On Projection-Based Model Reduction for the Simulation of Nonlinear Systems

Matthias Heinkenschloss

Department of Computational and Applied Mathematics Rice University, Houston, Texas heinken@rice.edu

May 20, 2015

Workshop on Model Order Reduction of Transport-dominated Phenomena TU Berlin, May 19&20, 2015

Funded in part by AFOSR and NSF

Outline

Motivation

EIM and DEIM EIM and DEIM for Finite Element Simulations EIM and DEIM for Navier-Stokes

Error Estimate

Motivation

System (typically discretization of (system of) PDE(s))

 $Ay + F(y; \theta) = Bu + b$

Parameter $\theta \in \Theta$, control $\mathbf{u} \in \mathcal{U}_{ad}$.

(Both are parameters for purpose of model reduction.)

(Deterministic) Optimal control

$$\begin{aligned} \min \, J(\mathbf{y}, \mathbf{u}) \\ \text{s.t.} \ \, \mathbf{A}\mathbf{y} + \mathbf{F}(\mathbf{y}; \theta_0) &= \mathbf{B}\mathbf{u} + \mathbf{b}, \\ \mathbf{u} \in \mathcal{U}_{ad}, \mathbf{y} \in \mathcal{Y}_{ad}. \end{aligned}$$

 Optimal control governed by PDEs with uncertain parameters (informal)

$$\begin{split} \min \ & \int_{\Theta} \rho(\theta) J(\mathbf{y}(\theta), \mathbf{u}) \ d\theta \\ \text{s.t.} \ & \mathbf{A}\mathbf{y}(\theta) + \mathbf{F}(\mathbf{y}(\theta); \theta) = \mathbf{B}\mathbf{u} + \mathbf{b}, \quad \theta \in \Theta \\ & \mathbf{u} \in \mathcal{U}_{ad}, \\ & \mathbf{y}(\theta) \in \mathcal{Y}_{ad}, \quad \theta \in \Theta. \end{split}$$

May 20, 2015

Examples

Nonlinear reaction advection diffusion

Direct field acoustic testing

Matthias Heinkenschloss

Comp. domain, region of interest D_R , 20 speakers surrounding D_R .

May 20, 2015

Reservoir management

In this talk

- Focus on simulation (solve $Ay + F(y; \theta) = b$).
- Detailed aspects of DEIM/EIM in finite element setting.
- Limits of DEIM/EIM.
- Error estimates.

Motivation

EIM and DEIM EIM and DEIM for Finite Element Simulations EIM and DEIM for Navier-Stokes

Error Estimate

Model Problem

Semilinear Advection-Diffusion-Reaction PDE

$$\begin{split} -\nu\Delta y + \beta\cdot\nabla y + f(y,\theta) &= 0, & \text{ in } \Omega, \\ y &= h, & \text{ on } \Gamma_D, \\ \nabla y \cdot n &= 0, & \text{ on } \Gamma_N. \end{split}$$

Consider specific nonlinearity

$$f(y,\theta) = Ay(C-y)e^{-E/(D-y)}$$

where C, D are known constants and $\theta = (\ln(A), E)$ are system parameters in $\Theta = [5.00, 7.25] \times [0.05, 0.15] \subset \mathbb{R}^2$.

2D

3D

Matthias Heinkenschloss

May 20, 2015

Semilinear Advection-Diffusion-Reaction PDE

$$\begin{split} -\nu\Delta y + \beta\cdot\nabla y + f(y,\theta) &= 0, & \text{ in } \Omega, \\ y &= g, & \text{ on } \Gamma_D, \\ \nabla y \cdot n &= 0, & \text{ on } \Gamma_N. \end{split}$$

Consider specific nonlinearity

$$f(y,\theta) = Ay(C-y)e^{-E/(D-y)}$$

where C, D are known constants and $\theta = (\ln(A), E)$ are system parameters in $\Theta = [5.00, 7.25] \times [0.05, 0.15] \subset \mathbb{R}^2$.

• Weak form: Find $y \in H^1(\Omega)$ with y = h on Γ_D such that

$$\int_{\Omega} \nu \nabla y \cdot \nabla v dx + \int_{\Omega} \beta \cdot \nabla y v dx + \int_{\Omega} f(y, \theta) v dx = 0$$

for all $v \in H^1(\Omega)$ with v = 0 on Γ_D .

Matthias Heinkenschloss

Finite element discretization. Approximate

$$y_h(x) = \sum_{j=1}^N \mathbf{y}_j \phi_j(x) + \sum_{j=N+1}^{N+N_D} g(x_j) \phi_j(x)$$

where y_h satisfies

$$\int_{\Omega} \nu \nabla y_h \cdot \nabla \phi_i dx + \int_{\Omega} \beta \cdot \nabla y_h \phi_i dx + \int_{\Omega} f(y_h, \theta) \phi_i dx = 0, \quad i = 1, \dots, N.$$

To simplify presentation omit stabilization and often set $g(x_j) = 0$. In practice use quadrature to evaluate integrals: $x_{\ell} \in \overline{\Omega}, \ \varpi_{\ell} \in \mathbb{R}, \ \ell = 1, \dots, n_q$, quadrature nodes and weights.

$$F_h(y_h,\phi;\theta) = \sum_{\ell=1}^{n_q} \varpi_\ell f(y_h(x_\ell),\theta)\phi(x_\ell) \left(\approx \int_\Omega f(y_h(x),\theta)\phi(x)dx\right).$$

Matrix form:

$$\mathbf{A}\mathbf{y} + \mathbf{F}(\mathbf{y};\theta) = \mathbf{b}$$

Matthias Heinkenschloss

Basic Reduced Order Model

• Generate snapshots $y_{h,i}$, i = 1, ..., n (y_i, i = 1, ..., n)

- ► Extract orthonormal basis v_{h,i}, i = 1,...,n (v_i, i = 1,...,n) from snapshots. n ≪ N.
- Approximate $\mathbf{y} = \bar{\mathbf{y}} + \mathbf{V} \widehat{\mathbf{y}}$. (To simplify notation set $\bar{\mathbf{y}} = \mathbf{0}$.)
- Reduced order model

$$\underbrace{\mathbf{V}_{n \times n}^T \mathbf{A} \mathbf{V}}_{n \times n} \widehat{\mathbf{y}} + \mathbf{V}^T \mathbf{F} (\mathbf{V} \widehat{\mathbf{y}}; \theta) = \mathbf{V}^T \mathbf{b}.$$

where $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_n) \in \mathbb{R}^{N \times n}$.

Approximation of ŷ → V^TF(Vŷ; θ) with (on-line) computational complexity independent of N.
 EIM: Barrault, Maday, Nguyen, Patera (2004), Grepl et al. (2007).
 DEIM: Chaturantabut, Sorensen (2010).

DEIM

- Generate subspace $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_m] \in \mathbb{R}^{N \times m}$ for nonlinear term. Want $\mathbf{F}(\mathbf{V}\widehat{\mathbf{y}}(\theta); \theta) \in R(\mathbf{U})$ approximately for all $\theta \in \Theta$.
- Compute approximation $\widehat{\mathbf{F}}(\mathbf{V}\widehat{\mathbf{y}};\theta) = \mathbf{Uc}(\widehat{\mathbf{y}};\theta)$ such that

 $\widehat{\mathbf{F}}_i(\mathbf{V}\widehat{\mathbf{y}};\theta) = \mathbf{F}_i(\mathbf{V}\widehat{\mathbf{y}};\theta)$ for components $i = p_1, \dots, p_m$.

(Index selection next slide)

▶ Define $\mathbf{P} = [\mathbf{e}_{p_1}, \dots, \mathbf{e}_{p_m}] \in \mathbb{R}^{N \times m}$; write interpolation condition as

$$\mathbf{P}^T \widehat{\mathbf{F}}(\mathbf{V} \widehat{\mathbf{y}}; \theta) = \mathbf{P}^T \mathbf{F}(\mathbf{V} \widehat{\mathbf{y}}; \theta).$$

DEIM approximation of nonlinearity:

$$\widehat{\mathbf{F}}(\mathbf{V}\widehat{\mathbf{y}};\theta) \stackrel{\text{\tiny def}}{=} \mathbf{U}(\mathbf{P}^T\mathbf{U})^{-1}\mathbf{P}^T\mathbf{F}(\mathbf{V}\widehat{\mathbf{y}};\theta).$$

DEIM reduced order model

$$\mathbf{V}^T \mathbf{A} \mathbf{V} \widehat{\mathbf{y}} + \underbrace{\mathbf{V}^T \mathbf{U} (\mathbf{P}^T \mathbf{U})^{-1}}_{\mathbf{P}^T} \mathbf{P}^T \mathbf{F} (\mathbf{V} \widehat{\mathbf{y}}; \theta) = \mathbf{V}^T \mathbf{b}.$$

 $n \times m$

Selection of DEIM points

Input: Linearly independent vectors $\mathbf{u}_1, \ldots, \mathbf{u}_m$. **Output**: Indices p_1, \ldots, p_m .

1.
$$[\rho, p_1] = \max\{|\mathbf{u}_1|\}$$

2. Set $\mathbf{U} = [\mathbf{u}_1]$, $\mathbf{P} = [\mathbf{e}_{p_1}]$, $\mathbf{p} = [p_1]$
3. For $i = 2, ..., m$ do
3.1 Solve $(\mathbf{P}^T \mathbf{U})\mathbf{c} = \mathbf{P}^T \mathbf{u}_i$ for \mathbf{c}
3.2 $\mathbf{r}_i = \mathbf{u}_i - \mathbf{U}\mathbf{c}$
3.3 $[\rho, p_i] = \max\{|\mathbf{r}_i|\}$
3.4 Update $\mathbf{U} = [\mathbf{U} \ \mathbf{u}_i]$, $\mathbf{P} = [\mathbf{P} \ \mathbf{e}_{p_i}]$, $\mathbf{p} = [\mathbf{p}^T \ p_i]^T$

DEIM error estimate: If $\mathbf{U} \in \mathbb{R}^{N imes m}$ has ortho-normal columns, then

$$\|\mathbf{F} - \widehat{\mathbf{F}}\|_2 \le \|(\mathbf{P}^T \mathbf{U})^{-1}\|_2 \|(\mathbf{I} - \mathbf{U}\mathbf{U}^T)\mathbf{F}\|_2$$

Why is DEIM efficient?

DEIM approximation of nonlinearity:

$$\widehat{\mathbf{F}}(\mathbf{V}\widehat{\mathbf{y}};\theta) \stackrel{\text{\tiny def}}{=} \mathbf{U}(\mathbf{P}^T\mathbf{U})^{-1}\mathbf{P}^T\mathbf{F}(\mathbf{V}\widehat{\mathbf{y}};\theta).$$

► Need to evaluate m components F_{p1},..., F_{pm}. If they depend on k ≈ n components of Vŷ, then we only need to compute product of k × n submatrix of V times ŷ.

Why is DEIM efficient?

DEIM approximation of nonlinearity:

$$\widehat{\mathbf{F}}(\mathbf{V}\widehat{\mathbf{y}};\theta) \stackrel{\text{\tiny def}}{=} \mathbf{U}(\mathbf{P}^T\mathbf{U})^{-1}\mathbf{P}^T\mathbf{F}(\mathbf{V}\widehat{\mathbf{y}};\theta).$$

- ▶ Need to evaluate *m* components $\mathbf{F}_{p_1}, \ldots, \mathbf{F}_{p_m}$. If they depend on $k \approx n$ components of $\mathbf{V}\widehat{\mathbf{y}}$, then we only need to compute product of $k \times n$ submatrix of **V** times $\widehat{\mathbf{y}}$.
- (Continuous nodal) FEM:

$$\mathbf{F}_{i}(\mathbf{y};\theta) = F_{h}(y_{h},\phi_{i};\theta) = \int_{\Omega} f\Big(\sum_{j=1}^{N} \mathbf{y}_{j}\phi_{j}(x),\theta\Big)\phi_{i}(x)dx$$

3.7

Why is DEIM efficient?

DEIM approximation of nonlinearity:

$$\widehat{\mathbf{F}}(\mathbf{V}\widehat{\mathbf{y}};\theta) \stackrel{\text{\tiny def}}{=} \mathbf{U}(\mathbf{P}^T\mathbf{U})^{-1}\mathbf{P}^T\mathbf{F}(\mathbf{V}\widehat{\mathbf{y}};\theta).$$

- ▶ Need to evaluate *m* components $\mathbf{F}_{p_1}, \ldots, \mathbf{F}_{p_m}$. If they depend on $k \approx n$ components of $\mathbf{V}\hat{\mathbf{y}}$, then we only need to compute product of $k \times n$ submatrix of **V** times $\hat{\mathbf{y}}$.
- ► (Continuous nodal) FEM:

$$\mathbf{F}_{i}(\mathbf{y};\theta) = F_{h}(y_{h},\phi_{i};\theta) = \int_{\Omega} f\Big(\sum_{j=1}^{N} \mathbf{y}_{j}\phi_{j}(x),\theta\Big)\phi_{i}(x)dx$$

Matthias Heinkenschloss

Alternative:

$$\mathbf{F}_{i}(\mathbf{y};\theta) = \sum_{e=1}^{n_{e}} \underbrace{\int_{\Omega_{e}} f\left(\sum_{j=1}^{N} \mathbf{y}_{j} \phi_{j}(x); \theta\right) \phi_{i}(x) dx}_{\overset{\text{def}}{=} \mathbf{F}_{i}^{e}(\mathbf{y};\theta)}$$

Assemble (add element information)

$$\mathbf{F}(\mathbf{y};\theta) = \mathbf{Q} \; \mathbf{F}^e(\mathbf{y};\theta)$$

where $\mathbf{Q} \in \mathbb{R}^{N \times (n_e n_p)}$ ($n_e \ \#$ elements, $n_p \ \#$ DOF per element).

Reduced order model applied to unassembled nonlinearity:

Basic model

$$\mathbf{V}^{T}\mathbf{A}(\mathbf{V}\widehat{\mathbf{y}}) + \mathbf{V}^{T}\mathbf{Q}\mathbf{F}^{e}(\mathbf{V}\widehat{\mathbf{y}};\theta) = \mathbf{V}^{T}\mathbf{b}.$$

DEIM approximation of unassembled nonlinearity

$$\widehat{\mathbf{F}}^{e}(\mathbf{y};\theta) = \mathbf{U}^{e}((\mathbf{P}^{e})^{T}(\mathbf{U}^{e}))^{-1}(\mathbf{P}^{e})^{T}\mathbf{F}^{e}(\mathbf{y};\theta).$$

Final

$$\mathbf{V}^{T}\mathbf{A}\mathbf{V}\widehat{\mathbf{y}} + \left(\mathbf{V}^{T}\mathbf{Q}\mathbf{U}^{e}\left((\mathbf{P}^{e})^{T}(\mathbf{U}^{e})\right)^{-1}\right)(\mathbf{P}^{e})^{T}\mathbf{F}^{e}(\mathbf{V}\widehat{\mathbf{y}};\theta) = \mathbf{V}^{T}\mathbf{b}.$$

Matthias Heinkenschloss

May 20, 2015

Connectivity Assembled

Apply to 3D Diffusion-Advection-Reaction PDE

Piecewise linear FEM

Thetrahedra that need to be evaluated

Polynomial degree		p =	p = 2		
Mesh number	1	2	3	1	2
# tetrahedra # nodes N	6,144 1,296	49,152 9,248	165,888 30,000	6,144 9,248	49,152 69,696
$\# \ POD$ basis vectors n	19	18	19	18	19
# DEIM points m # nodes adjacent DEIM pts.	21 183	21 271	22 320	21 445	22 559
# DEIM points m^e # nodes adjacent DEIM pts.	21 67	21 80	22 88	21 193	22 220

- Works with nonlinearity $f(y, \theta)$
- Variational form

$$\begin{aligned} \mathbf{F}(\mathbf{y};\theta)_i = & F_h(y_h,\phi;\theta) \\ = & \sum_{\ell=1}^{n_q} \varpi_\ell f(y_h(x_\ell),\theta) \phi_i(x_\ell) \left(\approx \int_{\Omega} f(y_h(x),\theta) \phi_i(x) dx\right) \end{aligned}$$

Define

$$\Phi = \begin{pmatrix} \phi_1(\xi_1) & \dots & \phi_1(\xi_{n_q}) \\ \vdots & \vdots \\ \phi_N(\xi_1) & \dots & \phi_N(\xi_{n_q}) \end{pmatrix} \in \mathbb{R}^{N \times n_q},$$
$$\mathbf{W} = \operatorname{diag}(\varpi_1, \dots, \varpi_{n_q}),$$
$$y_h = (y_h(x_1), \dots, y_h(x_{n_q}))^T,$$
$$\mathbf{f}(y_h; \theta) = (f(y_h(x_1), \theta), \dots, f(y_h(x_{n_q}), \theta))^T$$

FEM approx. at all quadrature points: y_h = Φ^Ty. Matrix form of nonlinearity F(y; θ) = Φ^TWf(y_h; θ).

Matthias Heinkenschloss

EIM

- Generate subspace $\widetilde{\mathbf{U}} = [\widetilde{\mathbf{u}}_1, \dots, \widetilde{\mathbf{u}}_m] \in \mathbb{R}^{N \times n_q}$ for nonlinear term. Want $\mathbf{f}(y_h(\theta); \theta) \in R(\widetilde{\mathbf{U}})$ approximately for all $\theta \in \Theta$.
- Compute approximation $\widetilde{\mathbf{f}}(y_h(\theta); \theta) = \widetilde{\mathbf{U}}\mathbf{c}(y_h(\theta); \theta)$ such that

 $\widetilde{\mathbf{f}}(y_h(x_i); \theta) = \mathbf{f}(y_h(x_i); \theta)$ for components/quad. points $i = \widetilde{p}_1, \dots, \widetilde{p}_m$.

• Define $\widetilde{\mathbf{P}} = [\mathbf{e}_{\widetilde{p}_1}, \dots, \mathbf{e}_{\widetilde{p}_m}] \in \mathbb{R}^{N \times n_q}$; write interpolation condition as $\widetilde{\mathbf{P}}^T \widetilde{\mathbf{f}}(u_h; \theta) = \widetilde{\mathbf{P}}^T \mathbf{f}(u_h; \theta).$

EIM approximation of nonlinearity:

$$\widetilde{\mathbf{f}}(\widehat{y}_h;\theta) \stackrel{\text{\tiny def}}{=} \widetilde{\mathbf{U}}(\widetilde{\mathbf{P}}^T \widetilde{\mathbf{U}})^{-1} \widetilde{\mathbf{P}}^T \mathbf{f}(\mathbf{V} \widehat{y}_h;\theta).$$

- FEM approx. at all quadrature points: y_h = Φ^Ty, ŷ_h = Φ^TVŷ. At EIM quad. points i = p̃₁,..., p̃_m: QΦ^TVŷ.
- EIM reduced order model

$$\mathbf{V}^T \mathbf{A} \mathbf{V} \widehat{\mathbf{y}} + \underbrace{\mathbf{V}^T \Phi^T \mathbf{W} \widetilde{\mathbf{U}} (\widetilde{\mathbf{P}}^T \widetilde{\mathbf{U}})^{-1})^{-1}}_{n \times m} \widetilde{\mathbf{P}}^T \mathbf{f} (\Phi^T \mathbf{V} \widehat{\mathbf{y}}; \theta) = \mathbf{V}^T \mathbf{b}.$$

Evaluations • for EIM (quadrature) point •

Apply to 2D Diffusion-Advection-Reaction PDE

piecewise linear FEM - DEIM

piecewise linear FEM - DEIM unassembled nonlinearity

p = 1			p=2		
2	3	4	2	3	4
3,213 1,768	12,976 6,813	53,120 27,215	3,213 6,751	12,976 26,604	53,120 107,552
16	17	17	17	17	17
19 130	20 160	20 162	20 168	20 177	20 180
20 56 20	20 60 20	20 60 20	20 114 20	20 120 20	20 120 20
	2 3,213 1,768 16 19 130 20 56 20	p = 1 $2 3$ $3,213 12,976$ $1,768 6,813$ $16 17$ $19 20$ $130 160$ $20 20$ $56 60$ $20 20$	p = 1 p = 1 2 3 4 3,213 12,976 53,120 1,768 6,813 27,215 16 17 17 19 20 20 130 160 162 20 20 20 56 60 60 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 56 60 60 20 20 20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

DEIM for Navier-Stokes

$$\begin{split} \frac{\partial}{\partial t} v(x,t) &- \nu \Delta v(x,t) \\ &+ (v(x,t) \cdot \nabla) v(x,t) + \nabla p(x,t) = 0, & \text{ in } \Omega \times [0,T], \\ & \nabla \cdot v(x,t) = 0, & \text{ in } \Omega \times [0,T], \\ & v(x,t) = g(x,t), & \text{ on } \Gamma_{in} \times [0,T], \\ & v(x,t) = 0, & \text{ on } \Gamma_D \times [0,T], \\ & (\nabla v(x,t) - p(x,t)I)n(x) = 0, & \text{ on } \Gamma_{out} \times [0,T]. \end{split}$$

Matthias Heinkenschloss

May 20, 2015

▶ Taylor-Hood P2-P1 finite elements leads to

$$\begin{split} \mathbf{M} \frac{d}{dt} \mathbf{v}(t) + \mathbf{A} \mathbf{v}(t) + \mathbf{N}(\mathbf{v}(t)) \mathbf{v}(t) + \mathbf{B}^T \mathbf{p}(t) &= \mathbf{f}(t), \\ \mathbf{B} \mathbf{v}(t) &= \mathbf{g}(t), \\ \mathbf{v}(0) &= \mathbf{0}. \end{split}$$

• Treat $\mathbf{v}(t) \mapsto \mathbf{N}(\mathbf{v}(t))\mathbf{v}(t)$ as general nonlinear term with DEIM

Matthias Heinkenschloss

Have that

$$\begin{split} \int_{\Omega} (v(x) \cdot \nabla) w(x) \cdot w(x) dx &= 0 \quad \text{for all } v \in [H^1(\Omega)]^2, w \in [H^1_0(\Omega)]^2 \\ & \text{with } \nabla \cdot v(x) = 0 \text{ in } \Omega. \end{split}$$

▶ For Navier-Stokes with Dirichlet BCs everywhere,

(Dropped several constants.)

• If discretely,
$$\mathbf{v}(t)^T \mathbf{N}(\mathbf{v}(t)) \mathbf{v}(t) = 0$$
,

$$\|\mathbf{v}(T)\|^{2} + \int_{0}^{T} \mathbf{v}(t)^{T} \mathbf{A} \mathbf{v}(t) dt \le \|\mathbf{v}(0)\|^{2} + \int_{0}^{T} \int_{0}^{T} \|\mathbf{f}(t)\|^{2} dt$$

Have that

$$\begin{split} \int_{\Omega} (v(x) \cdot \nabla) w(x) \cdot w(x) dx &= 0 \quad \text{for all } v \in [H^1(\Omega)]^2, w \in [H^1_0(\Omega)]^2 \\ & \text{with } \nabla \cdot v(x) = 0 \text{ in } \Omega. \end{split}$$

▶ For Navier-Stokes with Dirichlet BCs everywhere,

$$\int_{\Omega} v^2(x,T) dx + \nu \int_0^T \int_{\Omega} \|\nabla v(x,t)\|^2 dxt dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt dx dt \leq \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt dx dt dx dt = \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt dx dt dx dt = \int_{\Omega} v^2(x,0) dx + \int_0^T \int_{\Omega} \|f(x,t)\|^2 dx dt d$$

(Dropped several constants.)

• If discretely,
$$\mathbf{v}(t)^T \mathbf{N}(\mathbf{v}(t)) \mathbf{v}(t) = 0$$
,

$$\|\mathbf{v}(T)\|^{2} + \int_{0}^{T} \mathbf{v}(t)^{T} \mathbf{A} \mathbf{v}(t) dt \leq \|\mathbf{v}(0)\|^{2} + \int_{0}^{T} \int_{0}^{T} \|\mathbf{f}(t)\|^{2} dt$$

▶ If
$$\mathbf{v}(t)^T \mathbf{N}(\mathbf{v}(t)) \mathbf{v}(t) = 0$$
 for all snapshots, then $(\mathbf{V}\widehat{\mathbf{v}}(t))^T \mathbf{N}(\mathbf{V}\widehat{\mathbf{v}}(t)) \mathbf{V}\widehat{\mathbf{v}}(t) = 0$ for POD.

Have that

$$\begin{split} \int_{\Omega} (v(x) \cdot \nabla) w(x) \cdot w(x) dx &= 0 \quad \text{for all } v \in [H^1(\Omega)]^2, w \in [H^1_0(\Omega)]^2 \\ & \text{with } \nabla \cdot v(x) = 0 \text{ in } \Omega. \end{split}$$

For Navier-Stokes with Dirichlet BCs everywhere,

(Dropped several constants.)

• If discretely,
$$\mathbf{v}(t)^T \mathbf{N}(\mathbf{v}(t)) \mathbf{v}(t) = 0$$
,

$$\|\mathbf{v}(T)\|^{2} + \int_{0}^{T} \mathbf{v}(t)^{T} \mathbf{A} \mathbf{v}(t) dt \le \|\mathbf{v}(0)\|^{2} + \int_{0}^{T} \int_{0}^{T} \|\mathbf{f}(t)\|^{2} dt$$

► If $\mathbf{v}(t)^T \mathbf{N}(\mathbf{v}(t)) \mathbf{v}(t) = 0$ for all snapshots, then $(\mathbf{V} \widehat{\mathbf{v}}(t))^T \mathbf{N}(\mathbf{V} \widehat{\mathbf{v}}(t)) \mathbf{V} \widehat{\mathbf{v}}(t) = 0$ for POD.

DEIM approximation of nonlinearity:

$$\mathbf{N}(\mathbf{v}(t))\mathbf{v}(t) \approx \mathbf{U}(\mathbf{P}^T\mathbf{U})^{-1}\mathbf{P}^T\Big(\mathbf{N}(\mathbf{V}\widehat{\mathbf{v}}(t))\mathbf{V}\widehat{\mathbf{v}}(t)\Big).$$

In general

$$\widehat{\mathbf{v}}(t)\mathbf{V}^T\mathbf{U}(\mathbf{P}^T\mathbf{U})^{-1}\mathbf{P}^T\Big(\mathbf{N}(\mathbf{V}\widehat{\mathbf{v}}(t))\mathbf{V}\widehat{\mathbf{v}}(t)\Big)\neq 0.$$

Matthias Heinkenschloss

May 20, 2015

Outline

Motivation

EIM and DEIM EIM and DEIM for Finite Element Simulations EIM and DEIM for Navier-Stokes

Error Estimate

Error Estimate

- ► Original problem G(y, θ) = Ay + F(y, θ) b = 0. Solution y*.
- POD-DEIM reduced order model

$$\begin{split} & \mathbf{V}_n^T \mathbf{G}(\overline{\mathbf{y}} + \mathbf{V}_n \widehat{\mathbf{y}}, \theta) \\ = & \mathbf{V}_n^T \mathbf{A} \mathbf{V}_n \widehat{\mathbf{y}} + \mathbf{V}_n^T \mathbf{U}_m (\mathbf{P}^T \mathbf{U}_m)^{-1} \mathbf{P}^T \mathbf{F}(\overline{\mathbf{y}} + \mathbf{V}_n \widehat{\mathbf{y}}, \theta) \\ & + \mathbf{V}_n^T \mathbf{A} \overline{\mathbf{y}} + \mathbf{V}_n^T \mathbf{b} = \mathbf{0}. \end{split}$$

Solution $\widehat{\mathbf{y}}^*.$ Will drop mean $\overline{\mathbf{y}}$ to simplify notation.

• Want estimate $\mathbf{y}^* - \mathbf{V}_n \widehat{\mathbf{y}}^*$; select number of bases $\mathbf{V}_n, \mathbf{U}_m$.

Newton's Method

Newton's method for the original problem

$$D_{y}\mathbf{G}(\mathbf{y}^{k},\theta)\delta\mathbf{y}^{k} = -\mathbf{G}(\mathbf{y}^{k},\theta),$$
$$\mathbf{y}^{k+1} = \mathbf{y}^{k} + \delta\mathbf{y}^{k}.$$

Newton's method for the POD-DEIM reduced order model

$$D_{y}\mathbf{V}_{n}^{T}\mathbf{F}(\mathbf{V}_{n}\widehat{\mathbf{y}}^{k},\theta)\mathbf{V}_{n}\delta\widehat{\mathbf{y}} = -\mathbf{V}_{n}^{T}\mathbf{F}(\mathbf{V}_{n}\widehat{\mathbf{y}}^{k},\theta),$$
$$\widehat{\mathbf{y}}^{k+1} = \widehat{\mathbf{y}}^{k} + \delta\widehat{\mathbf{y}}^{k}.$$

Newton-Kantorowich type estimates

- ▶ $G(y, \theta)$ cont. diff'bel ; $D_y G(y, \theta)$ be invertible for all y, $\theta \in \Theta$.
- Affine covariance Lipschitz condition

Newton's method converges to \mathbf{y}^* with quadratic convergence rate

$$\|\mathbf{y}^{k+1} - \mathbf{y}^k\| \le \frac{\omega}{2} \|\mathbf{y}^k - \mathbf{y}^{k-1}\|^2$$

and

$$\left\|\mathbf{y}^* - \mathbf{y}^0\right\| \le \widehat{r}_0 \stackrel{ ext{def}}{=} rac{\left\|\delta\mathbf{y}^0
ight\|}{1 - rac{1}{2}h_0}.$$

Can estimate (heuristics)

$$h_0 \approx 2\Theta_0$$
 with $\Theta_0 = \|\delta \mathbf{y}^1\|_2 / \|\delta \mathbf{y}^0\|_2$.

Matthias Heinkenschloss

Error Estimates

• Apply previous theorem to full problem with star value $\mathbf{y}^0 = \mathbf{V}_n \widehat{\mathbf{y}}^*$:

$$\|\mathbf{y}^* - \mathbf{V}_n \widehat{\mathbf{y}}^*\| \le r_0 \stackrel{\text{def}}{=} \frac{\|\delta \mathbf{y}^0\|}{1 - \frac{1}{2}h_0}$$

Can estimate (heuristics)

$$h_0 \approx 2\Theta_0$$
 with $\Theta_0 = \|\delta \mathbf{y}^1\|_2 / \|\delta \mathbf{y}^0\|_2$.

• Apply previous theorem to reduced order problem with star value $\widehat{\mathbf{y}}^0 = \mathbf{V}_n^T \mathbf{y}^*$: $\left\| \widehat{\mathbf{y}}^* - \mathbf{V}_n^T \mathbf{y}^* \right\| \le \widehat{r}_0 \stackrel{\text{def}}{=} \frac{\|\delta \widehat{\mathbf{y}}^0\|}{1 - \frac{1}{\alpha} \widehat{h}_0}.$

Can estimate (heuristics)

$$\widehat{h}_0 pprox 2\widehat{\Theta}_0 \quad ext{ with } \widehat{\Theta}_0 = \|\delta \widehat{\mathbf{y}}^1\|_2 / \|\delta \widehat{\mathbf{y}}^0\|_2.$$

Matthias Heinkenschloss

Heuristic Algorithm

INPUT: Newton tolerance: τ_{new} , max. Newton iterations: k_{max} , tolerance: τ_{est} , initial size of basis: n, max. size basis: $n_{max} > n$, initial Newton iterate: $\hat{\mathbf{y}}^0$ OUTPUT: r_0 , \mathbf{V}_n

while $n \leq n_{max}$

- \blacktriangleright Generate reduced order model \mathbf{V}_n , \mathbf{U}_m
- Apply Newton's method to compute ŷ^{*}.
- Estimate error (full estimator)

• Set
$$\mathbf{y}^0 = \overline{\mathbf{y}} + \mathbf{V}_n \widehat{\mathbf{y}}^*$$

• Compte
$$\Theta_0 = \frac{\|\delta \mathbf{y}^1\|_2}{\|\delta \mathbf{y}^0\|_2}$$
, $r_0 = \frac{\|\delta \mathbf{y}^0\|_2}{1-\Theta_0}$

- If $r_0 \leq \tau_{est}$, STOP (outer loop)
- else if $n+1 > n_{n_{max}}$, update basis $\mathbf{V}_{n_{max}}$.
- else set n = n + 1 goto 'while' loop
- Compute the new iterate $\mathbf{y}^2 = \mathbf{y}^1 + \delta \mathbf{y}^1$.

$$\widehat{\mathbf{y}}^0 = \mathbf{V}_n^T \mathbf{y}^2.$$

Estimate error (reduced estimator)
 Use reduced order problem with V_{nmax} instead of full order problem.

May 20, 2015

Application to 3D Reaction diffusion

Grid 1		Grid 2		Grid 3	
n	m	n	m	n	m
6	8	6	8	6	8
9	12	9	12	9	13
13	15	13	15	13	17
17	20	17	20	18	21
-	-	-	-	21	24

basis vectors n and # of DEIM points m for three different grids.

Grid 1		Gri	d 2	Grid 3		
estimate	actual (full)	estimate	actual (full)	estimate	actual (full)	
3.53×10^{-2}	3.46×10^{-2}	1.54×10^{-2}	1.54×10^{-2}	3.12×10^{-1}	3.02×10^{-1}	
2.22×10^{-3}	2.22×10^{-3}	5.23×10^{-3}	5.23×10^{-3}	1.66×10^{-2}	1.66×10^{-2}	
5.27×10^{-4}	5.27×10^{-4}	2.29×10^{-3}	2.28×10^{-3}	8.95×10^{-3}	8.94×10^{-3}	
-	-	2.77×10^{-4}	2.77×10^{-4}	1.72×10^{-3}	1.71×10^{-3}	
-	-	-	-	9.47×10^{-4}	9.47×10^{-4}	

Error estimator for three different grids using $\tau_{est} = 5 \times 10^{-4}$.

Conclusions:

- Comparison of DEIM and EIM for FEM computations
- ► Capture properties of full order problem in reduced order model.
- Newton-based error estimates