Interpolatory Model Reduction for Flow Control

Serkan Gugercin

Department of Mathematics, Virginia Tech Interdisciplinary Center for Applied Mathematics, Virginia Tech

Workshop on Model Order Reduction for Transport-dominated Phenomena,

Berlin, Germany, 19-20 May 2015

Collaborators

- Interpolatory Model Reduction for DAEs
 - Tatjana Stykel, Universität Augsburg
 - Sarah Wyatt, Indian River State College
- Interpolatory Model Reduction for flow Control
 - Jeff A. Borggaard, Virginia Tech.
 - Alan Lattimer, Virginia Tech.

Outline

- Flow Control Problem: Wake Stabilization by Cylinder Rotation
 - Methodology and the LQR Problem
 - Discretization and Linearization
- Model Reduction Problem For DAEs
 - Model Reduction by Interpolation
 - Interpolation for Oseen Equations
 - Numerical Results
- Nonlinear Models
 - Bilinear Systems
 - Quadratic-in-state Systems
- Conclusions and Future Work

Outline Flow Control Problem

Wake Stabilization by Cylinder Rotation

Figure : Steady-State Velocity Components at $Re_d = 60$

Objective

Stabilize the wake behind a circular cylinder using cylinder rotation.

Plan

Use linear feedback control to stabilize the steady-state solution.

Linearize about the steady-state

- An incomplete list: [Tokumaru/Dimotakis,91], [Blackburn/Henderson,99], [Dennis et al.,00], [He et al.,00], [Bergmann et al.,00], [Noack et al.,03], [Gerhard et al.,03], [Stoyanov,09], [Benner/Heiland,14], ...
- Linearize the Navier-Stokes equations about the steady-state flow:

$$\mathbf{v}(t) = \mathcal{V} + \mathbf{v}'(t)$$
 $p(t) = \mathcal{P} + p'(t), \quad t > 0.$

• Leads to the Oseen Equations

$$\mathbf{v}'_t = - \mathcal{V} \cdot \nabla \mathbf{v}' - \mathbf{v}' \cdot \nabla \mathcal{V} + \tau(\mathbf{v}') - \nabla p' + Bu$$

$$\mathbf{0} = \nabla \cdot \mathbf{v}'$$

where $\tau(\mathbf{v}) \equiv \mu \left(\nabla \mathbf{v} + \nabla \mathbf{v}^T \right)$, with boundary conditions

- Inflow: v'(t) = 0, t > 0.
 Outflow edges: (v'(t), p'(t)) is stress-free.
- Bu(t) provides tangential velocity on the cylinder.

Two-cylinder case

LQR Problem:

Find $\mathbf{u}(\cdot)$ (tangential velocities) that minimizes

$$J(\mathbf{u}(\cdot)) = \int_0^\infty \mathbf{y}^T(t)\mathbf{y}(t) + 10\|\mathbf{u}(t)\|^2 dt.$$

Controlled Outputs:

Seek feedback solutions in the form

$$y_{i\star j}(t) = \int_{\Omega_i} \mathbf{v}'_j(\xi, t) d\xi \qquad u_i(t) = -\int_{\Omega} h_1^i(\xi) \mathbf{v}'_1(t, \xi) + h_2^j(\xi) \mathbf{v}'_2(t, \xi) dt.$$

 $i = 1, \dots, 6 \text{ and } j = 1, 2.$

Computation of $h_1^i(\cdot)$, $h_2^i(\cdot)$

Methodology IntModRed Nonlinear Conc

- Solve steady-state Navier-Stokes equations for \mathcal{V} .
- Discretized Oseen equations and control outputs

 $\begin{aligned} \mathbf{E}\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u\\ \mathbf{y} = \mathbf{C}\mathbf{x}\end{aligned}$

LinNS Two-cylinder ReducedLQR

where

$$\mathbf{E} = \left[\begin{array}{cc} \mathbf{E}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right], \ \ \mathbf{A} = \left[\begin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{21}^{\mathcal{T}} \\ \mathbf{A}_{21} & \mathbf{0} \end{array} \right], \ \ \mathbf{B} = \left[\begin{array}{cc} \mathbf{B}_{1} \\ \mathbf{0} \end{array} \right], \ \ \mathbf{C} = \left[\mathbf{C}_{1} \quad \mathbf{0} \right]$$

- $\mathbf{E}_{11} \in \mathbb{R}^{n_1 \times n_1}$ has full rank.
- $\mathbf{A}_{11} \in \mathbb{R}^{n_1 \times n_1}, \, \mathbf{A}_{21} \in \mathbb{R}^{n_2 \times n_1}, \, \mathbf{B}_1 \in \mathbb{R}^{n_1 \times 2} \text{ and } \mathbf{C}_1 \in \mathbb{R}^{12 \times n_1}.$
- \mathbf{A}_{21} has full rank and $\mathbf{A}_{21}\mathbf{E}_{11}^{-1}\mathbf{A}_{21}^{T}$ is nonsingular.

• The LQR problem becomes: Find a control $\mathbf{u}(\cdot)$ that solves

$$\min_{\mathbf{u}} \int_0^\infty \left\{ \mathbf{x}_1^T(t) \mathbf{C}_1^T \mathbf{C}_1 \mathbf{x}_1(t) + 10 \|\mathbf{u}\|^2(t) \right\} dt$$

subject to

$$\begin{bmatrix} \mathbf{E}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1(t) \\ \dot{\mathbf{x}}_2(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{21}^T \\ \mathbf{A}_{21} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1(t) \\ \mathbf{x}_2(t) \end{bmatrix} + \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}(t),$$

•
$$\mathbf{u}(t) = -\mathbf{K}\mathbf{x}(t)$$

- Computing K requires solving an n = n₁ + n₂ dimensional large-scale algebraic Riccati equation:
- Instead, reduce the dimension first.

Apply Interpolatory Model Reduction to obtain

 $\widetilde{\mathbf{E}} \, \dot{\widetilde{\mathbf{x}}} = \widetilde{\mathbf{A}} \, \widetilde{\mathbf{x}} + \widetilde{\mathbf{B}} \, \mathbf{u}(t)$ $\widetilde{\mathbf{y}} = \widetilde{\mathbf{C}} \, \widetilde{\mathbf{x}}$

• where $\widetilde{\mathbf{E}} \in \mathbb{R}^{r \times r}$, $\widetilde{\mathbf{A}} \in \mathbb{R}^{r \times r}$, $\widetilde{\mathbf{B}} \in \mathbb{R}^{r \times 2}$, and $\widetilde{\mathbf{C}} \in \mathbb{R}^{12 \times r}$ with

$$r \ll n = n_1 + n_2$$

Solve the reduced LQR problem

$$\begin{split} \widetilde{\mathbf{A}}_{11}^T \mathbf{P} \widetilde{\mathbf{E}}_{11} + \widetilde{\mathbf{E}}_{11}^T \mathbf{P} \widetilde{\mathbf{A}}_{11} - \widetilde{\mathbf{E}}_{11}^T \mathbf{P} \widetilde{\mathbf{B}}_1 \mathbf{R}^{-1} \widetilde{\mathbf{B}}_1^T \mathbf{P} \widetilde{\mathbf{E}}_{11} + \widetilde{\mathbf{C}}_1^T \widetilde{\mathbf{C}}_1 = \mathbf{0} \\ \widetilde{\mathbf{K}} = \mathbf{R}^{-1} \widetilde{\mathbf{B}}_1^T \mathbf{P} \widetilde{\mathbf{E}}_{11}. \end{split}$$

Then

$$\begin{aligned} \mathbf{u} &= - \, \tilde{\mathbf{K}} \tilde{\mathbf{x}} \\ &= - \, \underbrace{\tilde{\mathbf{K}} \mathbf{V}^{\mathsf{T}}}_{\approx \mathbf{K}} \underbrace{\mathbf{V}} \tilde{\mathbf{x}}_{\approx \mathbf{x}} \end{aligned}$$

Interpolatory Model Reduction for DAEs

• Full-order model: Linearized/Discretized Model

$$\begin{aligned} \mathbf{E} \dot{\mathbf{x}}(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \\ \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t), \end{aligned}$$

•
$$\mathbf{A} \in \mathbb{R}^{n \times n}$$
, $\mathbf{B} \in \mathbb{R}^{n \times m}$, $\mathbf{C} \in \mathbb{R}^{p \times n}$, and $\mathbf{D} \in \mathbb{R}^{p \times m}$.

- Let **U**(*s*) and **Y**(*s*) denote the Laplace transforms of **u**(*t*) and **y**(*t*)
- Transfer function:

$$\mathbf{Y}(s) = \mathbf{G}(s)\mathbf{U}(s), ext{ where } \mathbf{G}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Model Reduction

• The goal is to construct a reduced model of the form $\widetilde{\mathbf{E}}\dot{\widetilde{\mathbf{x}}}(t) = \widetilde{\mathbf{A}}\widetilde{\mathbf{x}}(t) + \widetilde{\mathbf{B}}\mathbf{u}(t), \qquad \widetilde{\mathbf{y}}(t) = \widetilde{\mathbf{C}}\widetilde{\mathbf{x}}(t) + \widetilde{\mathbf{D}}\mathbf{u}(t),$

where $\widetilde{\mathbf{E}}, \widetilde{\mathbf{A}} \in \mathbb{R}^{r \times r}, \widetilde{\mathbf{B}} \in \mathbb{R}^{r \times m}, \widetilde{\mathbf{C}} \in \mathbb{R}^{p \times r}$, and $\widetilde{\mathbf{D}} \in \mathbb{R}^{p \times m}$ with $r \ll n$

• Construct $\mathbf{V} \in \mathbb{R}^{n \times r}$ and $\mathbf{W}^T \in \mathbb{R}^{n \times r}$, assume $\mathbf{x}(t) \approx \mathbf{V} \widetilde{\mathbf{x}}(t)$:

$$\widetilde{\mathbf{E}} = \mathbf{W}^{\mathsf{T}} \mathbf{E} \mathbf{V}, \quad \widetilde{\mathbf{A}} = \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V}, \quad \widetilde{\mathbf{B}} = \mathbf{W}^{\mathsf{T}} \mathbf{B}, \text{ and } \widetilde{\mathbf{C}} = \mathbf{C} \mathbf{V}.$$

• Define
$$\widetilde{\mathbf{G}}(s) = \widetilde{\mathbf{C}}(s\widetilde{\mathbf{E}} - \widetilde{\mathbf{A}})^{-1}\widetilde{\mathbf{B}} + \widetilde{\mathbf{D}}$$

• **G**(*s*) has the same number of inputs and outputs but a smaller state-space dimension: Low-order rational approximation to **G**(*s*).

•
$$\widetilde{\mathsf{Y}}(s) - \mathsf{Y}(s) = \left(\widetilde{\mathsf{G}}(s) - \mathsf{G}(s)\right) \mathsf{U}(s)$$

Intro Methodology IntModRed Nonlinear Conc Set-up TangIntDAE AvoidProj Results

Model Reduction by Tangential Interpolation

Pick interpolation points {σ_i}^r_{i=1} ∈ C together with the left directions {c_i}^r_{i=1} ∈ C^p and the right directions {b_i}^r_{i=1} ∈ C^m:

$$\mathbf{c}_i^T \mathbf{G}(\sigma_j) = \mathbf{c}_i^T \widetilde{\mathbf{G}}(\sigma_j), \qquad \mathbf{G}(\sigma_j) \mathbf{b}_j = \widetilde{\mathbf{G}}(\sigma_j) \mathbf{b}_j, \tag{1}$$

and
$$\mathbf{c}_i^T \mathbf{G}'(\sigma_j) \mathbf{b}_j = \mathbf{c}_i^T \widetilde{\mathbf{G}}'(\sigma_j) \mathbf{b}_j.$$
 (2)

Construct

$$\mathbf{V} = \left[(\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \mathbf{b}_1, \ \cdots, \ (\sigma_r \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \mathbf{b}_r \right] \in \mathbb{C}^{n \times r} \text{ and}$$
$$\mathbf{W} = \left[(\sigma_1 \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \mathbf{c}_1 \ \cdots \ (\sigma_r \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \mathbf{c}_r \ \right] \in \mathbb{C}^{n \times r}$$

- Then the interpolation conditions (1) and (2) are satisfied. [Skelton *et. al.*, 87], [Grimme, 97], [Gallivan *et. al.*, 05]
- Interpolatory reduction of port-Hamiltonian systems: [G./Polyuga/Beattie/vanderSchaft, 12], [Beattie/G.,11] and [Chaturantabut/Beattie/G.,13]

Tangential Interpolation for DAEs

Recall in our case

$$\mathbf{E} = \left[\begin{array}{cc} \mathbf{E}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right], \ \ \mathbf{A} = \left[\begin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{21}^{\mathcal{T}} \\ \mathbf{A}_{21} & \mathbf{0} \end{array} \right], \ \mathbf{B} = \left[\begin{array}{cc} \mathbf{B}_{1} \\ \mathbf{0} \end{array} \right], \ \mathbf{C} = \left[\mathbf{C}_{1} \quad \mathbf{0} \right]$$

- $\mathbf{E}_{11} \in \mathbb{R}^{n_1 \times n_1}$ and $\mathbf{A}_{21} \in \mathbb{R}^{n_2 \times n_1}$ have full rank and $\mathbf{A}_{21} \mathbf{E}_{11}^{-1} \mathbf{A}_{21}^{T}$ is nonsingular \Longrightarrow Leading to an index-2 DAE.
- Let G(s) be additively decomposed as: G(s) = G_{sp}(s) + P(s),
- We will require that $\widetilde{\mathbf{G}}(s) = \widetilde{\mathbf{G}}_{\mathrm{sp}}(s) + \widetilde{\mathbf{P}}(s)$, with $\widetilde{\mathbf{P}}(s) = \mathbf{P}(s)$,
- This will guarantee: $\mathbf{G}_{err}(s) = \mathbf{G}(s) \widetilde{\mathbf{G}}(s) = \mathbf{G}_{sp}(s) \widetilde{\mathbf{G}}_{sp}(s)$.
- [Stykel,2004], [Mehrman/Stykel,2005], [Benner/Sokolov,2005], [Alì et al., 2013]
 [Heinkenschloss et al., 08]

•
$$\mathbf{G}(s) = \mathbf{G}_{sp}(s) + \mathbf{P}(s)$$
.

- We want $\widetilde{\mathbf{G}}(s) = \widetilde{\mathbf{G}}_{\mathrm{sp}}(s) + \widetilde{\mathbf{P}}(s)$ with $\widetilde{\mathbf{P}}(s) = \mathbf{P}(s)$,
- Problem reduces to: $\widetilde{\mathbf{G}}_{sp}(s)$ interpolates $\mathbf{G}_{sp}(s)$.
- P_r = the spectral projector onto the right deflating subspace of (λE A) corresponding to the finite eigenvalues.
- **P**_{*i*}: Defined similarly for the left deflating subspace.
- W_∞ and V_∞: Span, respectively, the right and left deflating subspaces of (λE – A) corresponding to the infinite eigenvalues.

Theorem ([G./Stykel/Wyatt,12])

2

Given are $\mathbf{G}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$, interpolation points $\sigma \in \mathbb{C}$ and $\mu \in \mathbb{C}$; and the tangential directions $\mathbf{b} \in \mathbb{C}^m$ and $\mathbf{c} \in \mathbb{C}^p$. Define \mathbf{V}_f and \mathbf{W}_f such that

$$\mathbf{V}_{f} = \left[(\sigma_{1}\mathbf{E} - \mathbf{A})^{-1}\mathbf{P}_{f}\mathbf{B}\mathbf{b}_{1}, \cdots, (\sigma_{r}\mathbf{E} - \mathbf{A})^{-1}\mathbf{P}_{f}\mathbf{B}\mathbf{b}_{r} \right] \in \mathbb{C}^{n \times r} \text{ and}$$
$$\mathbf{W}_{f} = \left[(\sigma_{1}\mathbf{E} - \mathbf{A}^{T})^{-1}\mathbf{P}_{r}^{T}\mathbf{C}^{T}\mathbf{c}_{1} \cdots (\sigma_{r}\mathbf{E} - \mathbf{A}^{T})^{-1}\mathbf{P}_{r}^{T}\mathbf{C}^{T}\mathbf{c}_{r} \right] \in \mathbb{C}^{n \times r}$$

Define $\mathbf{W} = [\mathbf{W}_f, \mathbf{W}_{\infty}]$ and $\mathbf{V} = [\mathbf{V}_f, \mathbf{V}_{\infty}]$, and construct $\widetilde{\mathbf{G}}(s)$. Then, **Q** $\mathbf{P}_r(s) = \mathbf{P}(s)$, and

$$\begin{array}{lll} \mathbf{c}_i^T \mathbf{G}(\sigma_j) &=& \mathbf{c}_i^T \widetilde{\mathbf{G}}(\sigma_j) \\ \mathbf{G}(\sigma_j) \, \mathbf{b}_j &=& \widetilde{\mathbf{G}}(\sigma_j) \, \mathbf{b}_j \quad \textit{for} \quad j = 1, 2, \dots, r. \\ \mathbf{c}_i^T \mathbf{G}'(\sigma_j) \, \mathbf{b}_j &=& \mathbf{c}_i^T \widetilde{\mathbf{G}}'(\sigma_j) \, \mathbf{b}_j \end{array}$$

A Circuit Model

 $\mathbf{B}^{T} = \begin{bmatrix} 0 & 0 & 0 & 0 & -1 \end{bmatrix} = \mathbf{C}, \qquad \qquad \mathbf{D} = \mathbf{0},$

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} = \underbrace{\frac{sC_2G_1}{\underbrace{s^2C_2L_1G_1 + sC_2 + G_1}}_{\mathbf{G}_{sp}(s)}}_{\mathbf{G}_{sp}(s)} + \underbrace{\frac{sC_1}{\mathbf{P}(s)}}_{\mathbf{P}(s)}$$

Interpolation for DAEs

- Consider the model of an RLC circuit with n = 765 and index-2.
- Reduce the order to r = 20 using complex interpolation points without the deflating subspaces:

	$\mathbf{G}(\sigma_i)$	$\mathbf{G}_r(\sigma_i)$
σ_1	$9.8479 imes 10^{-3} + \imath 3.4595 imes 10^{-3}$	$9.8479 imes 10^{-3} + \imath 3.4595 imes 10^{-3}$
σ_2	$1.1586 imes 10^{-2} + \imath 6.6549 imes 10^{-3}$	$1.1586 imes 10^{-2} + \imath 6.6549 imes 10^{-3}$
σ_3	$1.6518 \times 10^{-2} + \imath 7.9917 \times 10^{-3}$	$1.6518 \times 10^{-2} + \imath 7.9917 \times 10^{-3}$

How do the Bode plots match?

• Polynomial part is completely missed.

 Re-visit the previous example and apply the projection with deflating subspaces.

• Requires computing **P**₁ and **P**_r. How to avoid this?

• Define
$$\Pi = I - A_{12} \left(A_{21} E_{11}^{-1} A_{12} \right)^{-1} A_{21} E_{11}^{-1}$$

- $\Pi^2 = \Pi$, $\Pi \mathbf{E}_{11} = \mathbf{E}_{11} \Pi^T$, $\text{Null}(\Pi) = \text{Range}(\mathbf{A}_{12})$.
- Can be equivalently to reduced to ([Heinkenschloss et al.,08])

$$\begin{aligned} \mathbf{\Pi} \mathbf{E}_{11} \mathbf{\Pi}^T \dot{\mathbf{v}}_1(t) &= \mathbf{\Pi} \mathbf{A}_{11} \mathbf{\Pi}^T \mathbf{v}_1(t) + \mathbf{\Pi} \mathbf{B} \mathbf{u}(t) \\ \mathbf{y}(t) &= \mathbf{C} \mathbf{v}_1(t) + \mathbf{D}_1 \mathbf{u}(t) + \mathbf{D}_2 \dot{\mathbf{u}}(t) \end{aligned}$$

- We need $(\sigma_i \Pi \mathbf{E}_{11} \Pi^T \Pi \mathbf{A}_{11} \Pi^T)^{-1} \Pi \mathbf{B} \mathbf{b}_i$
- Define $\Pi \mathbf{E}_{11} \Pi^T = \mathcal{E}$, $\Pi \mathbf{A}_{11} \Pi^T = \mathcal{A}$, and, $\mathcal{B} = \Pi \mathbf{B}$

Inverse defined on a restricted subspace:

$$(\sigma \mathcal{E} - \mathcal{A})^{l}(\sigma \mathcal{E} - \mathcal{A}) = \mathbf{\Pi}^{T}, \ (\sigma \mathcal{E} - \mathcal{A})(\sigma \mathcal{E} - \mathcal{A})^{l} = \mathbf{\Pi}.$$

• The vector $\mathbf{v}_i = (\sigma \mathcal{E} - \mathcal{A})^I \mathcal{B} \mathbf{b}_i$ solves

$$\begin{bmatrix} \sigma \mathbf{E}_{11} + \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v}_i \\ \mathbf{z}_i \end{bmatrix} = \begin{bmatrix} \mathbf{B} \mathbf{b}_i \\ \mathbf{0} \end{bmatrix}$$

Interpolation without \mathbf{P}_{l} and \mathbf{P}_{r} computations

Theorem (G./Stykel/Wyatt, 2013)

Given $\{\sigma_i\} \in \mathbb{C}$, $\{b_i\} \in \mathbb{C}^m$ and $\{c_i\} \in \mathbb{C}^p$, let \mathbf{v}_i and \mathbf{w}_i solve

$$\begin{bmatrix} \sigma_i \mathbf{E}_{11} - \mathbf{A}_{11} & \mathbf{A}_{21}^T \\ \mathbf{A}_{21} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v}_i \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \mathbf{b}_i \\ \mathbf{0} \end{bmatrix},$$
$$\begin{bmatrix} \sigma_i \mathbf{E}_{11}^T - \mathbf{A}_{11}^T & \mathbf{A}_{21}^T \\ \mathbf{A}_{21} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{w}_i \\ \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{C}^T \mathbf{c}_i \\ \mathbf{0} \end{bmatrix}.$$

for $i = 1, \ldots, r$. Construct

 $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_r], \text{ and } \mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_r].$

Then $\widetilde{\mathbf{G}}(s) = \mathbf{CV}(s\mathbf{W}^{\mathsf{T}}\mathbf{E}_{11}\mathbf{V} - \mathbf{W}^{\mathsf{T}}\mathbf{A}_{11}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}\mathbf{B}_{1} + \mathbf{D}_{1}\mathbf{u}(t) + \mathbf{D}_{2}\dot{\mathbf{u}}(t)$ satisfies the required interpolation conditions and matches the polynomial part.

Interpolation points for \mathcal{H}_2 optimal approximation

•
$$\|\mathbf{G}\|_{\mathcal{H}_2} = \left(\frac{1}{2\pi}\int_{-\infty}^{+\infty}\|\mathbf{G}(\imath\omega)\|_F^2 d\omega\right)^{\frac{1}{2}}$$

Problem

Given $\mathbf{G}(s)$, find $\widetilde{\mathbf{G}}(s)$ of order r which solves: $\min_{degree(\mathbf{G}_r)=r} \|\mathbf{G} - \mathbf{G}_r\|_{\mathcal{H}_2}$.

•
$$\|\mathbf{G}\|_{\mathcal{H}_2} = \sup_{\mathbf{u}\neq 0} \frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{u}\|_2}$$
 for MISO and SIMO systems

- In general, $\|\mathbf{y} \mathbf{y}_r\|_{\infty} \le \|\mathbf{G} \widetilde{\mathbf{G}}\|_{\mathcal{H}_2} \|\mathbf{u}\|_2$.
- Solution for the ODE case: [Meier /Luenberger,67], [G./Antoulas/Beattie,08] —>Iterative Rational Krylov Algorithm: [G./Antoulas/Beattie,08]
- Solution for the DAE case: [G./Stykel/Wyatt,13]

\mathcal{H}_2 optimality for DAE approximation

Theorem ([G./Stykel/Wyatt,13])

For
$$\mathbf{G}(s) = \mathbf{G}_{sp}(s) + \mathbf{P}(s)$$
, let $\widetilde{\mathbf{G}}(s) = \widetilde{\mathbf{G}}_{sp}(s) + \widetilde{\mathbf{P}}(s)$ minimize the \mathcal{H}_2
error $\|\mathbf{G} - \widetilde{\mathbf{G}}\|_{\mathcal{H}_2}$. Then, $\widetilde{\mathbf{P}}(s) = \mathbf{P}(s)$, and, hence $\widetilde{\mathbf{G}}_{sp}(s)$ minimizes the
 \mathcal{H}_2 error $\|\mathbf{G}_{sp} - \widetilde{\mathbf{G}}_{sp}\|_{\mathcal{H}_2}$. Moreover, let $\widetilde{\mathbf{G}}_{sp}(s) = \widetilde{\mathbf{C}}_{sp}(s\widetilde{\mathbf{E}}_{sp} - \widetilde{\mathbf{A}}_{sp})^{-1}\widetilde{\mathbf{B}}_{sp}$.
Suppose that that the reduced-order pencil $\lambda \widetilde{\mathbf{E}}_{sp} - \widetilde{\mathbf{A}}_{sp}$ has distinct
eigenvalues $\{\widetilde{\lambda}_i\}_{i=1}^r$, i.e., $\widetilde{\mathbf{G}}_{sp}(s) = \sum_{i=1}^r \frac{1}{s-\widetilde{\lambda}_i} \widetilde{\mathbf{c}}_i \widetilde{\mathbf{b}}_i^T$. Then, for
 $i = 1, \cdots, r$,
 $\mathbf{G}(-\widetilde{\lambda}_i)\widetilde{\mathbf{b}}_i = \widetilde{\mathbf{G}}(-\widetilde{\lambda}_i)\widetilde{\mathbf{b}}_i$, $\widetilde{\mathbf{c}}_i^T \mathbf{G}(-\widetilde{\lambda}_i) = \widetilde{\mathbf{c}}_i^T \widetilde{\mathbf{G}}(-\widetilde{\lambda}_i)$,
and $\widetilde{\mathbf{c}}_i^T \mathbf{G}'(-\widetilde{\lambda}_i)\widetilde{\mathbf{b}}_i = \widetilde{\mathbf{c}}_i^T \widetilde{\mathbf{G}}'(-\widetilde{\lambda}_i)\widetilde{\mathbf{b}}_i$.

Iterate on the interpolation points and directions until convergence ٠

Set-up TangIntDAE AvoidProj Results

Iterative Rational Krylov Algorithm (IRKA):

Algorithm (G./Antoulas/Beattie [2008])

• Choose
$$\{\sigma_1, ..., \sigma_r\}$$
, $\{\hat{b}_1, ..., \hat{b}_r\}$ and $\{\hat{c}_1, ..., \hat{c}_r\}$

2
$$\mathbf{V} = \left[(\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{b}}_1 \cdots (\sigma_r \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{b}}_r \right]$$
$$\mathbf{W} = \left[(\sigma_1 \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_1 \cdots (\sigma_r \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_r \right].$$

while (not converged) 3

$$\mathbf{\tilde{A}} = \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V}, \, \mathbf{\tilde{E}} = \mathbf{W}^{\mathsf{T}} \mathbf{E} \mathbf{V}, \, \mathbf{B} = \mathbf{W}^{\mathsf{T}} \mathbf{B}, \, \text{and} \, \mathbf{C} = \mathbf{C} \mathbf{V}$$

2 Compute
$$\widetilde{\mathbf{G}}(s) = \sum_{i=1}^{r} \frac{\mathbf{c}_i \mathbf{b}_i^T}{s - \lambda_i}$$

•
$$\sigma_i \leftarrow -\lambda_i, \hat{\mathbf{b}}_i \leftarrow \mathbf{b}_i \text{ and } \hat{\mathbf{c}}_i \leftarrow \mathbf{c}_i.$$

• $\mathbf{V} = \left[(\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{b}}_1 \cdots (\sigma_r \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{b}}_r \right]$
• $\mathbf{W} = \left[(\sigma_1 \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_1 \cdots (\sigma_r \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_r \right]$

$$\widetilde{\mathbf{A}} = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \, \widetilde{\mathbf{E}} = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r, \, \widetilde{\mathbf{B}} = \mathbf{W}_r^T \mathbf{B}, \, \widetilde{\mathbf{C}} = \mathbf{C} \mathbf{V}_r, \, \widetilde{\mathbf{D}} = \mathbf{D}.$$

Discretization of Navier-Stokes/Oseen equations

Figure : Discretization by Taylor-Hood Finite Elements

- Leads to 21,390 velocity degrees of freedom (x1),
- and 2,777 pressure degrees of freedom (x₂).
- Solved at $Re_d = 60 \ (\mu = 1/Re)$

Intro Methodology IntModRed Nonlinear Conc Set-up TangIntDAE AvoidProj Results

Numerical Results: One-cylinder Case

- Recall *n*₁ = 21390 and *n*₂ = 2777
- We reduce the order to r = 60 using interpolatory projection.

Borggaard and Gugercin

•

Functional Gains

• For this *Re*_d, the full-model has two unstable poles.

• These unstable poles are captured very accurately.

 $\lambda_{\text{unstable}}(\mathbf{G}(\mathbf{s})): 5.248019596820730 \times 10^{-2} \pm i 7.672028760928972 \times 10^{-1}$

- $\lambda_{\text{unstable}}(\mathbf{G}(s)): 5.248030491505502 \times 10^{-2} \pm i 7.672029050490372 \times 10^{-1}$
 - Solve the reduced LQR problem and compute the functional gains:

Figure : Horizontal (left) and Vertical (right) Components

Set-up TangIntDAE AvoidProj Results

Open Loop Simulation

Closed Loop: From t = 20

Two-cylinder case

Figure : Discretization by Taylor-Hood Finite Elements

- Leads to 132476 velocity degrees of freedom (x₁),
- and 16691 pressure degrees of freedom (x₂).
- Solved at $Re_d = 60 \ (\mu = 1/Re)$

Intro Methodology IntModRed Nonlinear Conc Set-up TangIntDAE AvoidProj Results

Model Reduction for the Two-cylinder Case

- Recall $n_1 = 132476$ and $n_2 = 16691$, $n = n_1 + n_2 = 149167$.
- We reduce the order to r = 150 using interpolatory projection.

• Relative \mathcal{L}_{∞} error = 6.3980 \times 10⁻⁶

Functional Gain

• Unstable poles are, once again, captured very accurately. $\lambda_{unstable}(\mathbf{G}(s)): 3.973912561638801 \times 10^{-2} \pm i 7.498560362688469 \times 10^{-1}$ $\lambda_{unstable}(\mathbf{\widetilde{G}}(s)): 3.973912526082657 \times 10^{-2} \pm i 7.498560367601876 \times 10^{-1}$

• Solve the reduced LQR problem and compute the functional gains:

Figure : Horizontal (left) and Vertical (right) Components

Set-up TangIntDAE AvoidProj Results

Open Loop Simulation

Closed Loop: Controlled from t = 100

Control Inputs

Two-cylinder case

Figure : Discretization by Taylor-Hood Finite Elements

- Leads to 299338 velocity degrees of freedom (x1),
- and 37714 pressure degrees of freedom (x₂).
- Solved at $Re_d = 100 \ (\mu = 1/Re)$

Intro Methodology IntModRed Nonlinear Conc Set-up TangIntDAE AvoidProj Results

Model Reduction for the Two-cylinder Case

- Recall $n_1 = 299338$ and $n_2 = 37714$, $n = n_1 + n_2 = 337052$.
- We reduce the order to r = 170 using interpolatory projection.

• Relative \mathcal{L}_{∞} error = 1.5154 \times 10⁻⁵

Unstable Poles

- For $Re_d = 100$, the full-model has seven unstable poles.
- The unstable poles of the reduced model $\widetilde{\mathbf{G}}(s)$:

 $\begin{array}{l} 1.245178576584041 \times 10^{-1} \pm \imath\,7.507209792650027 \times 10^{-1} \\ 3.195053261722973 \times 10^{-2} \pm \imath\,8.505319185007424 \times 10^{-1} \\ 8.325502142822423 \times 10^{-3} \pm \imath\,7.314950149341377 \times 10^{-1} \\ 2.580915637572443 \times 10^{-2} \end{array}$

- Accurate to 5 significant digits
- Unstable poles are, once again, captured accurately.
- We follow similarly and solve the reduced LQR problem.

Set-up TangIntDAE AvoidProj Results

Convergence of Gain with Model Size

Figure : Gain h_1^1 for r = 120

Figure : Gain h_1^1 for r = 140

Figure : Gain h_1^1 for r = 170

Set-up TangIntDAE AvoidProj Results

Open Loop Simulation: disturbance for $t \in (0, 2\pi)$

Closed loop from t = 10

Nonlinear dynamical systems

•
$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \qquad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

- The most common and a rather effective approach: Proper Orthogonal Decomposition (POD)
- Pick your favorite input u(t), run the system from t = 0 to t_N = T and construct a snapshot matrix:

$$\mathbf{X} = [\mathbf{x}(t_1), \ \mathbf{x}(t_2), \ , \dots, \mathbf{x}(t_N)] \in \mathbb{R}^{n \times N}$$

- Compute the SVD of **X**: $\mathbf{X} = \mathbf{U} \Sigma \mathbf{Z}^{T}$
- Choose V as the leading r columns of U.

•
$$\dot{\mathbf{x}}_r(t) = \mathbf{V}^T \mathbf{A} \mathbf{V} \mathbf{x}_r(t) + \mathbf{V}^T \mathbf{f} (\mathbf{V} \mathbf{x}_r(t), \mathbf{u}(t)), \qquad \mathbf{y}_r(t) = \mathbf{C} \mathbf{V} \mathbf{x}_r(t)$$

- Input-dependent reduced-order model.
- The reduced-model is usually only as good as the information in X.
- For linear dynamics, u(t) did not enter into the model reduction step.
- Can we mimic the linear case for some special cases?
- How to extend the idea of transfer function to the nonlinear setting?

Bilinear Systems

•
$$\zeta: \begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{N}\boldsymbol{x}(t)\boldsymbol{u}(t) + \boldsymbol{b}\boldsymbol{u}(t) \\ \boldsymbol{y}(t) = \boldsymbol{c}^{T}\boldsymbol{x}(t) \end{cases}$$
,

where $\mathbf{A}, \mathbf{N} \in \mathbb{R}^{n \times n}$, $\mathbf{b}, \mathbf{c} \in \mathbb{R}^{n}$, $u(t) \in \mathbb{R}$ and $\mathbf{x}(t) \in \mathbb{R}^{n}$.

• The output y(t) has the Volterra series representation

$$y(t) = \sum_{k=1}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} h_k(t_1, \ldots, t_k) u(t-t_1-t_2-\cdots-t_k) \cdots u(t-t_k) dt_k \cdots dt_1,$$

where $h_k(t_1,\ldots,t_k) = \mathbf{c}^T e^{\mathbf{A}t_k} \mathbf{N} e^{\mathbf{A}t_{k-1}} \mathbf{N} \cdots \mathbf{N} e^{\mathbf{A}t_1} \mathbf{b}$.

•
$$\mathcal{L}[h_k(t_1,\ldots,t_k)] = H_k(s_1,s_2,\ldots,s_k)$$

= $\mathbf{c}^{\mathsf{T}}(s_k\mathbf{I}-\mathbf{A})^{-1}\mathbf{N}(s_{k-1}\mathbf{I}-\mathbf{A})^{-1}\mathbf{N}\cdots\mathbf{N}(s_1\mathbf{I}-\mathbf{A})^{-1}\mathbf{b}.$

Bilinear QuadinState Results

Model Reduction in the Petrov-Galerkin Framework

Given

$$\zeta: \begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{N}\boldsymbol{x}(t)\boldsymbol{u}(t) + \boldsymbol{b}\boldsymbol{u}(t) \\ \boldsymbol{y}(t) = \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x}(t) \end{cases}$$

of dimension n.

• For $r \ll n$, find

$$\zeta_r : \begin{cases} \dot{\boldsymbol{x}}_r(t) = \tilde{\boldsymbol{A}} \boldsymbol{x}_r(t) + \tilde{\boldsymbol{N}} \boldsymbol{x}_r(t) \boldsymbol{u}(t) + \tilde{\boldsymbol{b}} \boldsymbol{u}(t) \\ y_r(t) = \tilde{\boldsymbol{c}}^T \boldsymbol{x}_r(t) \end{cases}$$

such that $y_r(t) \approx y(t)$

• Define ζ_r via the projected equations:

$$\zeta_r : \begin{cases} \dot{\boldsymbol{x}}_r(t) = \boldsymbol{W}^T \boldsymbol{A} \boldsymbol{V} \boldsymbol{x}_r(t) + \boldsymbol{W}^T \boldsymbol{N} \boldsymbol{V} \boldsymbol{x}_r(t) \boldsymbol{u}(t) + \boldsymbol{W}^T \boldsymbol{b} \boldsymbol{u}(t) \\ y_r(t) = \boldsymbol{c}^T \boldsymbol{V} \boldsymbol{x}_r(t) \end{cases}$$

What to interpolate

Construct V and W so that

$$H_k(\sigma_1,\sigma_{1,2},\ldots,\sigma_{1,\ldots,k})=\widetilde{H}_k(\sigma_1,\sigma_{1,2},\ldots,\sigma_{1,\ldots,k})$$

for k = 1, ..., N. [Phillips, 2002], [Bai and Skoogh, 2006], [Breiten and Damm, 2009].

 \Rightarrow The leading *N* subsystems of $\widetilde{H}(s)$ interpolates those of H(s).

- Optimal H₂ reduction for bilinear systems: [Benner/Breiten,11]: B-IRKA
 - Input-independent optimal model reduction for a nonlinear system.
 - Significantly more accurate approximations than the subsystem interpolation methods and better performance than bilinear *balanced truncation*.
- Interpolate the infinite-Volterra series, not just the subsystems: [Flagg/G.,15]:
 - Solve bilinear Sylvester equations
 - B-IRKA interpolates the infinite-Volterra series.

Quadratic-in-State Nonlinearity

• Consider the 1D Burgers equation over $[0, 1] \times [0, t_f]$.

$$v_t(x, t) + v(x, t) \cdot v_x(x, t) = \nu \cdot v_{xx}(x, t),$$

$$v(0, t) = u(t), v_x(1, t) = 0, v(x, 0) = v_0(x) = 0$$

• A finite difference discretization yields

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{H}\left(\mathbf{x}(t) \otimes \mathbf{x}(t)\right) + \mathbf{N}\mathbf{x}(t)u(t) + \mathbf{b}u(t)$$
$$y(t) = \mathbf{c}^{\mathsf{T}}\mathbf{x}(t)$$

where

$$\mathbf{A}, \mathbf{N} \in \mathbb{R}^{n imes n}, \quad \mathbf{H} \in \mathbb{R}^{n imes n^2}, \quad \mathbf{b}, \mathbf{c} \in \mathbb{R}^n$$

• In our tests, we took $\nu = 0.02$ and n = 1500.

Reduced Order Model (ROM)

Construct

$$\begin{split} \dot{\tilde{\mathbf{x}}}(t) &= \widetilde{\mathbf{A}}\widetilde{\mathbf{x}}(t) + \widetilde{\mathbf{H}}\left(\widetilde{\mathbf{x}}(t) \otimes \widetilde{\mathbf{x}}(t)\right) + \widetilde{\mathbf{N}}\widetilde{\mathbf{x}}(t)u(t) + \widetilde{\mathbf{b}}u(t) \\ \widetilde{y}(t) &= \widetilde{\mathbf{c}}^{T}\widetilde{\mathbf{x}}(t) \end{split}$$

via projection

$$\begin{split} \widetilde{\mathbf{A}} &= \mathbf{V}^{\mathsf{T}} \mathbf{A} \mathbf{V}, \quad \widetilde{\mathbf{H}} = \mathbf{V}^{\mathsf{T}} \mathbf{H} (\mathbf{V} \otimes \mathbf{V}), \quad \widetilde{\mathbf{N}} = \mathbf{V}^{\mathsf{T}} \mathbf{N} \mathbf{V} \\ \widetilde{\mathbf{b}} &= \mathbf{V}^{\mathsf{T}} \mathbf{b}, \quad \widetilde{\mathbf{c}} = \mathbf{V}^{\mathsf{T}} \mathbf{c} \end{split}$$

- Subsystem interpolation: [Gu,11], [Benner/Breiten,15]
- Here, we will use optimal interpolation subspaces from the linearized model.
- [Beattie/G.,11] and [Chaturantabut/Beattie/G.,13] for reducing nonlinear port-Hamiltonian systems.

Test Description

We test the technique against several input functions and various values of r_W and r_V .

- First, we generate ROMs using POD and one-sided IRKA.
- Next we picked $r_w = 7, \ldots, 10$.
- For each r_w , we calculated a ROM for each of $r_V = (r r_w), \dots, (r 1)$.
- For each ROM, the output error was calculated.

Bilinear QuadinState Results

Error plots for $u_1(t) = \cos(\pi t)$

Bilinear QuadinState Results

Output plot for $u_1(t)$ with $r_W = 7$

Bilinear QuadinState Results

Error plots for $u_2(t) = 2\sin(\pi t)$

Bilinear QuadinState Results

Output plots for $u_2(t) = 2 \sin(\pi t)$ with $r_W = 7$

Bilinear QuadinState Results

Plot of control function $u_3(t)$

Step Function

Error plots for $u_3(t)$

Output plots for $u_3(t)$

Conclusions and Future Work

- Interpolatory model reduction for DAEs combined with LQR design for flow control
- Computationally efficient framework
- Unstable poles captured accurately
- Incorporating optimal linear subspaces into reducing nonlinear models
- Establish the connection to rational Krylov methods for eigenvalue problems.
- Test the performance for higher Reynolds numbers.
- Choice of C

Index-2 example: Oseen equations

- Data from [Heinkenschloss et al.,08]
- Discretizied the Oseen equations: describing the flow of a viscous and incompressible fluid in a domain $\Omega \in \mathbb{R}^2$ representing a channel with a backward facing step.
- $E_{11}, A_{11} \in \mathbb{R}^{5520 \times 5520}, A_{12}, A_{21}^{T} \in \mathbb{R}^{5520 \times 761}, B_{1} \in \mathbb{R}^{5520 \times 6}, B_{2} \in \mathbb{R}^{761 \times 6}, C_{1} \in \mathbb{R}^{2 \times 5520}, C_{2} \in \mathbb{R}^{2 \times 761}, and D = 0.$
- Reduced to order r = 20 using interpolatory H₂ method for index-2 DAEs.
- Also compared with balanced truncation

• Relative \mathcal{H}_{∞} -error: $\frac{\|\mathbf{G}_{sp} - \widetilde{\mathbf{G}}_{sp}\|_{\mathcal{H}_{\infty}}}{\|\mathbf{G}_{sp}\|_{\mathcal{H}_{\infty}}}$.

 $IRKA - DAE: 8.9663 \times 10^{-6} \qquad BT: 3.3284 \times 10^{-6}$

• Compare the full and reduced model for the input selections $\mathbf{u}_i(t) = \sin(6it)$ for $i = 1, \dots, 6$

Figure : Oseen equation: (left) time domain response for $\mathbf{u}_i(t) = \sin(6it)$; (right) error in time domain response for $\mathbf{u}_i(t) = \sin(6it)$.