May 20, 2015

LQG-Balanced Truncation Low-Order Controller for Stabilization of Laminar Flows

Peter Benner and Jan Heiland

Workshop Model Order Reduction for Transport Dominated Phenomena - Berlin

Max Planck Institute Magdeburg

Outline

Introduction

- Problem Statement
- LQGBT Based Controller
- 2 Constrained Riccati Equations

3 Numerical Example

- LQGBT Reduced Controller for Navier-Stokes Equations
- Boundary Control of the Cylinder Wake

Problem Statement

- Cylinder wake at moderate Reynolds numbers
- The steady state is a solution, but unstable
- Goal: Stabilizing feedback controller that works in experiments
- Thus, the simulation needs to cope with:
 - → limited measurements
 - → short evaluation times
 - → external perturbations
 - → actuation at the boundary

Model Based and Reduced Controller

We propose a controller, that is a simultaneous application of

- a linearization about the steady state
 - ightarrow to directly attack the deviations
- a Kalman filter
 - → estimate the state using a few measurements
- an LQG regulator
 - → stabilize the linearized system
- and Balanced Truncation
 - → reduce the linearized and stable system

Expectations and Limitations

The proposed controller is based on a linearized model

ightarrow we expect a good performance for small deviations

and is designed to work for

- \checkmark limited state information
- ✓ fast and unstable dynamics
- ✓ high dimensionality
- ✓ boundary control.

Related Work

Jonckheere and Silverman. A new set of invariants for linear systems – application to reduced order compensator design. *IEEE Trans. Automat. Control*, 28:953–964, 1983.

Raymond. Feedback boundary stabilization of the two-dimensional Navier-Stokes equations *SIAM J. Cont. Opt. 45:790–828, 2006.*

Heinkenschloss, Sorensen, Sun. Balanced truncation model reduction for a class of descriptor systems with applications to the Oseen equations.

SIAM J. Sci. Comput., 30:1038–1063, 2008.

Bänsch, Benner, Saak, Weichelt. Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flow. Preprint SPP1253-154, DFG-SPP1253, 2013.

Illustration Example Stabilization with a Regulator

Consider the minimal but unstable linear time-invariant system

$$\dot{x} = Ax + Bu,$$

$$y = Cx.$$

The positive definite solution X_c to the control Riccati equation

$$A^T X_c + X_c A - X_c B B^T X_c + C C^T = 0$$

defines a stabilizing feedback, i.e.

$$\dot{x} = (A - BB^T X_c) x,$$

is asymptotically stable.

Illustration Example Balanced Truncation of the Stabilized System

For stable linear time-invariant systems like,

$$\dot{x} = (A - BB^T X_c) x, \quad y = C x,$$

Balanced Truncation is the first candidate for model reduction.

Compute the controllability and the observability Gramians G_c and G_o, e.g. via Lyapunov equations

$$(A - BB^T X_c)^T G_c + G_c (A - BB^T X_c) + C^T C = 0$$

② From G_c and G_o one can derive a state transformation such that the transformed Gramians fulfill

$$G_c = G_o = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix}, \quad \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0$$

③ Truncate all states associated with $\sigma_i < \sigma_{tol}$.

Illustration Example Important Observations

- For some parameters: $G_c = X_c$ and $G_o = X_o$
 - → Stabilization and truncation in one step
- There is an a-priori error bound for the truncation $\Rightarrow \|H - H_{to1}\|_{\mathcal{H}^{\infty}} \leq 2 \sum_{\sigma_i < \sigma_{to1}} \sigma_i$
- For constrained systems (like the Navier-Stokes equations) similar procedures work
 - → see below
- An observer can be reduced simultaneously
 - → application for output feedback

Ø

Computational Challenges

The major effort lies in the computation of X_o and X_c , because of

- high-dimensionality: $X_c, X_o \in \mathbb{R}^{n_v, n_v}$ $\rightarrow n_v$ is the dimension of the state v(t)
- (a) nonlinearity of the Riccati equation \rightarrow a good initial guess for a Newton iteration is needed
- I differential algebraic structure of the state equations $\rightarrow X_c, X_o \text{ need to obey divergence constraints}$

Constrained Riccati Equations

with A, M, $\Pi \in \mathbb{R}^{n_x, n_x}$, $J \in \mathbb{R}^{n_v, n_p}$, $B \in \mathbb{R}^{n_x, n_u}$, and $C \in \mathbb{R}^{n_y, n_x}$.

Constrained Riccati Equations For Flow Equations

$$M\dot{v} - Av + J^{T}p = Bu$$
$$Jv = 0$$
$$y = Cv$$

$$M\dot{v} - \Pi Av = \Pi Bu$$
$$y = Cv$$

- Projection onto the manifold of the constraints
- gives an ODE
- equivalent in theory
- but problematic in practice
 - numerically infeasible
 - systematic errors may be introduced
 - structure is not preserved

Constrained Riccati Equations

for constrained dynamics

Derivation of the constrained Riccati equations

- directly via optimality conditions,
 - $\rightarrow~[{\rm Kunkel},~{\rm Mehrmann}~'08]$, [Kurina, März '07], [Heiland '14]
- reformulation of the ODE related system,

 $\rightarrow\,$ see below, [Benner, Heiland '14]

- or reformulation of the numerical schemes
 - \rightarrow [Heinkenschloss, Sorensen, Sun '08], [Gugercin, Stykel, Wyatt '13].

Constrained Riccati Equations

Projected Riccati Equation

To define, e.g., the *Linear-Quadratic Regulator*, one needs a solution to the associated *control* Riccati equation of the form

$\Pi A^{T} \Pi^{T} X M + M^{T} X \Pi A \Pi^{T} - M^{T} X \Pi B B^{T} \Pi^{T} X M + \Pi C^{T} C \Pi^{T} = 0$

for $X \in \mathbb{R}^{n_v, n_v}$.

Equivalence to Projected Riccati Equations

Lemma

Let M be invertible, J have full rank, and $\Pi := I - J^{T} (JM^{-1}J^{T})^{-1}JM^{-1}.$ The matrix $X \in \mathbb{R}^{n_{v},n_{v}}$ solves, $\Pi A^{T}\Pi^{T}XM + M^{T}X\Pi A\Pi^{T} - M^{T}X\Pi BB^{T}\Pi^{T}XM + \Pi C^{T}C\Pi^{T} = 0$ if it solves $A^{T}XM + M^{T}XA - M^{T}XBB^{T}XM + MYJ^{T} + JY^{T}M^{T} + CC^{T} = 0,$

$$A^{T}XM + M^{T}XA - M^{T}XBB^{T}XM +$$

 $MYJ^{T} + JY^{T}M^{T} + CC^{T} = 0,$
 $JXM^{T} = 0,$
 $MXJ^{T} = 0,$

for a suitable $Y \in \mathbb{R}^{n_v, n_p}$.

Low-Rank Approximations

How to obtain approximations to a solution of

$$\begin{split} A^T X M + M^T X A - M^T X B B^T X M + \\ M Y J^T + J Y^T M^T + C C^T &= 0, \\ J X M^T &= 0. \end{split}$$

- Factorize the solution $X = ZZ^H$,
- apply a low-rank Newton-ADI iteration [BENNER, LI, PENZL '08] to the constrained Riccati equation [HEILAND '14], and
- obtain skinny factors Z_{n_k} , that approximate $X \approx Z_{n_k} Z_{n_k}^H$.

Constrained Riccati Equations

Applications

Same idea and result for

- Lyapunov equations,
 - e.g. for Balanced Truncation,
- Filter Riccati equations,
 - e.g. for observer design or LQG-Balanced Truncation,
- and Differential Riccati equations,
 - e.g. for finite time-horizon control.

Numerical Example

We consider spatially discretized *Navier-Stokes* equations with boundary control u and observation y = Cv

$$M\dot{v} = -N(v)v - \frac{1}{Re}Lv + J^{T}p - Bu + f,$$

$$0 = Jv - g,$$

$$v(0) = \alpha,$$

$$y = Cv,$$

where

- $\bullet \ \alpha$ is the steady-state solution and
- the input operator *B* models Dirichlet conditions via approximating Robin conditions

Definition of the Input Operator

- Control through injection and suction at outlets Γ_{c_1} , Γ_{c_2} located at the cylinder periphery at $\pm \pi/3$.
- Prescribe Dirichlet conditions for the velocity

$$v = g_1(x)u_1(t), \quad v = g_2(x)u_2(t)$$

at Γ_{c_1} and Γ_{c_2} , where $g_{1/2}$ are the shape functions and $u_{1/2}$ are the magnitudes of the controls.

• Use a small γ to relax the Dirichlet conditions to Robin conditions at $\Gamma_{1/2}:$

$$v pprox g_{1/2}u_{1/2} + \gamma (rac{1}{Re}rac{\partial v}{\partial n} - pn)$$

- that are *naturally* included in Finite Element discretizations.
- For other approaches see [BENNER, HEILAND '15].

Ø

Defining the Controller

$$\begin{aligned} M\dot{v} &= A_{\alpha}v + J^{T}p - Bu + f, \quad v(0) = \alpha, \\ 0 &= Jv, \\ y &= Cv. \end{aligned}$$

Compute X_c and X_o which solve the associated *control* and *filter Riccati equations* to define the state estimate x̂ and the regulator u as

$$\begin{split} M\dot{\hat{x}} &= \hat{A_{\alpha}}\hat{x} + X_oMC^{T}(y - C\alpha), \\ u &= -B^{T}MX_c\hat{x}, \end{split}$$

with $\hat{x}(0) = 0$ and $\hat{A_{\alpha}}$ denoting the observer dynamics.

Salance and truncate X_o and X_c to define a reduced observer

Reduced Closed Loop System

After the truncation, we arrive at

$$\begin{split} M\dot{v} &= -N(v)v - \frac{1}{Re}Lv + J^{T}p - BB_{k}^{T}X_{ck}\hat{x}_{k} + f, \\ 0 &= Jv - g, \\ v(0) &= \alpha, \\ y &= Cv, \\ \dot{\hat{x}}_{k} &= (A_{\alpha k} - X_{ok}C_{k}^{T}C_{k} - B_{k}B_{k}^{T}X_{ck})\hat{x}_{k} + X_{ok}C_{k}^{T}(y - y_{\alpha}), \\ \hat{x}_{k}(0) &= 0, \end{split}$$

where, in particular, $A_{\alpha k}$, B_k , C_k , X_{ck} , X_{ok} define the reduced system for $\hat{x}_k(t) \in \mathbb{R}^{n_k}$ with $n_k \ll n_v$ (dimension of v(t)).

.

Simulation Setup

- 2D cylinder wake
- Navier-Stokes
 Equations
- *Re* = 100
- *Taylor-Hood* finite elements
- 30000 velocity nodes

- Boundary control at 2 outlets
- distributed observation with 6 degrees of freedom
- LQGBT-reduced order observer and controller of state dimension $n_k = 13$
- Target: stabilization of the steady-state solution

Simulation Results

Figure : Measured signal y versus time $t \in [0, 12]$ of the perturbed closed loop system with a reduced controller of dimension $n_k = 13$ (left), compared to the response of the uncontrolled system (right). Blue corresponds to the x-component of the velocity and red to y-component. Below, a snapshot of the magnitude of the velocity solutions at t = 12.

Summary and Conclusion

- The general LQGBT approach has been applied to controller design Navier-Stokes equations
- The DAE structure is accounted for using constraint Riccati equations
- The resulting controller is of very small dimension and works for limited state information
- The numerical approximation of the controller requires advanced methods for solving large-scale Riccati equations
- Successful application in boundary control of the cylinder wake

Thank you for your attention!

More Literature

- P. Benner and J. Heiland, Lgg-balanced truncation low-order controller for stabilization of laminar flows, in Active Flow and Combustion Control 2014, pp. 364-279, Springer, 2015, available as preprint MPIMD/14-04 from http://www.mpi-magdeburg.mpg.de/preprints/.
- D. Mustafa and K. Glover, Controller design by \mathcal{H}_{∞} -balanced truncation, IEEE Trans. Automat. Control 36 (1991), no. 6, 668-682.

🦻 J. Heiland, lqgbt-oseen – Python module for LQG-BT of linearized flow equations, v1.0, https://github.com/highlando/lqgbt-oseen, 2014.

Literature I

P. Benner and J. Heiland.

Time-dependent dirichlet conditions in finite element discretizations. Max Planck Institute Magdeburg Preprint MPIMD/15-03, 2015. Available from http://www.mpi-magdeburg.mpg.de/preprints/.

P. Benner, J.-R. Li, and T. Penzl.

Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems.

Numer. Linear Algebra Appl., 15(9):755–777, 2008.

S. Gugercin, T. Stykel, and S. Wyatt.

Model reduction of descriptor systems by interpolatory projection methods.

SIAM J. Sci. Comput., 35(5):B1010-B1033, 2013.

Literature II

J. Heiland.

Decoupling and optimization of differential-algebraic equations with application in flow control.

PhD thesis, TU Berlin, 2014.

http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/ docId/5243.

M. Heinkenschloss, D. C. Sorensen, and K. Sun.

Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations.

SIAM J. Sci. Comput., 30(2):1038–1063, 2008.

P. Kunkel and V. Mehrmann.

Optimal control for unstructured nonlinear differential-algebraic equations of arbitrary index.

Math. Control Signals Syst., 20(3):227-269, 2008.

Literature III

G. A. Kurina and R. März.

Feedback solutions of optimal control problems with DAE constraints. SIAM J. Cont. Optim., 46(4):1277–1298, 2007.