constraints in (8) and write the port-
Hamiltonian dynamics in input-state-output form. In this
paper, this most general formulation of port-Hamiltonian
dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series
configuration reported in Fig. 2(a) is characterized by a Dirac

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

It is clear from the previous definition that the Dirac
structure defines a power-conserving relation on F⇥E . Dirac
structures admit different representations in coordinates, [13].
For example, every Dirac structure D on an n-dimensional
space of flows F can be given in kernel representation as

D =
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(f, e) 2 F ⇥ E | Ff + Ee = 0
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(1)
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(2)

where F and E are n⇥ n matrices such that
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(b) rank
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(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems
In case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from
the port behavior of the energy storing elements. Denote by
X the space of energy variables and by H : X ! R the
energy function. Then, the port behavior is:

f = �ẋ e =
@H

@x
(4)

and, if the kernel representation (1) for a Dirac structure
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tion ports. In particular cases, it is possible to explicitly get

rid of the algebraic constraints in (8) and write the port-

Hamiltonian dynamics in input-state-output form. In this

paper, this most general formulation of port-Hamiltonian

dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series

configuration reported in Fig. 2(a) is characterized by a Dirac
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It is clear from the previous definition that the Dirac

structure defines a power-conserving relation on F⇥E . Dirac

structures admit different representations in coordinates, [13].

For example, every Dirac structure D on an n-dimensional

space of flows F can be given in kernel representation asD =
n
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or in image representation asD =
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= n (3)and, in this case, he, fi = eTf .B. Port-Hamiltonian systemsIn case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from

the port behavior of the energy storing elements. Denote by

X the space of energy variables and by H : X ! R the

energy function. Then, the port behavior is:
f = �ẋ

e = @H

@x (4)
and, if the kernel representation (1) for a Dirac structure

is adopted, the associated dynamics is expressed by the

following DAE:

�Fẋ+ E
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@x
= 0, x(0) = x0 2 XNote that, Ḣ = 0, i.e. energy is conserved, which is coherent

with the fact that no external ports and dissipative effects

have been modelled. Moreover, F and E may also depend

on x, and most of the results presented in this paper remain

valid in this situation.In the general case a port-Hamiltonian system can be

represented as in Fig. 1. The Dirac structure D defines a

power conserving relation between several port variables.

In particular, there are two internal ports S and R, which

correspond to energy-storage and dissipation respectively,

and two external ports C and I, which are devoted to an

exchange of energy with a controller and the environment

respectively.

(a) Series configuration.
(b) Parallel configuration.Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC ) 2
FC ⇥ EC and (fI , eI ) 2 FI ⇥ EI denote the power variables

of the energy-storage, dissipative, control and interaction

ports respectively, in the kernel representation (1) the Dirac
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o

(5)where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a

set of conditions similar to (3). If the behavior at the energy

storing port is given as in (4) and the dissipative port satisfies

the (linear) resistive relation

Rf fR +ReeR = 0
(6)where Rf and Re are square matrices such that

(a) RfRT
e = ReRT

f > 0(b) rank
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= dimFR (7)then the port-Hamiltonian dynamics results into the follow-

ing set of DAEs:
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with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI

(9)which means that the variation of internal energy is bounded

by the incoming power flows through the control and interac-

tion ports. In particular cases, it is possible to explicitly get

rid of the algebraic constraints in (8) and write the port-

Hamiltonian dynamics in input-state-output form. In this

paper, this most general formulation of port-Hamiltonian

dynamics is adopted.Example 2.1 (RLC circuits): The RLC circuit in series

configuration reported in Fig. 2(a) is characterized by a Dirac

This is the most general formulation of 

a port-Hamiltonian system. Usually, the 

spatial discretisation of a distributed 

parameter systems is in this form
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Fig. 3. Finite element model of a lossless transmission line.
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On the other hand, the Dirac stricture of the RLC circuit in
parallel configuration of Fig. 2(b) is defined by the following
relation:
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In both cases, the Hamiltonian is given by

HL(xQ, x�) =
1

2

 

x2
Q

CL
+

x2
�

LL

!

(12)

where xQ and x� are the charge in the capacitor and the
magnetic field in the inductor, respectively. Moreover, the
resistive relation (6) takes the form

RLfR + eR = 0 (13)

Finally, the dynamics follows from (4), that now reads

fQ = �ẋQ f� = �ẋ� eQ =
@HL

@xQ
e� =

@HL

@x�
Example 2.2 (Trasmission line): The distributed port-

Hamiltonian description of the lossless transmission line
has been given in [14], but in this paper its finite element
approximation discussed in [6] is adopted for control
purposes. It is beyond the scope of this paper to provide a
detailed description on how this approximation is obtained.

Roughly speaking, the spatial domain Z = [0, L] of
the trasmission line is divided into N segments, and
on each segment the dynamics is approximated by a
finite dimensional port-Hamiltonian system. Denote by
Zi = [li, ri], with i = 1, . . . , N , one segment. Clearly,
ri = li+1 for i = 1, . . . , N � 1, and l1 = 0 and rN = L.
Then, it is possible to verify that a port-Hamiltonian system
that approximates the infinite dimensional dynamics on
Zi is characterized by a Dirac structure describe by the
following set of equations, that show the effect on the
internal “energy port” of the boundary conditions in z = li:

eil = eiq + (1� ↵)f i
� f i

l = �ei� � (1� ↵)f i
q (14)

and in z = ri:

eir = eiq � ↵f i
� f i

r = �↵f i
q + ei� (15)

where 0 < ↵ < 1 is a free parameter. With reference to
Fig. 3, in (14) and (15), f i

q and f i
� represent (minus) the

currents flowing through the capacitor Ci and the inductor
Li that approximate the dynamics of electrical and magnetic
fields on Zi, while eiq and ei� are the voltages at the same
components. Moreover, (f i

l , e
i
l) and (f i

r, e
i
r) define a pair

of ports that are the discrete counterpart of the boundary
conditions for the spatial domain Zi. The complete Dirac
structure of the trasmission line is obtained by interconnect-
ing in power-conserving way all the Dirac structure defined
on each Zi, by imposing that f i

r = �f i+1
l and eir = ei+1

l ,
for i = 1, . . . , N � 1. The result is a Dirac structure in the
form (5) with FR = ;, defined by the following relation:
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Fig. 3. Finite element model of a lossless transmission line.
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On the other hand, the Dirac stricture of the RLC circuit in
parallel configuration of Fig. 2(b) is defined by the following
relation:
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where xQ and x� are the charge in the capacitor and the
magnetic field in the inductor, respectively. Moreover, the
resistive relation (6) takes the form

RLfR + eR = 0 (13)

Finally, the dynamics follows from (4), that now reads

fQ = �ẋQ f� = �ẋ� eQ =
@HL

@xQ
e� =
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Example 2.2 (Trasmission line): The distributed port-

Hamiltonian description of the lossless transmission line
has been given in [14], but in this paper its finite element
approximation discussed in [6] is adopted for control
purposes. It is beyond the scope of this paper to provide a
detailed description on how this approximation is obtained.

Roughly speaking, the spatial domain Z = [0, L] of
the trasmission line is divided into N segments, and
on each segment the dynamics is approximated by a
finite dimensional port-Hamiltonian system. Denote by
Zi = [li, ri], with i = 1, . . . , N , one segment. Clearly,
ri = li+1 for i = 1, . . . , N � 1, and l1 = 0 and rN = L.
Then, it is possible to verify that a port-Hamiltonian system
that approximates the infinite dimensional dynamics on
Zi is characterized by a Dirac structure describe by the
following set of equations, that show the effect on the
internal “energy port” of the boundary conditions in z = li:

eil = eiq + (1� ↵)f i
� f i

l = �ei� � (1� ↵)f i
q (14)

and in z = ri:

eir = eiq � ↵f i
� f i

r = �↵f i
q + ei� (15)

where 0 < ↵ < 1 is a free parameter. With reference to
Fig. 3, in (14) and (15), f i

q and f i
� represent (minus) the

currents flowing through the capacitor Ci and the inductor
Li that approximate the dynamics of electrical and magnetic
fields on Zi, while eiq and ei� are the voltages at the same
components. Moreover, (f i

l , e
i
l) and (f i

r, e
i
r) define a pair

of ports that are the discrete counterpart of the boundary
conditions for the spatial domain Zi. The complete Dirac
structure of the trasmission line is obtained by interconnect-
ing in power-conserving way all the Dirac structure defined
on each Zi, by imposing that f i

r = �f i+1
l and eir = ei+1

l ,
for i = 1, . . . , N � 1. The result is a Dirac structure in the
form (5) with FR = ;, defined by the following relation:
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Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,

8(f, e) 2 D.

It is clear from the previous definition that the Dirac

structure defines a power-conserving relation on F⇥E . Dirac

structures admit different representations in coordinates, [13].

For example, every Dirac structure D on an n-dimensional

space of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such that

(a) EFT + FET = 0

(b) rank
�

F | E
�

= n

(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems

In case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from

the port behavior of the energy storing elements. Denote by

X the space of energy variables and by H : X ! R the

energy function. Then, the port behavior is:

f = �ẋ
e =

@H

@x

(4)

and, if the kernel representation (1) for a Dirac structure

is adopted, the associated dynamics is expressed by the

following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent

with the fact that no external ports and dissipative effects

have been modelled. Moreover, F and E may also depend

on x, and most of the results presented in this paper remain

valid in this situation.

In the general case a port-Hamiltonian system can be

represented as in Fig. 1. The Dirac structure D defines a

power conserving relation between several port variables.

In particular, there are two internal ports S and R, which

correspond to energy-storage and dissipation respectively,

and two external ports C and I, which are devoted to an

exchange of energy with a controller and the environment

respectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS, eS) 2 FS ⇥ ES, (fR, eR) 2 FR ⇥ ER, (fC , eC) 2

FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variables

of the energy-storage, dissipative, control and interaction

ports respectively, in the kernel representation (1) the Dirac

structure D is given by the following subset of F ⇥ E , with

F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
n

(fS, fR, fC
, fI , eS, eR

, eC , eI) 2 F ⇥ E |

FSfS + FRfR + FCfC + FIfI+

+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a

set of conditions similar to (3). If the behavior at the energy

storing port is given as in (4) and the dissipative port satisfies

the (linear) resistive relation

RffR +ReeR = 0
(6)

where Rf and Re are square matrices such that

(a) RfR
T
e = ReR

T
f
> 0

(b) rank
�

Rf | Re

�

= dimFR

(7)

then the port-Hamiltonian dynamics results into the follow-

ing set of DAEs:

�FSẋ+ ES

@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0

RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI

(9)

which means that the variation of internal energy is bounded

by the incoming power flows through the control and interac-

tion ports. In particular cases, it is possible to explicitly get

rid of the algebraic constraints in (8) and write the port-

Hamiltonian dynamics in input-state-output form. In this

paper, this most general formulation of port-Hamiltonian

dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series

configuration reported in Fig. 2(a) is characterized by a Dirac

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

It is clear from the previous definition that the Dirac
structure defines a power-conserving relation on F⇥E . Dirac
structures admit different representations in coordinates, [13].
For example, every Dirac structure D on an n-dimensional
space of flows F can be given in kernel representation asD =

n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)or in image representation as
D =

n

(f, e) 2 F⇥E | f = ET�, e = F T�, � 2 Rn
o

(2)where F and E are n⇥ n matrices such that
(a) EFT + FET = 0(b) rank

�

F | E�

= n (3)and, in this case, he, fi = eTf .
B. Port-Hamiltonian systems

In case of finite dimensional port-Hamiltonian systems,
once the Dirac structure is given, the dynamics follows from
the port behavior of the energy storing elements. Denote by
X the space of energy variables and by H : X ! R the
energy function. Then, the port behavior is:

f = �ẋ
e =

@H

@x (4)and, if the kernel representation (1) for a Dirac structure
is adopted, the associated dynamics is expressed by the
following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent
with the fact that no external ports and dissipative effects
have been modelled. Moreover, F and E may also depend
on x, and most of the results presented in this paper remain
valid in this situation.In the general case a port-Hamiltonian system can be
represented as in Fig. 1. The Dirac structure D defines a
power conserving relation between several port variables.
In particular, there are two internal ports S and R, which
correspond to energy-storage and dissipation respectively,
and two external ports C and I, which are devoted to an
exchange of energy with a controller and the environment
respectively.

(a) Series configuration. (b) Parallel configuration.
Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2
FC ⇥ EC and (fI , eI ) 2 FI ⇥ EI denote the power variables
of the energy-storage, dissipative, control and interaction
ports respectively, in the kernel representation (1) the Dirac
structure D is given by the following subset of F ⇥ E , with
F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :
D =

n

(fS , fR, fC , fI , eS , eR, eC , eI ) 2 F ⇥ E |FSfS + FRfR + FCfC + FIfI+
+ ESeS + EReR + ECeC + EIeI = 0

o

(5)
where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a
set of conditions similar to (3). If the behavior at the energy
storing port is given as in (4) and the dissipative port satisfies
the (linear) resistive relation

RffR +ReeR = 0
(6)where Rf and Re are square matrices such that

(a) RfRT
e = ReRT

f > 0(b) rank
�

Rf | Re
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= dimFR (7)
then the port-Hamiltonian dynamics results into the follow-
ing set of DAEs:

�FS ẋ+ ES
@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0
RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,
d

dt
H  eTCfC + eTI fI (9)

which means that the variation of internal energy is bounded
by the incoming power flows through the control and interac-
tion ports. In particular cases, it is possible to explicitly get
rid of the algebraic constraints in (8) and write the port-
Hamiltonian dynamics in input-state-output form. In this
paper, this most general formulation of port-Hamiltonian
dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series
configuration reported in Fig. 2(a) is characterized by a Dirac

Fig. 3. Finite element model of a lossless transmission line.
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On the other hand, the Dirac stricture of the RLC circuit in
parallel configuration of Fig. 2(b) is defined by the following
relation:
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In both cases, the Hamiltonian is given by
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where xQ and x� are the charge in the capacitor and the
magnetic field in the inductor, respectively. Moreover, the
resistive relation (6) takes the form

RLfR + eR = 0 (13)

Finally, the dynamics follows from (4), that now reads

fQ = �ẋQ f� = �ẋ� eQ =
@HL

@xQ
e� =

@HL

@x�
Example 2.2 (Trasmission line): The distributed port-

Hamiltonian description of the lossless transmission line
has been given in [14], but in this paper its finite element
approximation discussed in [6] is adopted for control
purposes. It is beyond the scope of this paper to provide a
detailed description on how this approximation is obtained.

Roughly speaking, the spatial domain Z = [0, L] of
the trasmission line is divided into N segments, and
on each segment the dynamics is approximated by a
finite dimensional port-Hamiltonian system. Denote by
Zi = [li, ri], with i = 1, . . . , N , one segment. Clearly,
ri = li+1 for i = 1, . . . , N � 1, and l1 = 0 and rN = L.
Then, it is possible to verify that a port-Hamiltonian system
that approximates the infinite dimensional dynamics on
Zi is characterized by a Dirac structure describe by the
following set of equations, that show the effect on the
internal “energy port” of the boundary conditions in z = li:

eil = eiq + (1� ↵)f i
� f i

l = �ei� � (1� ↵)f i
q (14)

and in z = ri:

eir = eiq � ↵f i
� f i

r = �↵f i
q + ei� (15)

where 0 < ↵ < 1 is a free parameter. With reference to
Fig. 3, in (14) and (15), f i

q and f i
� represent (minus) the

currents flowing through the capacitor Ci and the inductor
Li that approximate the dynamics of electrical and magnetic
fields on Zi, while eiq and ei� are the voltages at the same
components. Moreover, (f i

l , e
i
l) and (f i

r, e
i
r) define a pair

of ports that are the discrete counterpart of the boundary
conditions for the spatial domain Zi. The complete Dirac
structure of the trasmission line is obtained by interconnect-
ing in power-conserving way all the Dirac structure defined
on each Zi, by imposing that f i

r = �f i+1
l and eir = ei+1

l ,
for i = 1, . . . , N � 1. The result is a Dirac structure in the
form (5) with FR = ;, defined by the following relation:
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ẼS,1 · · · 0
...

. . .
...

0 · · · ẼS,1
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Fig. 3. Finite element model of a lossless transmission line.

structure defined by the following relation:
0

B

B

@

1 0
0 1
0 0
0 0

1

C

C

A

| {z }

=:FS,s

✓

fQ
f�

◆

+

0

B

B

@

0 1
�1 0
0 1
0 1

1

C

C

A

| {z }

=:ES,s

✓

eQ
e�

◆

+

0

B

B

@

0
0
�1
0

1

C

C

A

| {z }

=:FR,s

fR+

+

0

B

B

@

0
1
0
0

1

C

C

A

| {z }

=:ER,s

eR +

0

B

B

@

0
0
0
�1

1

C

C

A

f +

0

B

B

@

0
1
0
0

1

C

C

A

e = 0 (10)

On the other hand, the Dirac stricture of the RLC circuit in
parallel configuration of Fig. 2(b) is defined by the following
relation:
0

B

B

@

1 0
0 1
0 0
0 0

1

C

C

A

| {z }

=:FS,p

✓

fQ
f�

◆

+

0

B

B

@

0 1
�1 0
1 0
0 1

1

C

C

A

| {z }

=:ES,p

✓

eQ
e�

◆

+

0

B

B

@

1
0
0
0

1

C

C

A

| {z }

=:FR,p

fR+

+

0

B

B

@

0
0
�1
0

1

C

C

A

| {z }

=:ER,p

eR +

0

B

B

@

0
0
0
�1

1

C

C

A

f +

0

B

B

@

0
1
0
0

1

C

C

A

e = 0 (11)

In both cases, the Hamiltonian is given by

HL(xQ, x�) =
1

2

 

x2
Q

CL
+

x2
�

LL

!

(12)

where xQ and x� are the charge in the capacitor and the
magnetic field in the inductor, respectively. Moreover, the
resistive relation (6) takes the form

RLfR + eR = 0 (13)

Finally, the dynamics follows from (4), that now reads
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Energy-based control

Let us consider a port-Hamiltonian system in input-state-output form: 
 
 
 
 
 
 
 

Standard approach is to rely on “energy considerations” to obtain and 
prove asymptotic stability of equilibria 

Damping injection 

Energy-shaping 

Standard assumption is H bounded from below

energy balancing



Damping injection

Suppose that H has an isolated minimum at a desired equilibrium 

The idea is to dissipate energy until the minimum is reached 
Asymptotic stability if there is “enough dissipation” 

Zero-state detectability 

La Salle’s Invariance principle 

The control action is



Energy-balancing control

In general, it is necessary to shape the open-loop Hamiltonian to 
introduce a minimum at the desired equilibrium 

From the energy-balance relation we have  
 

The standard formulation of passivity-based control requires to 
determine a control action 
 
such that the closed-loop dynamics satisfies: 
 

Hd is a desired energy function, while dd replaces the natural 
dissipation 

Energy-shaping plus damping injection

new energy 
balancing



Energy-balancing control

A large class of dynamical systems can be stabilised by requiring that 
the supplied energy is a function of the state of the plant 

We require that along all system trajectories 

The “desired” closed-loop Hamiltonian is then 

The previous PDE provides the class of Ha and the control actions, 
while stability analysis follows from the energy-balance relation 

u’ can be used to add damping



Energy-balancing control

The methodology can be applied to generic nonlinear systems  
 
 

From KYP lemma, passivity is equivalent to the existence of a function 
H(x) such that  
 

Matching equation: 
 
 

At the equilibrium:

supplied power

dissipation 
obstacle



Control with state-modulated source

The idea is to compute a state feed-back action 
 
so that the open-loop system is mapped into a new one, but with a 
desired Hamiltonian  
 
 
 

A direct computation leads to 
 

A further generalisation leads to the IDA-PBC control technique, 
where we shape 

Hamiltonian 

Interconnection and resistive structure

matching condition



Dirac structures & control synthesis

Energy-balancing control in the general case: 

A (necessary and) sufficient condition is that
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and the dynamics follows from the port behaviour (4), i.e.
fS,1 = �ẋ1 and eS,1 = @H1

@x1
.

III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
not taken into account, i.e. FI = ;. However, all the result
that are presented in this section can be easily extended to
the most general case.

A. Energy-balancing passivity-based control
The energy-balance relation (9) can be equivalently rewrit-

ten in integral form

H(x(t))�H(x(0)) =

Z t

0
eTC(⌧)fC(⌧)d⌧ � d(t) (18)

where d(t) � 0 takes into account the dissipated energy. It is
well known that, under the hypothesis that (8) as an effort-
in causality at the control port, the standard formulation of
passivity-based control requires to determine a control action

eC = �(x) + e0C (19)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:

Hd(x(t))�Hd(x(0)) =

Z t

0
e0C

T
(⌧)f 0

C(⌧)d⌧ � dd(t) (20)

Here, Hd is a desired energy function that has a strict
minimum at x?, f 0

C is the new passive “output,” while
dd(t) � 0 replaces the natural dissipation, that is usually
increased to improve the convergence rate. So, a direct
comparison between (18) and (20) clearly shows the main
step of this control technique, i.e. the energy shaping plus
the damping injection, [1], [2], [5].

A large class of dynamical systems can be stabilized by
further requiring to find a function �(x) such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

�
Z t

0
�T(x(⌧))fC(⌧)d⌧ = Ha(x(t)) +  (21)

with  2 R some constant, [1], [2], [5]. Clearly, (21) is
a particular case of (20). In this respect, let us write the
“desired” closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (22)

Given a desired equilibrium configuration x?, the idea is to
select Ha in such a way that Hd has a minimum in x?, that
is made asymptotically stable by damping injection.

Having in mind the image representation (2) of a Dirac
structure in the form (5), the differential formulation of (21)
is equivalent to require that
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for all � 2 RnS+nR+nC , or equivalently that

�ES
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+ EC� = 0 (23)

The PDE (23) provides the family of Hamiltonian Ha that
can be used to shape the energy function in closed-loop, and
the control action that realizes it. This equation is determined
by the Dirac structure D of the plant, and it is independent
from the resistive relation: an equivalent way to re-write (23)
is in fact
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It is easy to verify that, thanks to (19), the port-
Hamiltonian system (8) is transformed into another port-
Hamiltonian system with Hamiltonian Hd given by (22) that
satisfies the following energy-balance relation:

dHd

dt
= eTRfR + e0

T
CfC  e0

T
CfC (25)

Clearly, among all the possible choices compatible with (23)
or (24), Ha will be selected in such a way that Hd is a
candidate Lyapunov function with a minimum at the desired
equilibrium x?. Then, (25) can be used in Lyapunov analysis
to deduce stability of x? by taking, for example, e0C = 0. The
equilibrium turns out to be asymptotically stable if the largest
invariant set under the closed-loop dynamics contained in

n

x 2 X \ B | eTRfR = 0
o

(26)

equals {x?}, being B an open neighbourhood of x?.
Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and
the target dynamics resulting from the Hamiltonian (22)
share the same behaviour at the storage, resistive and control
ports, independently from the resistive relation. This means
that (23) or (24) impose a strong link between open and
closed-loop dynamics, that is based only on the property
of the Dirac structure. This is somehow related to the so-
called “dissipation obstacle,” that prevents energy-balancing
passivity-based control schemes to stabilise equilibria that
require an infinite amount of supplied energy. A possible
solution to this problem is illustrated in the next section.
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fS,1 = �ẋ1 and eS,1 = @H1

@x1
.

III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
not taken into account, i.e. FI = ;. However, all the result
that are presented in this section can be easily extended to
the most general case.

A. Energy-balancing passivity-based control
The energy-balance relation (9) can be equivalently rewrit-

ten in integral form

H(x(t))�H(x(0)) =

Z t

0
eTC(⌧)fC(⌧)d⌧ � d(t) (18)

where d(t) � 0 takes into account the dissipated energy. It is
well known that, under the hypothesis that (8) as an effort-
in causality at the control port, the standard formulation of
passivity-based control requires to determine a control action

eC = �(x) + e0C (19)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:

Hd(x(t))�Hd(x(0)) =

Z t

0
e0C

T
(⌧)f 0

C(⌧)d⌧ � dd(t) (20)

Here, Hd is a desired energy function that has a strict
minimum at x?, f 0

C is the new passive “output,” while
dd(t) � 0 replaces the natural dissipation, that is usually
increased to improve the convergence rate. So, a direct
comparison between (18) and (20) clearly shows the main
step of this control technique, i.e. the energy shaping plus
the damping injection, [1], [2], [5].

A large class of dynamical systems can be stabilized by
further requiring to find a function �(x) such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

�
Z t

0
�T(x(⌧))fC(⌧)d⌧ = Ha(x(t)) +  (21)

with  2 R some constant, [1], [2], [5]. Clearly, (21) is
a particular case of (20). In this respect, let us write the
“desired” closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (22)

Given a desired equilibrium configuration x?, the idea is to
select Ha in such a way that Hd has a minimum in x?, that
is made asymptotically stable by damping injection.

Having in mind the image representation (2) of a Dirac
structure in the form (5), the differential formulation of (21)
is equivalent to require that
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The PDE (23) provides the family of Hamiltonian Ha that
can be used to shape the energy function in closed-loop, and
the control action that realizes it. This equation is determined
by the Dirac structure D of the plant, and it is independent
from the resistive relation: an equivalent way to re-write (23)
is in fact
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⌘ D (24)

It is easy to verify that, thanks to (19), the port-
Hamiltonian system (8) is transformed into another port-
Hamiltonian system with Hamiltonian Hd given by (22) that
satisfies the following energy-balance relation:

dHd

dt
= eTRfR + e0

T
CfC  e0

T
CfC (25)

Clearly, among all the possible choices compatible with (23)
or (24), Ha will be selected in such a way that Hd is a
candidate Lyapunov function with a minimum at the desired
equilibrium x?. Then, (25) can be used in Lyapunov analysis
to deduce stability of x? by taking, for example, e0C = 0. The
equilibrium turns out to be asymptotically stable if the largest
invariant set under the closed-loop dynamics contained in

n

x 2 X \ B | eTRfR = 0
o

(26)

equals {x?}, being B an open neighbourhood of x?.
Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and
the target dynamics resulting from the Hamiltonian (22)
share the same behaviour at the storage, resistive and control
ports, independently from the resistive relation. This means
that (23) or (24) impose a strong link between open and
closed-loop dynamics, that is based only on the property
of the Dirac structure. This is somehow related to the so-
called “dissipation obstacle,” that prevents energy-balancing
passivity-based control schemes to stabilise equilibria that
require an infinite amount of supplied energy. A possible
solution to this problem is illustrated in the next section.

dissipation obstacle???
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Let us consider at first the finite element model of a transmission line, 
which is characterised by a Dirac structure with matrices 
 
and an Hamiltonian

Fig. 3. Finite element model of a lossless transmission line.

structure defined by the following relation:
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On the other hand, the Dirac stricture of the RLC circuit in
parallel configuration of Fig. 2(b) is defined by the following
relation:
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In both cases, the Hamiltonian is given by

HL(xQ, x�) =
1

2

 

x2
Q

CL
+

x2
�

LL

!

(12)

where xQ and x� are the charge in the capacitor and the
magnetic field in the inductor, respectively. Moreover, the
resistive relation (6) takes the form

RLfR + eR = 0 (13)

Finally, the dynamics follows from (4), that now reads

fQ = �ẋQ f� = �ẋ� eQ =
@HL

@xQ
e� =

@HL

@x�
Example 2.2 (Trasmission line): The distributed port-

Hamiltonian description of the lossless transmission line
has been given in [14], but in this paper its finite element
approximation discussed in [6] is adopted for control
purposes. It is beyond the scope of this paper to provide a
detailed description on how this approximation is obtained.

Roughly speaking, the spatial domain Z = [0, L] of
the trasmission line is divided into N segments, and
on each segment the dynamics is approximated by a
finite dimensional port-Hamiltonian system. Denote by
Zi = [li, ri], with i = 1, . . . , N , one segment. Clearly,
ri = li+1 for i = 1, . . . , N � 1, and l1 = 0 and rN = L.
Then, it is possible to verify that a port-Hamiltonian system
that approximates the infinite dimensional dynamics on
Zi is characterized by a Dirac structure describe by the
following set of equations, that show the effect on the
internal “energy port” of the boundary conditions in z = li:

eil = eiq + (1� ↵)f i
� f i

l = �ei� � (1� ↵)f i
q (14)

and in z = ri:

eir = eiq � ↵f i
� f i

r = �↵f i
q + ei� (15)

where 0 < ↵ < 1 is a free parameter. With reference to
Fig. 3, in (14) and (15), f i

q and f i
� represent (minus) the

currents flowing through the capacitor Ci and the inductor
Li that approximate the dynamics of electrical and magnetic
fields on Zi, while eiq and ei� are the voltages at the same
components. Moreover, (f i

l , e
i
l) and (f i

r, e
i
r) define a pair

of ports that are the discrete counterpart of the boundary
conditions for the spatial domain Zi. The complete Dirac
structure of the trasmission line is obtained by interconnect-
ing in power-conserving way all the Dirac structure defined
on each Zi, by imposing that f i

r = �f i+1
l and eir = ei+1

l ,
for i = 1, . . . , N � 1. The result is a Dirac structure in the
form (5) with FR = ;, defined by the following relation:
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and the storage, control and interaction ports given by
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and the dynamics follows from the port behaviour (4), i.e.
fS,1 = �ẋ1 and eS,1 = @H1

@x1
.

III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
not taken into account, i.e. FI = ;. However, all the result
that are presented in this section can be easily extended to
the most general case.

A. Energy-balancing passivity-based control
The energy-balance relation (9) can be equivalently rewrit-

ten in integral form

H(x(t))�H(x(0)) =

Z t

0
eTC(⌧)fC(⌧)d⌧ � d(t) (18)

where d(t) � 0 takes into account the dissipated energy. It is
well known that, under the hypothesis that (8) as an effort-
in causality at the control port, the standard formulation of
passivity-based control requires to determine a control action

eC = �(x) + e0C (19)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:

Hd(x(t))�Hd(x(0)) =

Z t

0
e0C

T
(⌧)f 0

C(⌧)d⌧ � dd(t) (20)

Here, Hd is a desired energy function that has a strict
minimum at x?, f 0

C is the new passive “output,” while
dd(t) � 0 replaces the natural dissipation, that is usually
increased to improve the convergence rate. So, a direct
comparison between (18) and (20) clearly shows the main
step of this control technique, i.e. the energy shaping plus
the damping injection, [1], [2], [5].

A large class of dynamical systems can be stabilized by
further requiring to find a function �(x) such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

�
Z t

0
�T(x(⌧))fC(⌧)d⌧ = Ha(x(t)) +  (21)

with  2 R some constant, [1], [2], [5]. Clearly, (21) is
a particular case of (20). In this respect, let us write the
“desired” closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (22)

Given a desired equilibrium configuration x?, the idea is to
select Ha in such a way that Hd has a minimum in x?, that
is made asymptotically stable by damping injection.

Having in mind the image representation (2) of a Dirac
structure in the form (5), the differential formulation of (21)
is equivalent to require that
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The PDE (23) provides the family of Hamiltonian Ha that
can be used to shape the energy function in closed-loop, and
the control action that realizes it. This equation is determined
by the Dirac structure D of the plant, and it is independent
from the resistive relation: an equivalent way to re-write (23)
is in fact
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It is easy to verify that, thanks to (19), the port-
Hamiltonian system (8) is transformed into another port-
Hamiltonian system with Hamiltonian Hd given by (22) that
satisfies the following energy-balance relation:

dHd

dt
= eTRfR + e0

T
CfC  e0

T
CfC (25)

Clearly, among all the possible choices compatible with (23)
or (24), Ha will be selected in such a way that Hd is a
candidate Lyapunov function with a minimum at the desired
equilibrium x?. Then, (25) can be used in Lyapunov analysis
to deduce stability of x? by taking, for example, e0C = 0. The
equilibrium turns out to be asymptotically stable if the largest
invariant set under the closed-loop dynamics contained in

n

x 2 X \ B | eTRfR = 0
o

(26)

equals {x?}, being B an open neighbourhood of x?.
Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and
the target dynamics resulting from the Hamiltonian (22)
share the same behaviour at the storage, resistive and control
ports, independently from the resistive relation. This means
that (23) or (24) impose a strong link between open and
closed-loop dynamics, that is based only on the property
of the Dirac structure. This is somehow related to the so-
called “dissipation obstacle,” that prevents energy-balancing
passivity-based control schemes to stabilise equilibria that
require an infinite amount of supplied energy. A possible
solution to this problem is illustrated in the next section.
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and the dynamics follows from the port behaviour (4), i.e.
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III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
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It is easy to verify that, thanks to (19), the port-

Hamiltonian system (8) is transformed into another port-

Hamiltonian system with Hamiltonian Hd given by (22) that

satisfies the following energy-balance relation:
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Clearly, among all the possible choices compatible with (23)

or (24), Ha will be selected in such a way that Hd is a

candidate Lyapunov function with a minimum at the desired

equilibrium x?. Then, (25) can be used in Lyapunov analysis

to deduce stability of x? by taking, for example, e0C = 0. The

equilibrium turns out to be asymptotically stable if the largest

invariant set under the closed-loop dynamics contained in
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equals {x?}, being B an open neighbourhood of x?.

Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and

the target dynamics resulting from the Hamiltonian (22)

share the same behaviour at the storage, resistive and control

ports, independently from the resistive relation. This means

that (23) or (24) impose a strong link between open and

closed-loop dynamics, that is based only on the property

of the Dirac structure. This is somehow related to the so-

called “dissipation obstacle,” that prevents energy-balancing

passivity-based control schemes to stabilise equilibria that

require an infinite amount of supplied energy. A possible

solution to this problem is illustrated in the next section.

The plant is a finite dimensional port-
Hamiltonian system with control port (fC, eC)

controller
load
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For the complete system we have 

Simple physical considerations lead to the desired equilibrium: 

The energy-balance controller follows if it exists λ such that

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Similarly, as far as the “desired dynamics” is concerned,
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Since the trajectories are required to be the same, and in
spite of (19) and (22), we have that
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(27)

Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
fS =

�

fQ f� fS,1
�T

eS =
�

eQ e� eS,1
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Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:
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=

xi,?
�

Li
= 0

for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Similarly, as far as the “desired dynamics” is concerned,
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�ẋ = ET
S �

0

@Hd

@x
= FT

S �0

0 =
�

RfE
T
R +ReF

T
R

�

�0

e0C = FT
C �0

Since the trajectories are required to be the same, and in
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
fS =
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fQ f� fS,1
�T
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Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:
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for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Similarly, as far as the “desired dynamics” is concerned,
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
fS =

�

fQ f� fS,1
�T

eS =
�

eQ e� eS,1
�T

(29)

Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:
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=
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Li
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for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

(24) has a solution. With reference to (24), it is necessary to
find � = (�1, �2, �3)

T, possibly dependent on x, such that
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Let assume �1 = (�1,2, . . . , �1,4)
T, �2 = (�2,1,�2,2)

T and
�3 = (�3,1, . . . , �3,2(N�1))

T. Then, with simple calcula-
tions, from the last set of relations in (32), it follows that

�1,2 = �1,3 = �2,1 = �3,1 = �3,2i�1 = 0
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A possible choice for Ha is the following:
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where CC > 0 is a design parameter and  a constant. This
is the same result obtained in [7], where the controller has
been developed by generating Casimir functions in closed-
loop. The constant  can be selected to have the closed-loop
Hamiltonian (22) quadratic in the increments, i.e.:
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with
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0

B

B

B

B

B

B

B

B

B

@

C2
L

CC
+ CL · · · CLCN

CC
0 · · · 0

... . . .
...

...
. . .

...
CLCN
CC

· · · C2
N

CC
+ CN 0 · · · 0

0 · · · 0 1
LL

· · · 0
... . . .

...
...

. . .
...

0 · · · 0 0 · · · 1
LN

1

C

C

C

C

C

C

C

C

C

A

Stability easily follows from (25) and from the fact that (34)
is bounded from below. Asymptotic stability is proved by
checking that under the closed-loop dynamics, the largest
invariant solution contained in (26) equals the desired equi-
librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0
and xQ = x̄Q constant, to be determined later on. From the
system dynamics we obtain that

↵ẋN
� +

xN
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↵ẋN

q +
xN
�
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The only invariant solution compatible with Ḣd = 0 is xN
� =

0 and xN
q

CN
= x̄Q

CL
, and the iteration of this procedure for all

the elements of the transmission line leads to xi
� = 0 and

xi
q

Ci
= x̄Q

CL
, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can
be computed, and then it follows that x̄Q

CL
= e?, and this

completes the proof.
In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting
port-Hamiltonian model is characterised by a Dirac structure
defined by (5), where the matrices FS , FR, FC , ES , ER, and
EC are the same as in (28), but with FS,s, ES,s, FR,s, and
ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).
Moreover, the port variables are defined in (29), the resistive
relation (13) holds, and state variable and Hamiltonian are
given by (30) and (31), respectively. The desired equilibrium
configuration is
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(35)

with i = 1, . . . , N , which means constant voltage e? and
current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,
an energy-balancing passivity-based controller is not able to
stabilise the system, [2]. In other words, the PDE (23) or,
equivalently, (24) does not admit a solution Ha that is able to
shape the closed-loop Hamiltonian to introduce a minimum
at the desired equilibrium (35). For space limitations, this
step is not reported in this paper. Then, it is preferable to
rely on the method discussed in Sect. III-B, and look for
solutions of the PDE (27), i.e. to find � = (�1, �2, �3)

T

such that
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As in the previous example, from the last set of relations in
(36), it follows that
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�RL�1,2 + �1,1 = 0 (37)

(24) has a solution. With reference to (24), it is necessary to
find � = (�1, �2, �3)

T, possibly dependent on x, such that
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Let assume �1 = (�1,2, . . . , �1,4)
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T and
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�1,2 = �1,3 = �2,1 = �3,1 = �3,2i�1 = 0

�1,1 = ��1,4 = �2,2 = �3,2i

with i = 1, . . . , N � 1. Since

�@Ha

@xQ
= �@Ha

@xi
q

= �1,1 � = �2,2 = �1,1

�@Ha

@x�
= �@Ha

@xi
�

= �1,2 = 0

we have that

Ha(x) = Ha(⇠)
�

�

�

⇠=xQ+
PN

i=1 xi
q

�(x) = � @Ha

@⇠

�

�

�

�

⇠=xQ+
PN

i=1 xi
q

(33)

A possible choice for Ha is the following:

Ha(⇠) =
1

2

⇠2

CC
� e?

 

1 +
CL

CC
+

N
X

i=1

Ci

CC

!

⇠ + 

where CC > 0 is a design parameter and  a constant. This
is the same result obtained in [7], where the controller has
been developed by generating Casimir functions in closed-
loop. The constant  can be selected to have the closed-loop
Hamiltonian (22) quadratic in the increments, i.e.:
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with
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Stability easily follows from (25) and from the fact that (34)
is bounded from below. Asymptotic stability is proved by
checking that under the closed-loop dynamics, the largest
invariant solution contained in (26) equals the desired equi-
librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0
and xQ = x̄Q constant, to be determined later on. From the
system dynamics we obtain that

↵ẋN
� +

xN
q

CN
=

x̄Q

CL
↵ẋN
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, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can
be computed, and then it follows that x̄Q
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= e?, and this

completes the proof.
In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting
port-Hamiltonian model is characterised by a Dirac structure
defined by (5), where the matrices FS , FR, FC , ES , ER, and
EC are the same as in (28), but with FS,s, ES,s, FR,s, and
ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).
Moreover, the port variables are defined in (29), the resistive
relation (13) holds, and state variable and Hamiltonian are
given by (30) and (31), respectively. The desired equilibrium
configuration is
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with i = 1, . . . , N , which means constant voltage e? and
current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,
an energy-balancing passivity-based controller is not able to
stabilise the system, [2]. In other words, the PDE (23) or,
equivalently, (24) does not admit a solution Ha that is able to
shape the closed-loop Hamiltonian to introduce a minimum
at the desired equilibrium (35). For space limitations, this
step is not reported in this paper. Then, it is preferable to
rely on the method discussed in Sect. III-B, and look for
solutions of the PDE (27), i.e. to find � = (�1, �2, �3)
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such that
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As in the previous example, from the last set of relations in
(36), it follows that
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�RL�1,2 + �1,1 = 0 (37)

(24) has a solution. With reference to (24), it is necessary to

find � = (�1, �2, �3)
T , possibly dependent on x, such that

�@Ha

@x
= FS

T�

� = FC
T�

0 = ET
S� = ET

R� = FT
R� = ET

C�

(32)

Let assume �1 = (�1,2, . . . , �1,4)
T , �2 = (�2,1,�2,2)

T and

�3 = (�3,1, . . . , �3,2(N�1))
T . Then, with simple calcula-

tions, from the last set of relations in (32), it follows that

�1,2 = �1,3 = �2,1 = �3,1 = �3,2i�1 = 0

�1,1 = ��1,4 = �2,2 = �3,2i

with i = 1, . . . , N � 1. Since
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@xiq
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we have that
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A possible choice for Ha is the following:

Ha(⇠) =
1
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where CC > 0 is a design parameter and  a constant. This

is the same result obtained in [7], where the controller has

been developed by generating Casimir functions in closed-

loop. The constant  can be selected to have the closed-loop

Hamiltonian (22) quadratic in the increments, i.e.:

Hd(x) =
1
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with
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Stability easily follows from (25) and from the fact that (34)

is bounded from below. Asymptotic stability is proved by

checking that under the closed-loop dynamics, the largest

invariant solution contained in (26) equals the desired equi-

librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0

and xQ = x̄Q constant, to be determined later on. From the

system dynamics we obtain that

↵ẋN� +
xNq
CN

=
x̄Q

CL

↵ẋNq +
xN�
LN

= 0

The only invariant solution compatible with Ḣd = 0 is xN� =

0 and
xN
q

CN
=

x̄Q

CL
, and the iteration of this procedure for all

the elements of the transmission line leads to xi� = 0 and

xi
q

Ci
=

x̄Q

CL
, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can

be computed, and then it follows that x̄Q

CL
= e?, and this

completes the proof.

In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting

port-Hamiltonian model is characterised by a Dirac structure

defined by (5), where the matrices FS , FR, FC , ES , ER, and

EC are the same as in (28), but with FS,s, ES,s, FR,s, and

ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).

Moreover, the port variables are defined in (29), the resistive

relation (13) holds, and state variable and Hamiltonian are

given by (30) and (31), respectively. The desired equilibrium

configuration is

x?Q
CL

=
xi,?q
Ci

= e?
x?�
LL

=
x
i,?
�

Li

=
e?

RL

(35)

with i = 1, . . . , N , which means constant voltage e? and

current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,

an energy-balancing passivity-based controller is not able to

stabilise the system, [2]. In other words, the PDE (23) or,

equivalently, (24) does not admit a solution Ha that is able to

shape the closed-loop Hamiltonian to introduce a minimum

at the desired equilibrium (35). For space limitations, this

step is not reported in this paper. Then, it is preferable to

rely on the method discussed in Sect. III-B, and look for

solutions of the PDE (27), i.e. to find � = (�1, �2, �3)
T

such that

�@Ha

@x
= FS

T�

� = FC
T�

0 = ET
S� = (RLE

T
R + FT

R )�

(36)

As in the previous example, from the last set of relations in

(36), it follows that

�1,2 = �1,3 = �2,1 = �3,2i�1

�1,1 = ��1,4 = �2,2 = �3,2i

�RL�1,2 + �1,1 = 0 (37)

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

It is clear from the previous definition that the Dirac
structure defines a power-conserving relation on F⇥E . Dirac
structures admit different representations in coordinates, [13].
For example, every Dirac structure D on an n-dimensional
space of flows F can be given in kernel representation asD =

n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)or in image representation as
D =

n

(f, e) 2 F⇥E | f = ET�, e = F T�, � 2 Rn
o

(2)where F and E are n⇥ n matrices such that
(a) EFT + FET = 0(b) rank

�

F | E�

= n (3)and, in this case, he, fi = eTf .
B. Port-Hamiltonian systems

In case of finite dimensional port-Hamiltonian systems,
once the Dirac structure is given, the dynamics follows from
the port behavior of the energy storing elements. Denote by
X the space of energy variables and by H : X ! R the
energy function. Then, the port behavior is:

f = �ẋ
e =

@H

@x (4)and, if the kernel representation (1) for a Dirac structure
is adopted, the associated dynamics is expressed by the
following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent
with the fact that no external ports and dissipative effects
have been modelled. Moreover, F and E may also depend
on x, and most of the results presented in this paper remain
valid in this situation.In the general case a port-Hamiltonian system can be
represented as in Fig. 1. The Dirac structure D defines a
power conserving relation between several port variables.
In particular, there are two internal ports S and R, which
correspond to energy-storage and dissipation respectively,
and two external ports C and I, which are devoted to an
exchange of energy with a controller and the environment
respectively.

(a) Series configuration. (b) Parallel configuration.
Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2
FC ⇥ EC and (fI , eI ) 2 FI ⇥ EI denote the power variables
of the energy-storage, dissipative, control and interaction
ports respectively, in the kernel representation (1) the Dirac
structure D is given by the following subset of F ⇥ E , with
F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :
D =

n

(fS , fR, fC , fI , eS , eR, eC , eI ) 2 F ⇥ E |FSfS + FRfR + FCfC + FIfI+
+ ESeS + EReR + ECeC + EIeI = 0

o

(5)
where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a
set of conditions similar to (3). If the behavior at the energy
storing port is given as in (4) and the dissipative port satisfies
the (linear) resistive relation

RffR +ReeR = 0
(6)where Rf and Re are square matrices such that

(a) RfRT
e = ReRT

f > 0(b) rank
�

Rf | Re

�

= dimFR (7)
then the port-Hamiltonian dynamics results into the follow-
ing set of DAEs:

�FS ẋ+ ES
@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0
RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,
d

dt
H  eTCfC + eTI fI (9)

which means that the variation of internal energy is bounded
by the incoming power flows through the control and interac-
tion ports. In particular cases, it is possible to explicitly get
rid of the algebraic constraints in (8) and write the port-
Hamiltonian dynamics in input-state-output form. In this
paper, this most general formulation of port-Hamiltonian
dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series
configuration reported in Fig. 2(a) is characterized by a Dirac
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B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that

�ẋ = ET
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Similarly, as far as the “desired dynamics” is concerned,
there exists �0 2 RnS+nR+nC such that
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Since the trajectories are required to be the same, and in
spite of (19) and (22), we have that
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(27)

Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
fS =

�

fQ f� fS,1
�T

eS =
�

eQ e� eS,1
�T

(29)

Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:

x?
Q

CL
=

xi,?
q

Ci
= e?

x?
�

LL
=

xi,?
�

Li
= 0

for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Similarly, as far as the “desired dynamics” is concerned,
there exists �0 2 RnS+nR+nC such that
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Since the trajectories are required to be the same, and in
spite of (19) and (22), we have that
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
fS =

�

fQ f� fS,1
�T

eS =
�

eQ e� eS,1
�T

(29)

Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:

x?
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xi,?
q

Ci
= e?

x?
�

LL
=

xi,?
�

Li
= 0

for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation
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and the storage, control and interaction ports given by
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e1q e1� · · · eNq eN�
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l eC = e1l
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�T denotes the state
variable, the total Hamiltonian is given by

H1(x1) =
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X
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+
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�
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(17)

and the dynamics follows from the port behaviour (4), i.e.
fS,1 = �ẋ1 and eS,1 = @H1

@x1
.

III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
not taken into account, i.e. FI = ;. However, all the result
that are presented in this section can be easily extended to
the most general case.

A. Energy-balancing passivity-based control
The energy-balance relation (9) can be equivalently rewrit-

ten in integral form

H(x(t))�H(x(0)) =

Z t

0
eTC(⌧)fC(⌧)d⌧ � d(t) (18)

where d(t) � 0 takes into account the dissipated energy. It is
well known that, under the hypothesis that (8) as an effort-
in causality at the control port, the standard formulation of
passivity-based control requires to determine a control action

eC = �(x) + e0C (19)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:

Hd(x(t))�Hd(x(0)) =

Z t

0
e0C

T
(⌧)f 0

C(⌧)d⌧ � dd(t) (20)

Here, Hd is a desired energy function that has a strict
minimum at x?, f 0

C is the new passive “output,” while
dd(t) � 0 replaces the natural dissipation, that is usually
increased to improve the convergence rate. So, a direct
comparison between (18) and (20) clearly shows the main
step of this control technique, i.e. the energy shaping plus
the damping injection, [1], [2], [5].

A large class of dynamical systems can be stabilized by
further requiring to find a function �(x) such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

�
Z t

0
�T(x(⌧))fC(⌧)d⌧ = Ha(x(t)) +  (21)

with  2 R some constant, [1], [2], [5]. Clearly, (21) is
a particular case of (20). In this respect, let us write the
“desired” closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (22)

Given a desired equilibrium configuration x?, the idea is to
select Ha in such a way that Hd has a minimum in x?, that
is made asymptotically stable by damping injection.

Having in mind the image representation (2) of a Dirac
structure in the form (5), the differential formulation of (21)
is equivalent to require that

✓

�@THa

@x
ET

S + �TET
C

◆

� = 0

for all � 2 RnS+nR+nC , or equivalently that

�ES
@Ha

@x
+ EC� = 0 (23)

The PDE (23) provides the family of Hamiltonian Ha that
can be used to shape the energy function in closed-loop, and
the control action that realizes it. This equation is determined
by the Dirac structure D of the plant, and it is independent
from the resistive relation: an equivalent way to re-write (23)
is in fact
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⌘ D (24)

It is easy to verify that, thanks to (19), the port-
Hamiltonian system (8) is transformed into another port-
Hamiltonian system with Hamiltonian Hd given by (22) that
satisfies the following energy-balance relation:

dHd

dt
= eTRfR + e0

T
CfC  e0

T
CfC (25)

Clearly, among all the possible choices compatible with (23)
or (24), Ha will be selected in such a way that Hd is a
candidate Lyapunov function with a minimum at the desired
equilibrium x?. Then, (25) can be used in Lyapunov analysis
to deduce stability of x? by taking, for example, e0C = 0. The
equilibrium turns out to be asymptotically stable if the largest
invariant set under the closed-loop dynamics contained in

n

x 2 X \ B | eTRfR = 0
o

(26)

equals {x?}, being B an open neighbourhood of x?.
Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and
the target dynamics resulting from the Hamiltonian (22)
share the same behaviour at the storage, resistive and control
ports, independently from the resistive relation. This means
that (23) or (24) impose a strong link between open and
closed-loop dynamics, that is based only on the property
of the Dirac structure. This is somehow related to the so-
called “dissipation obstacle,” that prevents energy-balancing
passivity-based control schemes to stabilise equilibria that
require an infinite amount of supplied energy. A possible
solution to this problem is illustrated in the next section.
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and the dynamics follows from the port behaviour (4), i.e.
fS,1 = �ẋ1 and eS,1 = @H1

@x1
.

III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
not taken into account, i.e. FI = ;. However, all the result
that are presented in this section can be easily extended to
the most general case.

A. Energy-balancing passivity-based control
The energy-balance relation (9) can be equivalently rewrit-

ten in integral form

H(x(t))�H(x(0)) =

Z t

0
eTC(⌧)fC(⌧)d⌧ � d(t) (18)

where d(t) � 0 takes into account the dissipated energy. It is
well known that, under the hypothesis that (8) as an effort-
in causality at the control port, the standard formulation of
passivity-based control requires to determine a control action

eC = �(x) + e0C (19)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:
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Here, Hd is a desired energy function that has a strict
minimum at x?, f 0

C is the new passive “output,” while
dd(t) � 0 replaces the natural dissipation, that is usually
increased to improve the convergence rate. So, a direct
comparison between (18) and (20) clearly shows the main
step of this control technique, i.e. the energy shaping plus
the damping injection, [1], [2], [5].

A large class of dynamical systems can be stabilized by
further requiring to find a function �(x) such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

�
Z t

0
�T(x(⌧))fC(⌧)d⌧ = Ha(x(t)) +  (21)

with  2 R some constant, [1], [2], [5]. Clearly, (21) is
a particular case of (20). In this respect, let us write the
“desired” closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (22)

Given a desired equilibrium configuration x?, the idea is to
select Ha in such a way that Hd has a minimum in x?, that
is made asymptotically stable by damping injection.

Having in mind the image representation (2) of a Dirac
structure in the form (5), the differential formulation of (21)
is equivalent to require that
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The PDE (23) provides the family of Hamiltonian Ha that
can be used to shape the energy function in closed-loop, and
the control action that realizes it. This equation is determined
by the Dirac structure D of the plant, and it is independent
from the resistive relation: an equivalent way to re-write (23)
is in fact
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⌘ D (24)

It is easy to verify that, thanks to (19), the port-
Hamiltonian system (8) is transformed into another port-
Hamiltonian system with Hamiltonian Hd given by (22) that
satisfies the following energy-balance relation:

dHd

dt
= eTRfR + e0

T
CfC  e0

T
CfC (25)

Clearly, among all the possible choices compatible with (23)
or (24), Ha will be selected in such a way that Hd is a
candidate Lyapunov function with a minimum at the desired
equilibrium x?. Then, (25) can be used in Lyapunov analysis
to deduce stability of x? by taking, for example, e0C = 0. The
equilibrium turns out to be asymptotically stable if the largest
invariant set under the closed-loop dynamics contained in

n

x 2 X \ B | eTRfR = 0
o

(26)

equals {x?}, being B an open neighbourhood of x?.
Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and
the target dynamics resulting from the Hamiltonian (22)
share the same behaviour at the storage, resistive and control
ports, independently from the resistive relation. This means
that (23) or (24) impose a strong link between open and
closed-loop dynamics, that is based only on the property
of the Dirac structure. This is somehow related to the so-
called “dissipation obstacle,” that prevents energy-balancing
passivity-based control schemes to stabilise equilibria that
require an infinite amount of supplied energy. A possible
solution to this problem is illustrated in the next section.

controlled system

“desired” system
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Since trajectories are required to be the same 

It is possible to prove that the open-loop system is mapped into the 
desired closed-loop one, for which the Hamiltonian function Hd is 
selected so that “nice” stability properties are satisfied 

Asymptotic stability follows as in case  
of energy-balancing regulators

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Similarly, as far as the “desired dynamics” is concerned,
there exists �0 2 RnS+nR+nC such that
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Since the trajectories are required to be the same, and in
spite of (19) and (22), we have that
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where

FS =

0

B

B

B

B

B

B

B

B

@

FS,s

0 0 · · · 0 0
0 0 · · · 0 �↵
0 0 · · · 0 0
0 0 · · · �↵ 0

0
0 �(1� ↵) · · · 0 0

1� ↵ 0 · · · 0 0

0 F̄S,1

1

C

C

C

C

C

C

C

C

A

ES =

0

B

B

B

B

B

B

B

B

@

ES,s

0 0 · · · 0 0
0 0 · · · 1 0
0 0 · · · 0 0
0 0 · · · 0 1

0
�1 0 · · · 0 0
0 1 · · · 0 0

0 ĒS,1
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with
fS =

�

fQ f� fS,1
�T

eS =
�

eQ e� eS,1
�T

(29)

Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:

x?
Q

CL
=

xi,?
q

Ci
= e?

x?
�

LL
=

xi,?
�

Li
= 0

for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Similarly, as far as the “desired dynamics” is concerned,
there exists �0 2 RnS+nR+nC such that
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where

FS =

0

B

B

B

B

B

B

B

B

@

FS,s

0 0 · · · 0 0
0 0 · · · 0 �↵
0 0 · · · 0 0
0 0 · · · �↵ 0

0
0 �(1� ↵) · · · 0 0

1� ↵ 0 · · · 0 0

0 F̄S,1

1

C

C

C

C

C

C

C

C

A

ES =

0

B

B

B

B

B

B

B

B

@

ES,s

0 0 · · · 0 0
0 0 · · · 1 0
0 0 · · · 0 0
0 0 · · · 0 1

0
�1 0 · · · 0 0
0 1 · · · 0 0

0 ĒS,1
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with
fS =

�

fQ f� fS,1
�T

eS =
�

eQ e� eS,1
�T

(29)

Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:
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x?
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LL
=

xi,?
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Li
= 0

for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation
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In case of pRLC with the fem of the line, the desired equilibrium is 

The control synthesis requires to find λ, such that 
 
 
 
 
 
 

A possible choice for Ha can be the following:

(24) has a solution. With reference to (24), it is necessary to
find � = (�1, �2, �3)

T, possibly dependent on x, such that
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Let assume �1 = (�1,2, . . . , �1,4)
T, �2 = (�2,1,�2,2)

T and
�3 = (�3,1, . . . , �3,2(N�1))

T. Then, with simple calcula-
tions, from the last set of relations in (32), it follows that

�1,2 = �1,3 = �2,1 = �3,1 = �3,2i�1 = 0
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with i = 1, . . . , N � 1. Since
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A possible choice for Ha is the following:
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where CC > 0 is a design parameter and  a constant. This
is the same result obtained in [7], where the controller has
been developed by generating Casimir functions in closed-
loop. The constant  can be selected to have the closed-loop
Hamiltonian (22) quadratic in the increments, i.e.:
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with
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Stability easily follows from (25) and from the fact that (34)
is bounded from below. Asymptotic stability is proved by
checking that under the closed-loop dynamics, the largest
invariant solution contained in (26) equals the desired equi-
librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0
and xQ = x̄Q constant, to be determined later on. From the
system dynamics we obtain that

↵ẋN
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xN
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↵ẋN

q +
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The only invariant solution compatible with Ḣd = 0 is xN
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, and the iteration of this procedure for all

the elements of the transmission line leads to xi
� = 0 and

xi
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Ci
= x̄Q

CL
, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can
be computed, and then it follows that x̄Q

CL
= e?, and this

completes the proof.
In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting
port-Hamiltonian model is characterised by a Dirac structure
defined by (5), where the matrices FS , FR, FC , ES , ER, and
EC are the same as in (28), but with FS,s, ES,s, FR,s, and
ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).
Moreover, the port variables are defined in (29), the resistive
relation (13) holds, and state variable and Hamiltonian are
given by (30) and (31), respectively. The desired equilibrium
configuration is
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with i = 1, . . . , N , which means constant voltage e? and
current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,
an energy-balancing passivity-based controller is not able to
stabilise the system, [2]. In other words, the PDE (23) or,
equivalently, (24) does not admit a solution Ha that is able to
shape the closed-loop Hamiltonian to introduce a minimum
at the desired equilibrium (35). For space limitations, this
step is not reported in this paper. Then, it is preferable to
rely on the method discussed in Sect. III-B, and look for
solutions of the PDE (27), i.e. to find � = (�1, �2, �3)

T

such that
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As in the previous example, from the last set of relations in
(36), it follows that
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A possible choice for Ha is the following:
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where CC > 0 is a design parameter and  a constant. This
is the same result obtained in [7], where the controller has
been developed by generating Casimir functions in closed-
loop. The constant  can be selected to have the closed-loop
Hamiltonian (22) quadratic in the increments, i.e.:
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with
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Stability easily follows from (25) and from the fact that (34)
is bounded from below. Asymptotic stability is proved by
checking that under the closed-loop dynamics, the largest
invariant solution contained in (26) equals the desired equi-
librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0
and xQ = x̄Q constant, to be determined later on. From the
system dynamics we obtain that

↵ẋN
� +

xN
q

CN
=

x̄Q

CL
↵ẋN

q +
xN
�

LN
= 0

The only invariant solution compatible with Ḣd = 0 is xN
� =

0 and xN
q

CN
= x̄Q

CL
, and the iteration of this procedure for all

the elements of the transmission line leads to xi
� = 0 and

xi
q

Ci
= x̄Q

CL
, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can
be computed, and then it follows that x̄Q

CL
= e?, and this

completes the proof.
In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting
port-Hamiltonian model is characterised by a Dirac structure
defined by (5), where the matrices FS , FR, FC , ES , ER, and
EC are the same as in (28), but with FS,s, ES,s, FR,s, and
ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).
Moreover, the port variables are defined in (29), the resistive
relation (13) holds, and state variable and Hamiltonian are
given by (30) and (31), respectively. The desired equilibrium
configuration is

x?
Q

CL
=

xi,?
q

Ci
= e?

x?
�

LL
=

xi,?
�

Li
=

e?

RL
(35)

with i = 1, . . . , N , which means constant voltage e? and
current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,
an energy-balancing passivity-based controller is not able to
stabilise the system, [2]. In other words, the PDE (23) or,
equivalently, (24) does not admit a solution Ha that is able to
shape the closed-loop Hamiltonian to introduce a minimum
at the desired equilibrium (35). For space limitations, this
step is not reported in this paper. Then, it is preferable to
rely on the method discussed in Sect. III-B, and look for
solutions of the PDE (27), i.e. to find � = (�1, �2, �3)

T

such that

�@Ha

@x
= FS

T�

� = FC
T�

0 = ET
S � = (RLE

T
R + FT

R )�

(36)

As in the previous example, from the last set of relations in
(36), it follows that

�1,2 = �1,3 = �2,1 = �3,2i�1

�1,1 = ��1,4 = �2,2 = �3,2i

�RL�1,2 + �1,1 = 0 (37)

with i = 1, . . . , N � 1. Since

�@Ha

@xQ
= �@Ha

@xi
q

= �1,1 � = �2,2 = �1,1

�@Ha

@x�
= �@Ha

@xi
�

= �1,2

with i = 1, . . . , N � 1, from (37), we have that

Ha(x) = Ha(⇠)
�

�

�

⇠=x�+RLxQ+
PN

i=1(xi
�+RLxi

q)

�(x) = �RL
@Ha

@⇠

�

�

�

�

⇠=x�+RLxQ+
PN

i=1(xi
�+RLxi
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(38)

A possible choice for Ha is the following:

Ha(⇠) =
1

2

(⇠ � ⇠?)2

LC
� e?

RL
⇠ +  (39)

where LC > 0 is a design parameter,  a constant and ⇠?

the value of ⇠ at the equilibrium (35). By following the
same methodology of the previous example, it is possible
to prove that the closed-loop Hamiltonian (22) is quadratic
in the increments, and that (35) is the unique minimum.
Asymptotic stability is proved in the same way as in the
previous example.

V. FURTHER DEVELOPMENTS

A. IDA-PBC for implicit port-Hamiltonian systems

Similarly to the technique presented in Sect. III-B, the
IDA-PBC control methodology tries to overcome the dis-
sipation obstacle by transforming the open-loop system (8)
into a new one, that is characterised not only by a desired
Hamiltonian function (22), but also by a different Dirac
structure and resistive relation, [2], [11], [12]. The first and
crucial step (also called “matching condition”), is then to
find a state-feedback (19), so that (8) is transformed into

�FS,dẋ+ ES,d
@Hd

@x
+

+FRf
0
R + ERe

0
R + FCf

0
C + ECe

0
C = 0

Rf,df
0
R +Re,de

0
R = 0

where Hd is given as in (22), and

FS,d = FS + FS,a ES,d = ES + ES,a

Rf,d = Rf +Rf,a Re,d = Re +Re,a

(40)

Clearly, the structure matrices in (40) have to define a Dirac
structure, i.e. FS,d, ES,d, FR, ER, FC and EC have to satisfy
(3), while the dissipative relation, i.e. Re,d and Rf,d, has to
satisfy (7). The feedback action is supposed to change the
part of the plant Dirac structure that is responsible for the
power flow among the energy storage elements – the matrices
FS and ES – and to properly change (usually increase) the
damping already present in the plant and/or add it along
some directions in the state space if necessary. The port of
the dissipative elements – the matrices FR and ER are not
changed, but only the resistive relation at the resistive port
(fR, eR). Finally, the closed-loop Hamiltonian has to satisfy

“nice” stability properties at least in a neighborhood of the
equilibrium.

Similarly to Sect. III-B, a necessary condition for matching
the desired dynamics in closed-loop turns out to be that the
next PDE has a solution for some Ha and �:
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This PDE is a generalisation of (27), as it can be easily
verified. On the other hand, it is not completely clear how
to select the target dynamics, i.e. the matrices introduced
in (40). This step, together with the improvements and
deeper analysis of the matching condition, is still under
investigation.

B. Boundary control via state-modulated source
In [7], the energy-shaping control for implicit port-

Hamiltonian systems has been realised by generating a set
of Casimir functions in closed-loop, and it has been shown
that, in case of lossless distributed port-Hamiltonian systems,
there is a one-to-one correspondence between the Casimirs
that can be found when the plant is an infinite dimensional
system, and when its finite dimensional approximation [6]
is adopted. As major consequence, the Hamiltonian function
of the controller and, formally, the control law turns out to
be the same.

The energy-shaping control via Casimir generation is
an alternative view of interpreting the energy-balancing
passivity-based control, so the limitations due to the dissipa-
tion obstacle are the same. In other words, it is not possible
to stabilise the system resulting from the power-conserving
interconnection of a trasmission line (modeled with a PDE
or with a finite dimensional approximation), with an RLC
load in parallel configuration, basically because there are no
useful Casimir functions in closed-loop. On the other hand,
in Sect. IV we have proved that a state-modulated source
can overcome the dissipation obstacle when a finite element
model of the transmission line is used. With (38) and (39)
in mind, it is interesting to investigate if the control law

�(⇠) = �RL

LC
(⇠ � ⇠?) + e?

with now

⇠ = x� +RLxQ +

Z

Z

(x� +RLxq) dz

is able to stabilise the “full-order” system, i.e. the system
in which a distributed port-Hamiltonian formulation of the
transmission line is adopted. As in [7], the summation is

with i = 1, . . . , N � 1. Since
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A possible choice for Ha is the following:
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where LC > 0 is a design parameter,  a constant and ⇠?

the value of ⇠ at the equilibrium (35). By following the
same methodology of the previous example, it is possible
to prove that the closed-loop Hamiltonian (22) is quadratic
in the increments, and that (35) is the unique minimum.
Asymptotic stability is proved in the same way as in the
previous example.

V. FURTHER DEVELOPMENTS

A. IDA-PBC for implicit port-Hamiltonian systems

Similarly to the technique presented in Sect. III-B, the
IDA-PBC control methodology tries to overcome the dis-
sipation obstacle by transforming the open-loop system (8)
into a new one, that is characterised not only by a desired
Hamiltonian function (22), but also by a different Dirac
structure and resistive relation, [2], [11], [12]. The first and
crucial step (also called “matching condition”), is then to
find a state-feedback (19), so that (8) is transformed into

�FS,dẋ+ ES,d
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where Hd is given as in (22), and

FS,d = FS + FS,a ES,d = ES + ES,a

Rf,d = Rf +Rf,a Re,d = Re +Re,a

(40)

Clearly, the structure matrices in (40) have to define a Dirac
structure, i.e. FS,d, ES,d, FR, ER, FC and EC have to satisfy
(3), while the dissipative relation, i.e. Re,d and Rf,d, has to
satisfy (7). The feedback action is supposed to change the
part of the plant Dirac structure that is responsible for the
power flow among the energy storage elements – the matrices
FS and ES – and to properly change (usually increase) the
damping already present in the plant and/or add it along
some directions in the state space if necessary. The port of
the dissipative elements – the matrices FR and ER are not
changed, but only the resistive relation at the resistive port
(fR, eR). Finally, the closed-loop Hamiltonian has to satisfy

“nice” stability properties at least in a neighborhood of the
equilibrium.

Similarly to Sect. III-B, a necessary condition for matching
the desired dynamics in closed-loop turns out to be that the
next PDE has a solution for some Ha and �:
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This PDE is a generalisation of (27), as it can be easily
verified. On the other hand, it is not completely clear how
to select the target dynamics, i.e. the matrices introduced
in (40). This step, together with the improvements and
deeper analysis of the matching condition, is still under
investigation.

B. Boundary control via state-modulated source
In [7], the energy-shaping control for implicit port-

Hamiltonian systems has been realised by generating a set
of Casimir functions in closed-loop, and it has been shown
that, in case of lossless distributed port-Hamiltonian systems,
there is a one-to-one correspondence between the Casimirs
that can be found when the plant is an infinite dimensional
system, and when its finite dimensional approximation [6]
is adopted. As major consequence, the Hamiltonian function
of the controller and, formally, the control law turns out to
be the same.

The energy-shaping control via Casimir generation is
an alternative view of interpreting the energy-balancing
passivity-based control, so the limitations due to the dissipa-
tion obstacle are the same. In other words, it is not possible
to stabilise the system resulting from the power-conserving
interconnection of a trasmission line (modeled with a PDE
or with a finite dimensional approximation), with an RLC
load in parallel configuration, basically because there are no
useful Casimir functions in closed-loop. On the other hand,
in Sect. IV we have proved that a state-modulated source
can overcome the dissipation obstacle when a finite element
model of the transmission line is used. With (38) and (39)
in mind, it is interesting to investigate if the control law

�(⇠) = �RL
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(⇠ � ⇠?) + e?

with now

⇠ = x� +RLxQ +
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(x� +RLxq) dz

is able to stabilise the “full-order” system, i.e. the system
in which a distributed port-Hamiltonian formulation of the
transmission line is adopted. As in [7], the summation is

Asymptotic stability is a consequence 

of the energy dissipation inequality

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,

8(f, e) 2 D.

It is clear from the previous definition that the Dirac

structure defines a power-conserving relation on F⇥E . Dirac

structures admit different representations in coordinates, [13].

For example, every Dirac structure D on an n-dimensional

space of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such that

(a) EFT + FET = 0

(b) rank
�

F | E
�

= n

(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems

In case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from

the port behavior of the energy storing elements. Denote by

X the space of energy variables and by H : X ! R the

energy function. Then, the port behavior is:

f = �ẋ
e =

@H

@x

(4)

and, if the kernel representation (1) for a Dirac structure

is adopted, the associated dynamics is expressed by the

following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent

with the fact that no external ports and dissipative effects

have been modelled. Moreover, F and E may also depend

on x, and most of the results presented in this paper remain

valid in this situation.

In the general case a port-Hamiltonian system can be

represented as in Fig. 1. The Dirac structure D defines a

power conserving relation between several port variables.

In particular, there are two internal ports S and R, which

correspond to energy-storage and dissipation respectively,

and two external ports C and I, which are devoted to an

exchange of energy with a controller and the environment

respectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS, eS) 2 FS ⇥ ES, (fR, eR) 2 FR ⇥ ER, (fC , eC) 2

FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variables

of the energy-storage, dissipative, control and interaction

ports respectively, in the kernel representation (1) the Dirac

structure D is given by the following subset of F ⇥ E , with

F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
n

(fS, fR, fC
, fI , eS, eR

, eC , eI) 2 F ⇥ E |

FSfS + FRfR + FCfC + FIfI+

+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a

set of conditions similar to (3). If the behavior at the energy

storing port is given as in (4) and the dissipative port satisfies

the (linear) resistive relation

RffR +ReeR = 0
(6)

where Rf and Re are square matrices such that

(a) RfR
T
e = ReR

T
f
> 0

(b) rank
�

Rf | Re

�

= dimFR

(7)

then the port-Hamiltonian dynamics results into the follow-

ing set of DAEs:

�FSẋ+ ES

@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0

RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI

(9)

which means that the variation of internal energy is bounded

by the incoming power flows through the control and interac-

tion ports. In particular cases, it is possible to explicitly get

rid of the algebraic constraints in (8) and write the port-

Hamiltonian dynamics in input-state-output form. In this

paper, this most general formulation of port-Hamiltonian

dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series

configuration reported in Fig. 2(a) is characterized by a Dirac
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