Lyapunov Equations with
 Non-Self-Adjoint Coefficients

Jonathan Baker John Sabino
Rice University Boeing
Mark Embree Blake Keeler
Virginia Tech

Model Reduction for Transport Dominated Phenomena

Berlin • May 2015

Outline

We will survey a set of related problems that are motivated by the study of stability questions in fluid flows.

- Linear Stability Analysis, Transient Dynamics, Pseudospectra
- Overview of linear stability analysis
- When transient growth occurs and why it matters
- Pseudospectral analysis for Differential Algebraic Equations
- Lyapunov Inverse Iteration for Bifurcation Detection
- Algorithm for finding bifurcations points in linear ODEs/DAEs due to
[Meerbergen, Spence 2010; Elman, Meerbergen, Spence, Wu 2012; Elman, Wu 2013]
- Requires the solution of a Lyapunov equation at each iteration
- Only possible at scale if Lyapunov solutions have low numerical rank
- Existing bounds suggest these solutions will not have low rank
- Singular Values of Solutions of Lyapunov Equations
- New analysis of Lyapunov solutions with nonnormal coefficients
- Increasing departure from normality can give faster singular value decay
- Interior eigenvalues of $\left(\mathbf{A}+\mathbf{A}^{*}\right) / 2$ play a key role.

Linear Stability Analysis and Transients

Linear Stability Analysis for Dynamical Systems

Linear Stability Analysis

Consider the autonomous nonlinear system $\mathbf{u}^{\prime}(t)=\mathbf{f}(\mathbf{u}(t))$.

- Find a steady state \mathbf{u}_{*}, i.e., $\mathbf{f}\left(\mathbf{u}_{*}\right)=\mathbf{0}$.
- Linearize \mathbf{f} about this steady state and analyze small perturbations, $\mathbf{u}(t)=\mathbf{u}_{*}+\mathbf{x}(t)$:

$$
\begin{aligned}
\mathbf{x}^{\prime}(t)=\mathbf{u}^{\prime}(t) & =\mathbf{f}\left(\mathbf{u}_{*}+\mathbf{x}(t)\right) \\
& =\mathbf{f}\left(\mathbf{u}_{*}\right)+\mathbf{A} \mathbf{x}(t)+O\left(\|\mathbf{x}(t)\|^{2}\right) \\
& =\mathbf{A} \mathbf{x}(t)+O\left(\|\mathbf{x}(t)\|^{2}\right)
\end{aligned}
$$

- Ignore higher-order effects, and analyze the linear system $\mathbf{x}^{\prime}(t)=\mathbf{A x}(t)$. The steady state \mathbf{u}_{*} is stable provided \mathbf{A} is stable: i.e., all its eigenvalues are in the left half-plane.

Linear Stability Analysis for Dynamical Systems

Linear Stability Analysis

Consider the autonomous nonlinear system $\mathbf{u}^{\prime}(t)=\mathbf{f}(\mathbf{u}(t))$.

- Find a steady state \mathbf{u}_{*}, i.e., $\mathbf{f}\left(\mathbf{u}_{*}\right)=\mathbf{0}$.
- Linearize \mathbf{f} about this steady state and analyze small perturbations, $\mathbf{u}(t)=\mathbf{u}_{*}+\mathbf{x}(t)$:

$$
\begin{aligned}
\mathbf{x}^{\prime}(t)=\mathbf{u}^{\prime}(t) & =\mathbf{f}\left(\mathbf{u}_{*}+\mathbf{x}(t)\right) \\
& =\mathbf{f}\left(\mathbf{u}_{*}\right)+\mathbf{A} \mathbf{x}(t)+O\left(\|\mathbf{x}(t)\|^{2}\right) \\
& =\mathbf{A} \mathbf{x}(t)+O\left(\|\mathbf{x}(t)\|^{2}\right)
\end{aligned}
$$

- Ignore higher-order effects, and analyze the linear system $\mathbf{x}^{\prime}(t)=\mathbf{A x}(t)$. The steady state \mathbf{u}_{*} is stable provided \mathbf{A} is stable: i.e., all its eigenvalues are in the left half-plane.

But what if the small perturbation $\mathbf{x}(t)$ grows by orders of magnitude before eventually decaying?

Example: A nonlinear heat equation

An example from [Zworski; Galkowski, 2012]:
For $x \in[-1,1]$ and $t \geq 0$ with $u(-1, t)=u(1, t)=0$, consider

$$
u_{t}(x, t)=\nu u_{x x}(x, t)
$$

with $\nu>0$

Example: A nonlinear heat equation

An example from [Zworski; Galkowski, 2012]:
For $x \in[-1,1]$ and $t \geq 0$ with $u(-1, t)=u(1, t)=0$, consider

$$
u_{t}(x, t)=\nu u_{x x}(x, t)+\sqrt{\nu} u_{x}(x, t)
$$

with $\nu>0$

Example: A nonlinear heat equation

An example from [Zworski; Galkowski, 2012]:
For $x \in[-1,1]$ and $t \geq 0$ with $u(-1, t)=u(1, t)=0$, consider

$$
u_{t}(x, t)=\nu u_{x x}(x, t)+\sqrt{\nu} u_{x}(x, t)+\frac{1}{8} u(x, t)
$$

with $\nu>0$

Example: A nonlinear heat equation

An example from [Zworski; Galkowski, 2012]:
For $x \in[-1,1]$ and $t \geq 0$ with $u(-1, t)=u(1, t)=0$, consider

$$
u_{t}(x, t)=\nu u_{x x}(x, t)+\sqrt{\nu} u_{x}(x, t)+\frac{1}{8} u(x, t)+u(x, t)^{p}
$$

with $\nu>0$ and $p>1$.

Example: A nonlinear heat equation

An example from [Zworski; Galkowski, 2012]:
For $x \in[-1,1]$ and $t \geq 0$ with $u(-1, t)=u(1, t)=0$, consider

$$
u_{t}(x, t)=\nu u_{x x}(x, t)+\sqrt{\nu} u_{x}(x, t)+\frac{1}{8} u(x, t)+u(x, t)^{p}
$$

with $\nu>0$ and $p>1$.
The linearization L, an advection-diffusion operator,

$$
L u=\nu u_{x x}+\sqrt{\nu} u_{x}+\frac{1}{8} u
$$

has eigenvalues and eigenfunctions

$$
\lambda_{n}=-\frac{1}{8}-\frac{n^{2} \pi^{2} \nu}{4}, \quad u_{n}(x)=e^{-x /(2 \sqrt{\nu})} \sin (n \pi x / 2)
$$

see, e.g., [Reddy \& Trefethen 1994].
The linearized operator is stable for all $\nu>0$, but has interesting transients

Evolution of a small initial condition

Nonlinear model (blue) and linearization (black)

Transient behavior

Linearized system (black) and nonlinear system (dashed blue)
Nonnormal growth feeds the nonlinear instability.

Transient behavior: reduction of the linearized model

The linearization L is stable. So too is any reasonable discretization \mathbf{L}.
What happens when we apply model reduction to the discretization, e.g., to create a surrogate in a design problem?
Apply Arnoldi moment-matching model reduction to the discretization \mathbf{L} of order 100 to generate a $k=10$ dimensional model $\mathbf{L}_{10}=\mathbf{V}_{10}^{*} \mathbf{L} \mathbf{V}_{10}$. (This does not guarantee stability, but we will have $W\left(\mathbf{L}_{10}\right) \subseteq W(\mathbf{L})$.)

Transient behavior: reduction of the linearized model

The linearization L is stable. So too is any reasonable discretization \mathbf{L}.
What happens when we apply model reduction to the discretization, e.g., to create a surrogate in a design problem?
Apply Arnoldi moment-matching model reduction to the discretization \mathbf{L} of order 100 to generate a $k=10$ dimensional model $\mathbf{L}_{10}=\mathbf{V}_{10}^{*} \mathbf{L} \mathbf{V}_{10}$. (This does not guarantee stability, but we will have $W\left(\mathbf{L}_{10}\right) \subseteq W(\mathbf{L})$.)

Spectral discretization, $n=128$ (black) and Arnoldi reduction, $k=10$ (red). [Many Ritz values capture spurious eigenvalues of the discretization of the left.]

Transient behavior: reduction of the linearized model

Spectral discretization, $n=128$ (black) and Arnoldi reduction, $k=10$ (red).

Transient behavior: nonlinear versus linear system

Linearized system (black) and nonlinear system (dashed blue)
Nonnormal growth feeds the nonlinear instability.

Transient behavior: stabilized reduction of the linearized model

We can restart the Arnoldi reduction to preserve stability (now matches moments of a modified problem); [Grimme, Sorensen, Van Dooren 1994; Jaimoukha, Kasenally 1997]

Spectral discretization, $n=128$ (black) and Arnoldi reduction, $k=10$ (red) after a restart to remove the spurious eigenvalue.
[This effectively pushes Ritz values to the left.]

Transient behavior: stabilized reduction of the linearized model

Spectral discretization, $n=128$ (black) and Arnoldi reduction, $k=10$ (red) after one restart to remove the spurious eigenvalue.

Transient behavior: stabilized reduction of the linearized model

Spectral discretization, $n=128$ (black) and Arnoldi reduction, $k=10$ (red) after one restart to remove the spurious eigenvalue.

MORAL. Beware of suppressing spurious instabilities: they can give rich insight into the original problem!

Tools for Understanding Transient Growth: Eigenvectors

If \mathbf{A} is diagonalizable, $\mathbf{A}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$, then one can bound the transient growth in $\mathrm{e}^{t \mathbf{A}}$ using the condition number of the eigenvector matrix.

Example (Eigenvalue/Eigenvector Bound for Continuous-Time Systems)

$$
\begin{aligned}
\|\mathbf{x}(t)\|=\left\|\mathrm{e}^{t \mathbf{A}} \mathbf{x}(0)\right\| & \leq\left\|\mathrm{e}^{t \mathbf{A}}\right\|\|\mathbf{x}(0)\| \\
& \leq\left\|\mathbf{V} \mathrm{e}^{t \boldsymbol{\Lambda}} \mathbf{V}^{-1}\right\|\|\mathbf{x}(0)\| \\
& \leq \kappa(\mathbf{V}) \max _{\lambda \in \sigma(\mathbf{A})}\left|\mathrm{e}^{t \lambda}\right|\|\mathbf{x}(0)\|
\end{aligned}
$$

where $\kappa(\mathbf{V}):=\|\mathbf{V}\|\left\|\mathbf{V}^{-1}\right\|$.

Tools for Understanding Transient Growth: Numerical Range

Definition (Numerical Range, a.k.a. Field of Values)

The numerical range of \mathbf{A} is the set

$$
W(\mathbf{A})=\left\{\frac{\mathbf{x}^{*} \mathbf{A} \mathbf{x}}{\mathbf{x}^{*} \mathbf{x}}:\|\mathbf{x}\|=1\right\}
$$

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\mathrm{e}^{t \mathbf{A}} \mathbf{x}_{0}\right\|\right|_{t=0} & =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathbf{x}_{0}^{*} \mathrm{e}^{t \mathbf{A}^{*}} \mathrm{e}^{t \mathbf{A}} \mathbf{x}_{0}\right)^{1 / 2}\right|_{t=0} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathbf{x}_{0}^{*}\left(\mathbf{I}+t \mathbf{A}^{*}\right)(\mathbf{I}+t \mathbf{A}) \mathbf{x}_{0}\right)^{1 / 2}\right|_{t=0}=\frac{1}{\left\|\mathbf{x}_{0}\right\|} \mathbf{x}_{0}^{*}\left(\frac{\mathbf{A}+\mathbf{A}^{*}}{2}\right) \mathbf{x}_{0}
\end{aligned}
$$

So, the rightmost point in $W(\mathbf{A})$ reveals the maximal slope of $\left\|\mathrm{e}^{t \mathbf{A}}\right\|$ at $t=0$.

Tools for Understanding Transient Growth: Numerical Range

Definition (Numerical Range, a.k.a. Field of Values)

The numerical range of \mathbf{A} is the set

$$
W(\mathbf{A})=\left\{\frac{\mathbf{x}^{*} \mathbf{A} \mathbf{x}}{\mathbf{x}^{*} \mathbf{x}}:\|\mathbf{x}\|=1\right\}
$$

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\mathrm{e}^{t \mathrm{~A}} \mathbf{x}_{0}\right\|\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathbf{x}_{0}^{*} \mathrm{e}^{t \mathbf{A}^{*}} \mathrm{e}^{t \mathrm{~A}} \mathbf{x}_{0}\right)^{1 / 2}\right|_{t=0}
$$

$$
=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathbf{x}_{0}^{*}\left(\mathbf{I}+t \mathbf{A}^{*}\right)(\mathbf{I}+t \mathbf{A}) \mathbf{x}_{0}\right)^{1 / 2}\right|_{t=0}=\frac{1}{\left\|\mathbf{x}_{0}\right\|} \mathbf{x}_{0}^{*}\left(\frac{\mathbf{A}+\mathbf{A}^{*}}{2}\right) \mathbf{x}_{0}
$$

So, the rightmost point in $W(\mathbf{A})$ reveals the maximal slope of $\left\|\mathrm{e}^{t \mathbf{A}}\right\|$ at $t=0$.
Definition (numerical abscissa)
The numerical abscissa is the rightmost in $W(\mathbf{A})$:

$$
\omega(\mathbf{A}):=\max _{z \in W(\mathbf{A})} \operatorname{Re} z
$$

Initial Transient Growth via Numerical Abscissa

$$
\mathbf{A}=\left[\begin{array}{cc}
-1.1 & 10 \\
0 & -1
\end{array}\right]
$$

Tools for Understanding Transient Growth: Pseudospectra

[Use the convention that if \mathbf{A} does not have a bounded inverse, $\left\|\mathbf{A}^{-1}\right\|=\infty$.]

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. $\sigma_{\varepsilon}(\mathbf{A})=\{z \in C: z \in \sigma(\mathbf{A}+\mathbf{E})$ for some bounded \mathbf{E} with $\|\mathbf{E}\|<\varepsilon\}$;
2. $\sigma_{\varepsilon}(\mathbf{A})=\left\{z \in C:\left\|(z-\mathbf{A})^{-1}\right\|>1 / \varepsilon\right\}$;
3. $\sigma_{\varepsilon}(\mathbf{A})=\{z \in C: z \in \sigma(\mathbf{A})$ or $\|\mathbf{A} \mathbf{v}-z \mathbf{v}\|<\varepsilon$ for some unit vector $\mathbf{v}\}$.

See, e.g., [Trefethen, E. 2005].

Tools for Understanding Transient Growth: Pseudospectra

[Use the convention that if \mathbf{A} does not have a bounded inverse, $\left\|\mathbf{A}^{-1}\right\|=\infty$.]

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. $\sigma_{\varepsilon}(\mathbf{A})=\{z \in C: z \in \sigma(\mathbf{A}+\mathbf{E})$ for some bounded \mathbf{E} with $\|\mathbf{E}\|<\varepsilon\}$;
2. $\sigma_{\varepsilon}(\mathbf{A})=\left\{z \in C:\left\|(z-\mathbf{A})^{-1}\right\|>1 / \varepsilon\right\}$;
3. $\sigma_{\varepsilon}(\mathbf{A})=\{z \in C: z \in \sigma(\mathbf{A})$ or $\|\mathbf{A} \mathbf{v}-z \mathbf{v}\|<\varepsilon$ for some unit vector $\mathbf{v}\}$.

See, e.g., [Trefethen, E. 2005].
These different definitions are useful in different contexts:

1. interpreting numerically computed eigenvalues;
2. analyzing matrix behavior/functions of matrices; computing pseudospectra on a grid in \mathbf{C};
3. proving bounds on a particular $\sigma_{\varepsilon}(\mathbf{A})$.

Example of Pseudospectra

$$
\mathbf{A}=\left[\begin{array}{ccccc}
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & \ddots & 2 & \\
& & & -1 & 2 \\
& & & & -1
\end{array}\right] \in \mathbf{C}^{20 \times 20}
$$

Pseudospectra of Toeplitz matrices have been deeply studied [Böttcher et al.].

Pseudospectral Bounds on the Matrix Exponential

We wish to use pseudospectra to bound $\left\|e^{t \mathrm{~A}}\right\|$ (cf. Hille-Yosida theory).

Definition

The ε-pseudospectral abscissa is the supremum of the real parts of $z \in \sigma_{\varepsilon}(\mathbf{A})$:

$$
\alpha_{\varepsilon}(\mathbf{A}):=\sup _{z \in \sigma_{\varepsilon}(\mathbf{A})} \operatorname{Re} z
$$

Pseudospectral Bounds on the Matrix Exponential

We wish to use pseudospectra to bound $\left\|e^{t \mathbf{A}}\right\|$ (cf. Hille-Yosida theory).

Definition

The ε-pseudospectral abscissa is the supremum of the real parts of $z \in \sigma_{\varepsilon}(\mathbf{A})$:

$$
\alpha_{\varepsilon}(\mathbf{A}):=\sup _{z \in \sigma_{\varepsilon}(\mathbf{A})} \operatorname{Re} z
$$

Theorem (Upper and Lower Bounds on $\left\|e^{t \mathrm{~A}}\right\|$)

For any $\mathbf{A} \in C^{n \times n}$ and $\varepsilon>0$,

$$
\left\|\mathrm{e}^{t \mathbf{A}}\right\| \leq \frac{L_{\varepsilon}}{2 \pi \varepsilon} \mathrm{e}^{t \alpha_{\varepsilon}(\mathbf{A})}
$$

where L_{ε} denotes the contour length of the boundary of $\sigma_{\varepsilon}(\mathbf{A})$.
For stable \mathbf{A} and any $\varepsilon>0$,

$$
\sup _{t \geq 0}\left\|\mathrm{e}^{t \mathbf{A}}\right\| \geq \frac{\alpha_{\varepsilon}(\mathbf{A})}{\varepsilon}
$$

Upper Bound on the Matrix Exponential from Pseudospectra

$$
\mathbf{A}=\left[\begin{array}{ccccc}
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & \ddots & 2 & \\
& & & -1 & 2 \\
& & & & -1
\end{array}\right] \in \mathbf{C}^{20 \times 20}
$$

Lower Bound on the Matrix Exponential from Pseudospectra

$$
\mathbf{A}=\left[\begin{array}{ccccc}
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & \ddots & 2 & \\
& & & -1 & 2 \\
& & & & -1
\end{array}\right] \in \mathbf{C}^{20 \times 20}
$$

Nonnormality in the Linearized PDE Example

Spectrum, pseudospectra, and numerical range (L^{2} norm, $\nu=0.02$)

Transient growth can feed the nonlinearity; cf. [Trefethen, Trefethen, Reddy, Driscoll 1993], [Baggett, Driscoll, Trefehen 1995]

Interlude:
 Pseudospectra for DAEs

Linear Stability Analysis for Fluid Flows

Pseudospectra/nornormality have provided a compelling tool for analyzing subcritical transition to turbulence in fluid flows, particularly for classical problems where the dynamics can be reduced to simple ODEs, e.g., Orr-Sommerfeld; e.g., [Butler, Farrell 1992], [Trefethen, Trefethen, Reddy, Driscoll 1993], [Reddy, Schmid, Henningson 1993], [Schmid, Henningson 2001].

More generally, for a given flow regime one needs to:

- Find a steady-state flow (Picard/Newton iterations).
- Linearize the flow about this steady-state to obtain

$$
\left[\begin{array}{cc}
\mathbf{M} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{v}^{\prime}(t) \\
\mathbf{p}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{F} & \mathbf{C}^{*} \\
\mathbf{C} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{v}(t) \\
\mathbf{p}(t)
\end{array}\right]
$$

which we write as $\mathbf{B x}^{\prime}(t)=\mathbf{A x}(t)$.

- Analyze the spectral properties of the pencil (A,B).
- Need a generalization of pseudospectra for matrix pencils.
- For 2d examples we use the IFISS package [Elman, Silvester, Ramage].

See, e.g., [Gunzberger 1989].

Pseudospectra of Matrix Pencils

- Many definitions of pseudospectra of matrix pencils have been proposed: [Riedel 1994], [Ruhe 1995], [Frayssé, Gueury, Nicoud, Toumazou 1996], etc.
- Further generalizations (polynomial, delay, nonlinear EVPs):
[Tisseur, Higham 2001], [Green, Wagenknecht 2006], [Bindel, Hood 2013].

Pseudospectra of Matrix Pencils

- Many definitions of pseudospectra of matrix pencils have been proposed: [Riedel 1994], [Ruhe 1995], [Frayssé, Gueury, Nicoud, Toumazou 1996], etc.
- Further generalizations (polynomial, delay, nonlinear EVPs):
[Tisseur, Higham 2001], [Green, Wagenknecht 2006], [Bindel, Hood 2013].
- Key: We use pseudospectra to analyze dynamics, rather than perturbations in eigenvalue computations.
- If B is invertible, the 'right' approach (cf. [Ruhe 1995]) considers

$$
\mathbf{x}^{\prime}(t)=\mathbf{B}^{-1} \mathbf{A} \mathbf{x}(t)
$$

and analyzes $\sigma_{\varepsilon}\left(\mathbf{B}^{-1} \mathbf{A}\right)$ in the correct physical norm.

Pseudospectra of Matrix Pencils

- When \mathbf{B} is singular, as it is when

$$
\mathbf{B}=\left[\begin{array}{cc}
\mathrm{M} & 0 \\
0 & \mathbf{0}
\end{array}\right]
$$

we must use tools from DAEs to understand transient dynamics [Cambpell, Meyer 1979], [Kunkel, Mehrmann 2006].

Pseudospectra of Matrix Pencils

- When \mathbf{B} is singular, as it is when

$$
\mathbf{B}=\left[\begin{array}{cc}
\mathrm{M} & 0 \\
0 & \mathbf{0}
\end{array}\right]
$$

we must use tools from DAEs to understand transient dynamics [Cambpell, Meyer 1979], [Kunkel, Mehrmann 2006].

- Simplest case: for invertible A we can write the Schur form

$$
\mathbf{A}^{-1} \mathbf{B}=\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{G} & \mathbf{S} \\
\mathbf{0} & \mathbf{N}
\end{array}\right]\left[\begin{array}{l}
\mathbf{U}_{1}^{*} \\
\mathbf{U}_{2}^{*}
\end{array}\right]
$$

for $\left[\mathbf{U}_{1} \mathbf{U}_{2}\right]$ unitary, \mathbf{G} invertible, and \mathbf{N} nilpotent.

Pseudospectra of Matrix Pencils

- When \mathbf{B} is singular, as it is when

$$
B=\left[\begin{array}{cc}
M & 0 \\
0 & 0
\end{array}\right]
$$

we must use tools from DAEs to understand transient dynamics
[Cambpell, Meyer 1979], [Kunkel, Mehrmann 2006].

- Simplest case: for invertible A we can write the Schur form

$$
\mathbf{A}^{-1} \mathbf{B}=\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{G} & \mathbf{S} \\
\mathbf{0} & \mathbf{N}
\end{array}\right]\left[\begin{array}{l}
\mathbf{U}_{1}^{*} \\
\mathbf{U}_{2}^{*}
\end{array}\right]
$$

for $\left[\mathbf{U}_{1} \mathbf{U}_{2}\right]$ unitary, \mathbf{G} invertible, and \mathbf{N} nilpotent.

- Then the dynamics evolve as

$$
\mathbf{x}(t)=\mathbf{U}_{1} \mathrm{e}^{t \mathbf{G}^{-1}} \mathbf{U}_{1}^{*} \mathbf{x}(0)
$$

for initial conditions that satisfy the algebraic constraints, $\mathbf{x}(0) \in \operatorname{Ran}\left(\mathbf{U}_{1}\right)$.

Pseudospectra of Matrix Pencils

- When \mathbf{B} is singular, as it is when

$$
B=\left[\begin{array}{cc}
M & 0 \\
0 & 0
\end{array}\right]
$$

we must use tools from DAEs to understand transient dynamics [Cambpell, Meyer 1979], [Kunkel, Mehrmann 2006].

- Simplest case: for invertible A we can write the Schur form

$$
\mathbf{A}^{-1} \mathbf{B}=\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{G} & \mathbf{S} \\
\mathbf{0} & \mathbf{N}
\end{array}\right]\left[\begin{array}{l}
\mathbf{U}_{1}^{*} \\
\mathbf{U}_{2}^{*}
\end{array}\right]
$$

for $\left[\mathbf{U}_{1} \mathbf{U}_{2}\right]$ unitary, \mathbf{G} invertible, and \mathbf{N} nilpotent.

- Then the dynamics evolve as

$$
\mathbf{x}(t)=\mathbf{U}_{1} \mathrm{e}^{t \mathbf{G}^{-1}} \mathbf{U}_{1}^{*} \mathbf{x}(0)
$$

for initial conditions that satisfy the algebraic constraints, $\mathbf{x}(0) \in \operatorname{Ran}\left(\mathbf{U}_{1}\right)$.

- To understand the transient dynamics, study $\sigma_{\varepsilon}\left(\mathbf{G}^{-1}\right)$ in the right norm.

Pseudospectra for Flow over a Backward Facing Step

This is a notorious fluid stability problem; see [Gresho et al. 1993].

To compute pseudospectra $\sigma_{\varepsilon}\left(\mathbf{G}^{-1}\right)$:

- Transform coordinates so the vector 2-norm approximates the energy norm for the PDE.
- Use the implicitly restarted Arnoldi algorithm (ARPACK/eigs) to compute the portion of \mathbf{G}^{-1} active on the invariant subspace associated with the 1000 smallest magnitude eigenvalues.
- Numerous helpful tools are available: [Cliffe, Garratt, Spence 1994], [Stykel 2008], [Heinkenschloss, Sorensen, Sun 2008].

Pseudospectra for Flow over a Backward Facing Step

Pseudospectra for Flow over a Backward Facing Step

Pseudospectra for Flow over a Backward Facing Step

Pseudospectra for Flow over a Backward Facing Step

Pseudospectra for Flow over a Backward Facing Step

Pseudospectra for Flow over a Backward Facing Step

Pseudospectra for Flow over a Backward Facing Step

Pseudospectra for Flow over a Backward Facing Step

Singular Values of Solutions of Lyapunov Equations

Bifurcation Detection

Determine bifurcation points in the parameterized linearized system

$$
\mathbf{x}^{\prime}(t)=(\mathbf{A}-\omega \boldsymbol{\Delta}) \mathbf{x}(t)
$$

- Assume that \mathbf{A} is stable.
- Find the smallest $|\omega|$ for which $\mathbf{A}-\omega \boldsymbol{\Delta}$ has an imaginary eigenvalue.

From classical bifurcation theory, this ω can be characterized as the smallest magnitude eigenvalue of the generalized eigenvalue problem

$$
\mathbf{A X}+\mathbf{X} \mathbf{A}^{*}=\omega\left(\mathbf{\Delta} \mathbf{X}+\mathbf{X} \boldsymbol{\Delta}^{*}\right)
$$

Bifurcation Detection

Determine bifurcation points in the parameterized linearized system

$$
\mathbf{x}^{\prime}(t)=(\mathbf{A}-\omega \mathbf{\Delta}) \mathbf{x}(t)
$$

- Assume that \mathbf{A} is stable.
- Find the smallest $|\omega|$ for which $\mathbf{A}-\omega \boldsymbol{\Delta}$ has an imaginary eigenvalue.

From classical bifurcation theory, this ω can be characterized as the smallest magnitude eigenvalue of the generalized eigenvalue problem

$$
\mathbf{A X}+\mathbf{X} \mathbf{A}^{*}=\omega\left(\mathbf{\Delta} \mathbf{X}+\mathbf{X} \boldsymbol{\Delta}^{*}\right)
$$

which can be written as

$$
\mathcal{L}_{\mathbf{A}} \mathbf{X}=\omega \mathcal{L}_{\Delta} \mathbf{X},
$$

with the Lyapunov operators $\mathcal{L}_{\mathbf{A}}, \mathcal{L}_{\boldsymbol{\Delta}}: \mathbf{C}^{n \times n} \rightarrow \mathbf{C}^{n \times n}$ given by

$$
\mathcal{L}_{\mathbf{A}} \mathbf{X}=\mathbf{A} \mathbf{X}+\mathbf{X} \mathbf{A}^{*}, \quad \mathcal{L}_{\boldsymbol{\Delta}} \mathbf{X}=\boldsymbol{\Delta} \mathbf{X}+\mathbf{X} \boldsymbol{\Delta}^{*}
$$

$\mathcal{L}_{\mathbf{A}}, \mathcal{L}_{\boldsymbol{\Delta}}: \mathbf{C}^{n \times n} \rightarrow \mathbf{C}^{n \times n}$ can be written in matrix form as $n^{2} \times n^{2}$ matrices.

Bifurcation Detection

From classical bifurcation theory, this ω can be characterized as the smallest magnitude eigenvalue of the generalized eigenvalue problem

$$
\mathbf{A X}+\mathbf{X} \mathbf{A}^{*}=\omega\left(\boldsymbol{\Delta} \mathbf{X}+\mathbf{X} \boldsymbol{\Delta}^{*}\right)
$$

which can be written as

$$
\mathcal{L}_{\mathbf{A}} \mathbf{X}=\omega \mathcal{L}_{\Delta} \mathbf{X}
$$

with the Lyapunov operators $\mathcal{L}_{\mathbf{A}}, \mathcal{L}_{\boldsymbol{\Delta}}: \mathbf{C}^{n \times n} \rightarrow \mathbf{C}^{n \times n}$ given by

$$
\mathcal{L}_{\mathbf{A}} \mathbf{X}=\mathbf{A} \mathbf{X}+\mathbf{X} \mathbf{A}^{*}, \quad \mathcal{L}_{\boldsymbol{\Delta}} \mathbf{X}=\boldsymbol{\Delta} \mathbf{X}+\mathbf{X} \boldsymbol{\Delta}^{*}
$$

$\mathcal{L}_{\mathbf{A}}, \mathcal{L}_{\boldsymbol{\Delta}}: \mathbf{C}^{n \times n} \rightarrow \mathbf{C}^{n \times n}$ can be written in matrix form as $n^{2} \times n^{2}$ matrices.
The simplest way to find the smallest eigenvalue of the resulting matrix pencil is inverse iteration, i.e., the power iteration $\mathbf{X}_{k+1}=\mathcal{L}_{\mathbf{A}}^{-1} \mathcal{L}_{\Delta} \mathbf{X}_{k}$.

Bifurcation Detection

From classical bifurcation theory, this ω can be characterized as the smallest magnitude eigenvalue of the generalized eigenvalue problem

$$
\mathbf{A X}+\mathbf{X} \mathbf{A}^{*}=\omega\left(\boldsymbol{\Delta} \mathbf{X}+\mathbf{X} \boldsymbol{\Delta}^{*}\right)
$$

which can be written as

$$
\mathcal{L}_{\mathbf{A}} \mathbf{X}=\omega \mathcal{L}_{\boldsymbol{\Delta}} \mathbf{X}
$$

with the Lyapunov operators $\mathcal{L}_{\mathbf{A}}, \mathcal{L}_{\boldsymbol{\Delta}}: \mathbf{C}^{n \times n} \rightarrow \mathbf{C}^{n \times n}$ given by

$$
\mathcal{L}_{\mathbf{A}} \mathbf{X}=\mathbf{A} \mathbf{X}+\mathbf{X} \mathbf{A}^{*}, \quad \mathcal{L}_{\boldsymbol{\Delta}} \mathbf{X}=\boldsymbol{\Delta} \mathbf{X}+\mathbf{X} \boldsymbol{\Delta}^{*}
$$

$\mathcal{L}_{\mathbf{A}}, \mathcal{L}_{\boldsymbol{\Delta}}: \mathbf{C}^{n \times n} \rightarrow \mathbf{C}^{n \times n}$ can be written in matrix form as $n^{2} \times n^{2}$ matrices.
The simplest way to find the smallest eigenvalue of the resulting matrix pencil is inverse iteration, i.e., the power iteration $\mathbf{X}_{k+1}=\mathcal{L}_{\mathbf{A}}^{-1} \mathcal{L}_{\Delta} \mathbf{X}_{k}$.

There are (at least) two problems with this approach for large n :

- Since \mathcal{L}_{A} is an $n^{2} \times n^{2}$ matrix, this could take up to $O\left(n^{6}\right)$ operations;
- We might not even be able to store the dense 'eigenvector' \mathbf{X}.

Bifurcation Detection: Lyapunov Inverse Iteration

Find the smallest $|\omega|$ such that

$$
\mathcal{L}_{\mathbf{A}} \mathbf{X}=\omega \mathcal{L}_{\Delta} \mathbf{X},
$$

for $\mathcal{L}_{\mathbf{A}}, \mathcal{L}_{\boldsymbol{\Delta}}: \mathbf{C}^{n \times n} \rightarrow \mathbf{C}^{n \times n}$ given by

$$
\mathcal{L}_{\mathbf{A}} \mathbf{X}=\mathbf{A X}+\mathbf{X A}^{*}, \quad \mathcal{L}_{\boldsymbol{\Delta}} \mathbf{X}=\mathbf{\Delta} \mathbf{X}+\mathbf{X} \boldsymbol{\Delta}^{*} .
$$

[Meerbergen, Spence, 2010] propose Lyapunov inverse iteration to find ω, which effectively applies $\mathcal{L}_{\mathbf{A}}^{-1}$ by solving a Lyapunov equation at each iteration.

Bifurcation Detection: Lyapunov Inverse Iteration

Find the smallest $|\omega|$ such that

$$
\mathcal{L}_{\mathbf{A}} \mathbf{X}=\omega \mathcal{L}_{\boldsymbol{\Delta}} \mathbf{X},
$$

for $\mathcal{L}_{\mathbf{A}}, \mathcal{L}_{\boldsymbol{\Delta}}: \mathbf{C}^{n \times n} \rightarrow \mathbf{C}^{n \times n}$ given by

$$
\mathcal{L}_{\mathbf{A}} \mathbf{X}=\mathbf{A} \mathbf{X}+\mathbf{X} \mathbf{A}^{*}, \quad \mathcal{L}_{\boldsymbol{\Delta}} \mathbf{X}=\boldsymbol{\Delta} \mathbf{X}+\mathbf{X} \boldsymbol{\Delta}^{*} .
$$

[Meerbergen, Spence, 2010] propose Lyapunov inverse iteration to find ω, which effectively applies $\mathcal{L}_{\mathbf{A}}^{-1}$ by solving a Lyapunov equation at each iteration.

- There exist good $O\left(n^{3}\right)$ methods for solving Lyapunov equations [Bartels, Stewart 1972], [Hammarling 1982].
- These methods still need to store the dense solution \mathbf{X}.
- When \mathbf{A} is stable, \mathbf{X} is (almost always) full rank.

We are particularly interested in bifurcation problems for nonlinear problems in fluid dynamics [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013].

Matrix Equations in Dynamical Systems

Many problems in model reduction, and control/dynamical systems in general, lead to matrix equations, the most common being the Lyapunov equation.
(See the recent survey on linear matrix equations by [Simoncini].)
Assume that $\mathbf{A} \in \mathbf{C}^{n \times n}$ is stable: all eigenvalues have negative real part.

Given the $n \times n$ matrix \mathbf{A} and the $n \times m$ matrix $\mathbf{B}(m \ll n)$, solve for the square $n \times n$ matrix \mathbf{X}.

Matrix Equations in Dynamical Systems

Many problems in model reduction, and control/dynamical systems in general, lead to matrix equations, the most common being the Lyapunov equation.
(See the recent survey on linear matrix equations by [Simoncini].)
Assume that $\mathbf{A} \in \mathbf{C}^{n \times n}$ is stable: all eigenvalues have negative real part.

Given the $n \times n$ matrix \mathbf{A} and the $n \times m$ matrix $\mathbf{B}(m \ll n)$, solve for the square $n \times n$ matrix \mathbf{X}.

Matrix Equations in Dynamical Systems

Many problems in model reduction, and control/dynamical systems in general, lead to matrix equations, the most common being the Lyapunov equation.
(See the recent survey on linear matrix equations by [Simoncini].)
Assume that $\mathbf{A} \in \mathbf{C}^{n \times n}$ is stable: all eigenvalues have negative real part.

Given the $n \times n$ matrix \mathbf{A} and the $n \times m$ matrix $\mathbf{B}(m \ll n)$, solve for the square $n \times n$ matrix \mathbf{X}.

- The solution \mathbf{X} is a Hermitian matrix.
- Under mild conditions ((\mathbf{A}, \mathbf{B}) controllable), \mathbf{X} is positive definite.
- Typically \mathbf{X} has n^{2} nonzeros: cannot directly store \mathbf{X} for large n.

Matrix Equations in Dynamical Systems

Many problems in model reduction, and control/dynamical systems in general, lead to matrix equations, the most common being the Lyapunov equation.
(See the recent survey on linear matrix equations by [Simoncini].)
Assume that $\mathbf{A} \in \mathbf{C}^{n \times n}$ is stable: all eigenvalues have negative real part.

Given the $n \times n$ matrix \mathbf{A} and the $n \times m$ matrix $\mathbf{B}(m \ll n)$, solve for the square $n \times n$ matrix \mathbf{X}.

- The solution \mathbf{X} is a Hermitian matrix.
- Under mild conditions ((\mathbf{A}, \mathbf{B}) controllable), \mathbf{X} is positive definite.
- Typically \mathbf{X} has n^{2} nonzeros: cannot directly store \mathbf{X} for large n.
- When m is small, the singular values of \mathbf{X} often decay quickly, depending on eigenvalues of \mathbf{A} (and related quantities) [Penzl 2000a, 2000b].

Low Rank Approximations from Iterative Methods

- How do spectral properties of \mathbf{A} affect the singular values of \mathbf{X} ?
- Iterative methods for solving the Lyapunov equation naturally construct low-rank approximations to \mathbf{X}. (Take $\operatorname{rank}(\mathbf{B})=1$ for simplicity.)

Low Rank Approximations from Iterative Methods

- How do spectral properties of \mathbf{A} affect the singular values of \mathbf{X} ?
- Iterative methods for solving the Lyapunov equation naturally construct low-rank approximations to \mathbf{X}. (Take $\operatorname{rank}(\mathbf{B})=1$ for simplicity.)
- Galerkin Projection Methods [Saad 1990; Simoncini 2007; ...]
- Let $\mathcal{K}_{k} \subseteq \mathbf{C}^{n}$ denote some k-dimensional subspace of \mathbf{C}^{n} e.g., a Krylov subspace, rational Krylov subspace, etc.
- Construct a Hermitian (rank $\leq k$) matrix $\mathbf{X}_{k} \in \mathbf{C}^{n \times n}$ such that

$$
\operatorname{Ran}\left(\mathbf{X}_{k}\right) \subset \mathcal{K}_{k} .
$$

Equivalently,

$$
\mathbf{X}_{k}:=\mathbf{Q} \mathbf{Y}_{k} \mathbf{Q}^{*} \in\left\{\mathbf{Q} \mathbf{Z} \mathbf{Q}^{*}: \mathbf{Z} \in \mathbf{C}^{k \times k}\right\},
$$

where the columns of $\mathbf{Q} \in \mathbf{C}^{n \times k}$ form an orthonormal basis for \mathcal{K}_{k}.

- Impose a Galerkin condition in the inner product $\langle\mathbf{S}, \mathbf{T}\rangle=\operatorname{tr}\left(\mathbf{T}^{*} \mathbf{S}\right)$:

$$
0=\left\langle\mathbf{A} \mathbf{X}_{k}+\mathbf{X}_{k} \mathbf{A}^{*}+\mathbf{B B}^{*}, \mathbf{Q} \mathbf{Z} \mathbf{Q}^{*}\right\rangle
$$

- which reduces to the $k \times k$ Lyapunov equation

$$
\left(\mathbf{Q}^{*} \mathbf{A Q}\right) \mathbf{Y}_{k}+\mathbf{Y}_{k}\left(\mathbf{Q}^{*} \mathbf{A} \mathbf{Q}\right)^{*}=-\left(\mathbf{Q}^{*} \mathbf{B}\right)\left(\mathbf{Q}^{*} \mathbf{B}\right)^{*} .
$$

Low Rank Approximations from Iterative Methods

- How do spectral properties of \mathbf{A} affect the singular values of \mathbf{X} ?
- Iterative methods for solving the Lyapunov equation naturally construct low-rank approximations to \mathbf{X}. (Take $\operatorname{rank}(\mathbf{B})=1$ for simplicity.)
- Alternating Direction Implicit (ADI) Methods [Smith 1968; Wachspress 1988; Penzl 2000a; ...]
- Set $\mathbf{X}_{0}=\mathbf{0}$.
- For $k=0,1, \ldots$, set

$$
\mathbf{X}_{k+1}=\mathbf{A}_{\mu_{k}} \mathbf{X}_{k} \mathbf{A}_{\mu_{k}}^{*}+\mathbf{B}_{\mu_{k}} \mathbf{B}_{\mu_{k}}^{*}
$$

where

$$
\mathbf{A}_{\mu_{k}}=\left(\mathbf{A}-\overline{\mu_{k}} \mathbf{I}\right)^{-1}\left(\mathbf{A}+\mu_{k} \mathbf{I}\right), \quad \mathbf{B}_{\mu_{k}}=\sqrt{2\left|\mu_{k}\right|}\left(\mathbf{A}-\overline{\mu_{k}} \mathbf{I}\right)^{-1} \mathbf{B}
$$

and the shifts $\left\{\mu_{k}\right\} \subset \mathbf{C}^{+}$are chosen to optimize convergence.

Low Rank Approximations from Iterative Methods

- How do spectral properties of \mathbf{A} affect the singular values of \mathbf{X} ?
- Iterative methods for solving the Lyapunov equation naturally construct low-rank approximations to \mathbf{X}. (Take $\operatorname{rank}(\mathbf{B})=1$ for simplicity.)
- Alternating Direction Implicit (ADI) Methods [Smith 1968; Wachspress 1988; Penzl 2000a; ...]
- Set $\mathbf{X}_{0}=\mathbf{0}$.
- For $k=0,1, \ldots$, set

$$
\mathbf{X}_{k+1}=\mathbf{A}_{\mu_{k}} \mathbf{X}_{k} \mathbf{A}_{\mu_{k}}^{*}+\mathbf{B}_{\mu_{k}} \mathbf{B}_{\mu_{k}}^{*}
$$

where

$$
\mathbf{A}_{\mu_{k}}=\left(\mathbf{A}-\overline{\mu_{k}} \mathbf{I}\right)^{-1}\left(\mathbf{A}+\mu_{k} \mathbf{I}\right), \quad \mathbf{B}_{\mu_{k}}=\sqrt{2\left|\mu_{k}\right|}\left(\mathbf{A}-\overline{\mu_{k}} \mathbf{I}\right)^{-1} \mathbf{B}
$$

and the shifts $\left\{\mu_{k}\right\} \subset \mathbf{C}^{+}$are chosen to optimize convergence.

- Generally one wants $\left\{-\mu_{k}\right\} \in \mathbf{C}^{-}$to cover the spectrum of \mathbf{A}.
- Extensive theoretical/practical work is devoted to finding best shifts.
- Favorable approximation properties of the shifts must be balanced against the cost of computing $\left(\mathbf{A}-\overline{\mu_{k}} \mathbf{I}\right)^{-1}$ for many different μ_{k} values.

Bounds on Decay of Singular Values of X

Denote the singular values of \mathbf{X} by

$$
s_{1} \geq s_{2} \geq \cdots \geq s_{n}>0
$$

- Let \mathbf{X}_{k} be a rank- k approximation to \mathbf{X}_{k} (e.g., from Galerkin or ADI).
- Any bound on $\left\|\mathbf{X}-\mathbf{X}_{k}\right\|$ becomes a bound on s_{k+1} by the Schmidt-Mirsky-Eckart-Young theorem:

$$
s_{k+1}=\min _{\operatorname{rank}(\widehat{\mathbf{X}}) \leq k}\|\mathbf{X}-\widehat{\mathbf{X}}\| \leq\left\|\mathbf{X}-\mathbf{X}_{k}\right\|
$$

- Similarly, s_{k+1} bounds the best performance attainable by any iterative method that constructs a rank- k approximation \mathbf{X}_{k}. (This is helpful for understanding if subspaces/shifts are near-optimal.)

Bounds on Decay of Singular Values of X

Denote the singular values of \mathbf{X} by

$$
s_{1} \geq s_{2} \geq \cdots \geq s_{n}>0
$$

- Let \mathbf{X}_{k} be a rank- k approximation to \mathbf{X}_{k} (e.g., from Galerkin or ADI).
- Any bound on $\left\|\mathbf{X}-\mathbf{X}_{k}\right\|$ becomes a bound on s_{k+1} by the Schmidt-Mirsky-Eckart-Young theorem:

$$
s_{k+1}=\min _{\operatorname{rank}(\widehat{\mathbf{X}}) \leq k}\|\mathbf{X}-\widehat{\mathbf{X}}\| \leq\left\|\mathbf{X}-\mathbf{X}_{k}\right\|
$$

- Similarly, s_{k+1} bounds the best performance attainable by any iterative method that constructs a rank- k approximation \mathbf{X}_{k}. (This is helpful for understanding if subspaces/shifts are near-optimal.)
- ADI Error Analysis. The error $\mathbf{E}_{k}=\mathbf{X}-\mathbf{X}_{k}$ satisfies

$$
\mathbf{E}_{k}=\phi_{k}(\mathbf{A}) \mathbf{X}\left(\phi_{k}(\mathbf{A})\right)^{*}, \quad \phi_{k}(z):=\prod_{j=1}^{k} \frac{z+\mu_{k}}{z-\overline{\mu_{k}}}
$$

Bounds on Decay of Singular Values of X

Denote the singular values of \mathbf{X} by

$$
s_{1} \geq s_{2} \geq \cdots \geq s_{n}>0
$$

- Let \mathbf{X}_{k} be a rank- k approximation to \mathbf{X}_{k} (e.g., from Galerkin or ADI).
- Any bound on $\left\|\mathbf{X}-\mathbf{X}_{k}\right\|$ becomes a bound on s_{k+1} by the Schmidt-Mirsky-Eckart-Young theorem:

$$
s_{k+1}=\min _{\operatorname{rank}(\widehat{\mathbf{X}}) \leq k}\|\mathbf{X}-\widehat{\mathbf{X}}\| \leq\left\|\mathbf{X}-\mathbf{X}_{k}\right\|
$$

- Similarly, s_{k+1} bounds the best performance attainable by any iterative method that constructs a rank- k approximation \mathbf{X}_{k}. (This is helpful for understanding if subspaces/shifts are near-optimal.)
- ADI Error Analysis. The error $\mathbf{E}_{k}=\mathbf{X}-\mathbf{X}_{k}$ satisfies

$$
\mathbf{E}_{k}=\phi_{k}(\mathbf{A}) \mathbf{X}\left(\phi_{k}(\mathbf{A})\right)^{*}, \quad \phi_{k}(z):=\prod_{j=1}^{k} \frac{z+\mu_{k}}{z-\overline{\mu_{k}}}
$$

- Hence we can bound the decay of the singular values of \mathbf{X} :

$$
\frac{s_{k+1}}{s_{1}} \leq \frac{\left\|\mathbf{E}_{k}\right\|}{\|\mathbf{X}\|} \leq\left\|\phi_{k}(\mathbf{A})\right\|^{2}
$$

Bounds on Decay of Singular Values of X

Since

$$
\frac{s_{k+1}}{s_{1}} \leq \frac{\left\|\mathbf{E}_{k}\right\|}{\|\mathbf{X}\|} \leq\left\|\phi_{k}(\mathbf{A})\right\|^{2}, \quad \text { with } \quad \phi_{k}(z):=\prod_{j=1}^{k} \frac{z+\mu_{k}}{z-\overline{\mu_{k}}}
$$

one obtains a bound on singular value decay by bounding $\left\|\phi_{k}(\mathbf{A})\right\|$.

- Eigenvalues and eigenvectors. For diagonalizable $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}$,

$$
\left\|\phi_{k}(\mathbf{A})\right\| \leq\|\mathbf{V}\|\left\|\mathbf{V}^{-1}\right\| \max _{z \in \sigma(\mathbf{A})} \prod_{j=1}^{k} \frac{\left|z+\mu_{k}\right|}{\left|z-\overline{\mu_{k}}\right|}
$$

giving the bound

$$
\frac{s_{k+1}}{s_{1}} \leq\|\mathbf{V}\|^{2}\left\|\mathbf{V}^{-1}\right\|^{2} \max _{z \in \sigma(\mathbf{A})} \prod_{j=1}^{k} \frac{\left|z+\mu_{k}\right|^{2}}{\left|z-\overline{\mu_{k}}\right|^{2}}
$$

which can be optimized over the shifts $\left\{\mu_{1}, \ldots, \mu_{k}\right\} \subset \mathbf{C}^{+}$ [Levenberg \& Reichel 1993; Penzl 2000b; Sorensen \& Zhou 2002].

Bounds on Decay of Singular Values of X

Since

$$
\frac{s_{k+1}}{s_{1}} \leq \frac{\left\|\mathbf{E}_{k}\right\|}{\|\mathbf{X}\|} \leq\left\|\phi_{k}(\mathbf{A})\right\|^{2}, \quad \text { with } \quad \phi_{k}(z):=\prod_{j=1}^{k} \frac{z+\mu_{k}}{z-\overline{\mu_{k}}}
$$

one obtains a bound on singular value decay by bounding $\left\|\phi_{k}(\mathbf{A})\right\|$.

- Numerical range. Suppose the field of values

$$
W(\mathbf{A})=\left\{\mathbf{v}^{*} \mathbf{A} \mathbf{v}:\|\mathbf{v}\|=1\right\}
$$

is contained in the open left-half plane. Crouzeix's Theorem gives

$$
\left\|\phi_{k}(\mathbf{A})\right\| \leq C \max _{z \in W(\mathbf{A})} \prod_{j=1}^{k} \frac{\left|z+\mu_{k}\right|}{\left|z-\overline{\mu_{k}}\right|}
$$

with Crouzeix's constant $C \in[2,11.08]$. Thus

$$
\frac{s_{k+1}}{s_{1}} \leq C^{2} \max _{z \in W(\mathbf{A})} \prod_{j=1}^{k} \frac{\left|z+\mu_{k}\right|^{2}}{\left|z-\overline{\mu_{k}}\right|^{2}}
$$

Bounds on Decay of Singular Values of X

Since

$$
\frac{s_{k+1}}{s_{1}} \leq \frac{\left\|\mathbf{E}_{k}\right\|}{\|\mathbf{X}\|} \leq\left\|\phi_{k}(\mathbf{A})\right\|^{2}, \quad \text { with } \quad \phi_{k}(z):=\prod_{j=1}^{k} \frac{z+\mu_{k}}{z-\overline{\mu_{k}}}
$$

one obtains a bound on singular value decay by bounding $\left\|\phi_{k}(\mathbf{A})\right\|$.

- Pseudospectra. Suppose for some $\varepsilon>0$ the ε-pseudospectrum

$$
\sigma_{\varepsilon}(\mathbf{A})=\left\{z \in \mathbf{C}:\left\|(z \mathbf{I}-\mathbf{A})^{-1}\right\|>1 / \varepsilon\right\}
$$

is contained in the open left-half plane. Then

$$
\left\|\phi_{k}(\mathbf{A})\right\| \leq \frac{L_{\varepsilon}}{2 \pi \varepsilon} \max _{z \in \sigma_{\varepsilon}(\mathbf{A})} \prod_{j=1}^{k} \frac{\left|z+\mu_{k}\right|}{\left|z-\overline{\mu_{k}}\right|}
$$

where L_{ε} denotes the contour length of the boundary of $\sigma_{\varepsilon}(\mathbf{A})$. Thus

$$
\frac{s_{k+1}}{s_{1}} \leq \frac{L_{\varepsilon}^{2}}{4 \pi^{2} \varepsilon^{2}} \max _{z \in \sigma_{\varepsilon}(\mathbf{A})} \prod_{j=1}^{k} \frac{\left|z+\mu_{k}\right|^{2}}{\left|z-\overline{\mu_{k}}\right|^{2}}
$$

[Levenberg \& Reichel 1993; Sabino 2006].

Nonnormality and Singular Values Decay Bounds

Consider this experiment:
Fix the spectrum $\sigma(\mathbf{A})$ but let the departure of \mathbf{A} from normality increase.

- There are many essentially equivalent ways to measure departure from normality [Grone et al. 1987; Elsner \& Paardekooper 1987].
- As the departure of \mathbf{A} from normality increases, typically:
$-\kappa(\mathbf{V})$ increases;
- W(A) gets larger;
$-\sigma_{\varepsilon}(\mathbf{A})$ gets larger and/or $L_{\varepsilon} /(2 \pi \varepsilon)$ increases.

Nonnormality and Singular Values Decay Bounds

Consider this experiment:
Fix the spectrum $\sigma(\mathbf{A})$ but let the departure of \mathbf{A} from normality increase.

- There are many essentially equivalent ways to measure departure from normality [Grone et al. 1987; Elsner \& Paardekooper 1987].
- As the departure of \mathbf{A} from normality increases, typically:
$-\kappa(\mathbf{V})$ increases;
- W(A) gets larger;
$-\sigma_{\varepsilon}(\mathbf{A})$ gets larger and/or $L_{\varepsilon} /(2 \pi \varepsilon)$ increases.
- All bounds described thus far predict slower decay of singular values of \mathbf{X}.

$$
\frac{s_{k+1}}{s_{1}} \leq\|\mathbf{V}\|^{2}\left\|\mathbf{V}^{-1}\right\|^{2} \max _{z \in \sigma(\mathbf{A})} \prod_{j=1}^{k} \frac{\left|z+\mu_{k}\right|^{2}}{\left|z-\overline{\mu_{k}}\right|^{2}}
$$

$$
\frac{s_{k+1}}{s_{1}} \leq C^{2} \max _{z \in W(\mathbf{A})} \prod_{j=1}^{k} \frac{\left|z+\mu_{k}\right|^{2}}{\left|z-\overline{\mu_{k}}\right|^{2}}
$$

$$
\frac{s_{k+1}}{s_{1}} \leq \frac{L_{\varepsilon}^{2}}{4 \pi^{2} \varepsilon^{2}} \max _{z \in \sigma_{\varepsilon}(\mathrm{A})} \prod_{j=1}^{k} \frac{\left|z+\mu_{k}\right|^{2}}{\left|z-\overline{\mu_{k}}\right|^{2}}
$$

Nonnormality and Singular Values Decay Bounds

The same is true for bounds derived by entirely different methods.

- [Antoulas, Sorensen, Zhou, 2002] show (for $\operatorname{rank}(B)=1)$,

$$
\frac{s_{k+1}}{s_{1}} \leq 2(n-k)^{2}\|\mathbf{V}\|^{2}\left\|\mathbf{V}^{-1}\right\|^{2}\|\mathbf{A}\| \delta_{k+1}
$$

where

$$
\delta_{k}=-\frac{1}{2 \operatorname{Re} \lambda_{k}} \prod_{j=1}^{k-1} \frac{\left|\lambda_{k}-\lambda_{j}\right|^{2}}{\left|\lambda_{k}+\overline{\lambda_{j}}\right|^{2}}
$$

with the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of \mathbf{A} ordered to make $\delta_{1} \geq \delta_{2} \geq \cdots \geq \delta_{n}$.

- [Truhar \& Veselić 2007] derive an alternative to this last bound that involves $\|\mathbf{V}\|^{2}\left\|\widehat{\mathbf{b}}_{j}\right\|^{2}$, where $\widehat{\mathbf{b}}_{j}^{*}$ denotes the j th row of $\mathbf{V}^{-1} \mathbf{B}$.
- For the infinite dimensional case, [Grubisic \& Kressner 2014] get a bound that involves $\|\mathbf{V}\|^{2}\left\|\mathbf{V}^{-1}\right\|^{2}$, where \mathbf{V} is the transformation that orthogonalizes a Riesz basis of eigenvectors.
- Error bounds for Galerkin projection typically involve some approximation problem on $W(\mathbf{A})$ that gets increasingly difficult as $W(A)$ gets larger; see, e.g., [Beckermann 2011; Druskin, Knizhnerman, Simoncini 2011].

An Example from Bifurcation Detection

An example from [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013]:

- 2d flow over an backward-facing step, viscosity $\nu=1 / 400$, discretized using $Q_{2}-Q_{1}$ finite elements via IFISS [Elman, Silvester, Ramage].
- Problem can be recast as a standard Lyapunov inverse iteration problem (linearize about steady state; map infinite eigenvalues; invert mass matrix).

An Example from Bifurcation Detection

An example from [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013]:

- 2d flow over an backward-facing step, viscosity $\nu=1 / 400$, discretized using $Q_{2}-Q_{1}$ finite elements via IFISS [Elman, Silvester, Ramage].
- Problem can be recast as a standard Lyapunov inverse iteration problem (linearize about steady state; map infinite eigenvalues; invert mass matrix).
- The resulting matrix is nondiagonalizable,

rightmost eigenvalues of \mathbf{A}

An Example from Bifurcation Detection

An example from [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013]:

- 2d flow over an backward-facing step, viscosity $\nu=1 / 400$, discretized using $Q_{2}-Q_{1}$ finite elements via IFISS [Elman, Silvester, Ramage].
- Problem can be recast as a standard Lyapunov inverse iteration problem (linearize about steady state; map infinite eigenvalues; invert mass matrix).
- The resulting matrix is nondiagonalizable, and has a large numerical range,

$W(\mathbf{A})$ and $\sigma(\mathbf{A})$

An Example from Bifurcation Detection

An example from [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013]:

- 2d flow over an backward-facing step, viscosity $\nu=1 / 400$, discretized using $Q_{2}-Q_{1}$ finite elements via IFISS [Elman, Silvester, Ramage].
- Problem can be recast as a standard Lyapunov inverse iteration problem (linearize about steady state; map infinite eigenvalues; invert mass matrix).
- The resulting matrix is nondiagonalizable, and has a large numerical range, but the singular values still decay very rapidly.

The Connection between $W(\mathbf{A})$ and $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$

The Hermitian part of \mathbf{A} is $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$.

$$
\begin{aligned}
\text { eigenvalues of } \mathbf{A}: & \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \\
\text { eigenvalues of } \frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right): & \omega_{n} \leq \omega_{n-1} \leq \cdots \leq \omega_{1}
\end{aligned}
$$

Recall that the numerical range $W(\mathbf{A})$ is the set of all Rayleigh quotients:

$$
W(\mathbf{A})=\left\{\mathbf{v}^{*} \mathbf{A} \mathbf{v}:\|\mathbf{v}\|=1\right\}
$$

Now if $z \in W(\mathbf{A})$, then

$$
\operatorname{Re} z=\frac{z+z^{*}}{2}=\frac{\mathbf{v}^{*} \mathbf{A} \mathbf{v}+\left(\mathbf{v}^{*} \mathbf{A}^{*} \mathbf{v}\right)^{*}}{2}=\mathbf{v}^{*}\left(\frac{\mathbf{A}+\mathbf{A}^{*}}{2}\right) \mathbf{v}
$$

The Connection between $W(\mathbf{A})$ and $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$

The Hermitian part of \mathbf{A} is $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$.

$$
\begin{aligned}
\text { eigenvalues of } \mathbf{A}: & \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \\
\text { eigenvalues of } \frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right): & \omega_{n} \leq \omega_{n-1} \leq \cdots \leq \omega_{1}
\end{aligned}
$$

Recall that the numerical range $W(\mathbf{A})$ is the set of all Rayleigh quotients:

$$
W(\mathbf{A})=\left\{\mathbf{v}^{*} \mathbf{A} \mathbf{v}:\|\mathbf{v}\|=1\right\}
$$

Now if $z \in W(\mathbf{A})$, then

$$
\operatorname{Re} z=\frac{z+z^{*}}{2}=\frac{\mathbf{v}^{*} \mathbf{A} \mathbf{v}+\left(\mathbf{v}^{*} \mathbf{A}^{*} \mathbf{v}\right)^{*}}{2}=\mathbf{v}^{*}\left(\frac{\mathbf{A}+\mathbf{A}^{*}}{2}\right) \mathbf{v}
$$

Hence the extreme eigenvalues of $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$ dictate the real extent of $W(\mathbf{A})$:

$$
\operatorname{Re} W(\mathbf{A})=\left[\omega_{n}, \omega_{1}\right]
$$

The Connection Between $W(\mathbf{A})$ and $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$

The extreme eigenvalues of $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$ dictate the real extent of $W(\mathbf{A})$:

$$
\operatorname{Re} W(\mathbf{A})=\left[\omega_{n}, \omega_{1}\right] .
$$

W(A) computed with Higham's Test Matrix Toolbox

An Extreme Example Illuminates: No Decay

-What properties of \mathbf{A} permit a solution \mathbf{X} with no singular value decay?

An Extreme Example Illuminates: No Decay

- What properties of \mathbf{A} permit a solution \mathbf{X} with no singular value decay?
- No decay $\Longrightarrow \mathbf{X}$ is a Hermitian matrix with $s_{1}=\cdots=s_{n}$, i.e.,

$$
\mathbf{X}=\xi \mathbf{I}
$$

for some real $\xi>0$.

- Substituting this \mathbf{X} into the Lyapunov equation $\mathbf{A X}+\mathbf{X A}^{*}=-\mathbf{B B}^{*}$,

$$
\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)=-\frac{1}{2 \xi} \mathbf{B B}^{*}
$$

- $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$ is a negative semidefinite matrix of rank equal to $\operatorname{rank}(\mathbf{B})$.

An Extreme Example Illuminates: No Decay

- What properties of \mathbf{A} permit a solution \mathbf{X} with no singular value decay?
- No decay $\Longrightarrow \mathbf{X}$ is a Hermitian matrix with $s_{1}=\cdots=s_{n}$, i.e.,

$$
\mathbf{X}=\xi \mathbf{I}
$$

for some real $\xi>0$.

- Substituting this \mathbf{X} into the Lyapunov equation $\mathbf{A X}+\mathbf{X A}^{*}=-\mathbf{B B}^{*}$,

$$
\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)=-\frac{1}{2 \xi} \mathbf{B B}^{*}
$$

- $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$ is a negative semidefinite matrix of rank equal to $\operatorname{rank}(\mathbf{B})$.

Worst case singular value decay $\Longleftrightarrow \operatorname{Re} W(\mathbf{A})=\left[\omega_{n}, 0\right]$.
If $W(\mathbf{A})$ extends into the right-half plane, the singular values must decay.

Solvable Example: Jordan Block

An intriguing example from [Sabino 2006]:

$$
\mathbf{A}=\left[\begin{array}{rr}
-1 & \alpha \\
0 & -1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}
t \\
1
\end{array}\right]
$$

Increasing α increases the distance of \mathbf{A} from normality.

Solvable Example: Jordan Block

An intriguing example from [Sabino 2006]:

$$
\mathbf{A}=\left[\begin{array}{rr}
-1 & \alpha \\
0 & -1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}
t \\
1
\end{array}\right]
$$

Increasing α increases the distance of \mathbf{A} from normality.

The Lyapunov equation $\mathbf{A X}+\mathbf{X A}^{*}=-\mathbf{B B}^{*}$ has solution

$$
\mathbf{X}=\frac{1}{4}\left[\begin{array}{cc}
2 t^{2}+2 \alpha t+\alpha^{2} & \alpha+2 t \\
\alpha+2 t & 2
\end{array}\right]
$$

Maximizing over all $t \in \mathbb{R}$ gives the worst case singular value 'decay'

$$
\frac{s_{2}}{s_{1}}=\frac{\operatorname{tr}(\mathbf{X})-\sqrt{\operatorname{tr}(\mathbf{X})^{2}-4 \operatorname{det}(\mathbf{X})}}{\operatorname{tr}(\mathbf{X})+\sqrt{\operatorname{tr}(\mathbf{X})^{2}-4 \operatorname{det}(\mathbf{X})}}= \begin{cases}\alpha^{2} / 4, & 0<\alpha \leq 2 \\ 4 / \alpha^{2}, & 2 \leq \alpha\end{cases}
$$

Solvable Example: Jordan Block

$$
\frac{s_{2}}{s_{1}}= \begin{cases}\alpha^{2} / 4, & 0<\alpha \leq 2 \\ 4 / \alpha^{2}, & 2 \leq \alpha\end{cases}
$$

A More Nuanced Approach to Decay Bounds

We seek a different kind of decay bound that does a better job of handling matrices that are far from normal.

If the singular values of \mathbf{X} decay slowly, what must be true of \mathbf{A} ?

A More Nuanced Approach to Decay Bounds

We seek a different kind of decay bound that does a better job of handling matrices that are far from normal.

If the singular values of \mathbf{X} decay slowly, what must be true of \mathbf{A} ?

- Write $\mathbf{X}=s_{1}(\mathbf{I}-\mathbf{E})$ for some $\mathbf{E}=\mathbf{E}^{*}$, and sub into $\mathbf{A X}+\mathbf{X} \mathbf{A}^{*}=-\mathbf{B B}^{*}$:

$$
\mathbf{A}+\mathbf{A}^{*}=\left(\mathbf{A E}+\mathbf{E A}^{*}\right)-\frac{1}{s_{1}} \mathbf{B B}^{*}
$$

A More Nuanced Approach to Decay Bounds

We seek a different kind of decay bound that does a better job of handling matrices that are far from normal.

If the singular values of \mathbf{X} decay slowly, what must be true of \mathbf{A} ?

- Write $\mathbf{X}=s_{1}(\mathbf{I}-\mathbf{E})$ for some $\mathbf{E}=\mathbf{E}^{*}$, and sub into $\mathbf{A X}+\mathbf{X} \mathbf{A}^{*}=-\mathbf{B B}^{*}$:

$$
\mathbf{A}+\mathbf{A}^{*}=\left(\mathbf{A E}+\mathbf{E A}^{*}\right)-\frac{1}{s_{1}} \mathbf{B B}^{*}
$$

- Bound $\omega_{1}=\max \operatorname{Re} W(\mathbf{A})$ in terms of singular values of \mathbf{X} :

$$
\omega_{1}=\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{*}\left(\mathbf{A}+\mathbf{A}^{*}\right) \mathbf{v}}{2}=\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{*}\left(\mathbf{A E}+\mathbf{E A}^{*}\right) \mathbf{v}}{2}-\frac{\mathbf{v}^{*} \mathbf{B B ^ { * } \mathbf { v }}}{2 s_{1}}
$$

A More Nuanced Approach to Decay Bounds

We seek a different kind of decay bound that does a better job of handling matrices that are far from normal.

If the singular values of \mathbf{X} decay slowly, what must be true of \mathbf{A} ?

- Write $\mathbf{X}=s_{1}(\mathbf{I}-\mathbf{E})$ for some $\mathbf{E}=\mathbf{E}^{*}$, and sub into $\mathbf{A X}+\mathbf{X} \mathbf{A}^{*}=-\mathbf{B B}^{*}$:

$$
\mathbf{A}+\mathbf{A}^{*}=\left(\mathbf{A E}+\mathbf{E A}^{*}\right)-\frac{1}{s_{1}} \mathbf{B B}^{*}
$$

- Bound $\omega_{1}=\max \operatorname{Re} W(\mathbf{A})$ in terms of singular values of \mathbf{X} :

$$
\omega_{1}=\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{*}\left(\mathbf{A}+\mathbf{A}^{*}\right) \mathbf{v}}{2}=\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{*}\left(\mathbf{A E}+\mathbf{E A}^{*}\right) \mathbf{v}}{2}-\underbrace{\frac{\mathbf{v}^{*} \mathbf{B B} B^{*} \mathbf{v}}{2 s_{1}}}_{\text {nonnegative }}
$$

A More Nuanced Approach to Decay Bounds

We seek a different kind of decay bound that does a better job of handling matrices that are far from normal.

If the singular values of \mathbf{X} decay slowly, what must be true of \mathbf{A} ?

- Write $\mathbf{X}=s_{1}(\mathbf{I}-\mathbf{E})$ for some $\mathbf{E}=\mathbf{E}^{*}$, and sub into $\mathbf{A X}+\mathbf{X} \mathbf{A}^{*}=-\mathbf{B B}^{*}$:

$$
\mathbf{A}+\mathbf{A}^{*}=\left(\mathbf{A E}+\mathbf{E A}^{*}\right)-\frac{1}{s_{1}} \mathbf{B B}^{*}
$$

- Bound $\omega_{1}=\max \operatorname{Re} W(\mathbf{A})$ in terms of singular values of \mathbf{X} :

$$
\begin{aligned}
\omega_{1}=\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{*}\left(\mathbf{A}+\mathbf{A}^{*}\right) \mathbf{v}}{2} & =\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{*}\left(\mathbf{A E}+\mathbf{E A}^{*}\right) \mathbf{v}}{2}-\underbrace{\frac{\mathbf{v}^{*} \mathbf{B} \mathbf{B}^{*} \mathbf{v}}{2 s_{1}}}_{\text {nonnegative }} \\
& \leq \max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{*}\left(\mathbf{A E}+\mathbf{E A}^{*}\right) \mathbf{v}}{2}
\end{aligned}
$$

A More Nuanced Approach to Decay Bounds

We seek a different kind of decay bound that does a better job of handling matrices that are far from normal.

If the singular values of \mathbf{X} decay slowly, what must be true of \mathbf{A} ?

- Write $\mathbf{X}=s_{1}(\mathbf{I}-\mathbf{E})$ for some $\mathbf{E}=\mathbf{E}^{*}$, and sub into $\mathbf{A X}+\mathbf{X} \mathbf{A}^{*}=-\mathbf{B B}^{*}$:

$$
\mathbf{A}+\mathbf{A}^{*}=\left(\mathbf{A E}+\mathbf{E A}^{*}\right)-\frac{1}{s_{1}} \mathbf{B B}^{*}
$$

- Bound $\omega_{1}=\max \operatorname{Re} W(\mathbf{A})$ in terms of singular values of \mathbf{X} :

$$
\begin{aligned}
\omega_{1}=\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{*}\left(\mathbf{A}+\mathbf{A}^{*}\right) \mathbf{v}}{2} & =\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{*}\left(\mathbf{A E}+\mathbf{E A}^{*}\right) \mathbf{v}}{2}-\underbrace{\frac{\mathbf{v}^{*} \mathbf{B} \mathbf{B}^{*} \mathbf{v}}{2 s_{1}}}_{\text {nonnegative }} \\
& \leq \max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{*}\left(\mathbf{A E}+\mathbf{E A}^{*}\right) \mathbf{v}}{2} \\
& \leq \frac{1}{2}\left\|\mathbf{A E}+\mathbf{E A}^{*}\right\|
\end{aligned}
$$

A More Nuanced Approach to Decay Bounds, continued

In summary: for $\mathbf{X}=s_{1}(\mathbf{I}-\mathbf{E})$,

$$
\begin{aligned}
\omega_{1} & \leq \frac{1}{2}\left\|\mathbf{A} \mathbf{E}+\mathbf{E A}^{*}\right\| \\
& \leq\|\mathbf{A}\|\|\mathbf{E}\|
\end{aligned}
$$

Thus we have bounded the relative size of the last singular value:

$$
\frac{s_{n}}{s_{1}} \leq 1-\frac{\omega_{1}}{\|\mathbf{A}\|}
$$

A More Nuanced Approach to Decay Bounds, continued

In summary: for $\mathbf{X}=s_{1}(\mathbf{I}-\mathbf{E})$,

$$
\begin{aligned}
\omega_{1} & \leq \frac{1}{2}\left\|\mathbf{A} \mathbf{E}+\mathbf{E A}^{*}\right\| \\
& \leq\|\mathbf{A}\|\|\mathbf{E}\|
\end{aligned}
$$

Since $\mathbf{E}=\mathbf{E}^{*}=\mathbf{I}-\mathbf{X} / s_{1}$,

$$
\text { eigenvalues of } \mathbf{E}=1-\frac{\text { eigenvalues of } \mathbf{X}}{s_{1}}=1-\frac{s_{j}}{s_{1}} \text {, }
$$

so

$$
\|\mathbf{E}\|=1-\frac{s_{n}}{s_{1}}
$$

Thus we have bounded the relative size of the last singular value:

$$
\frac{s_{n}}{s_{1}} \leq 1-\frac{\omega_{1}}{\|\mathbf{A}\|}
$$

A Family of Decay Bounds

We have only bounded s_{n} / s_{1} here; more general bounds are possible.
Theorem. Suppose \mathbf{A} is a stable matrix with $\mathbf{A X}+\mathbf{X A}^{*}=-\mathbf{B B}^{*}$.
Let $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$ denote the singular values of of \mathbf{X}, and $\omega_{1} \geq \omega_{2} \geq \cdots \geq \omega_{n}$ denote the eigenvalues of $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$. Then

$$
\frac{s_{k}}{s_{1}}-1-\frac{\|\mathbf{B}\|^{2}}{2 s_{1}\|\mathbf{A}\|} \leq \frac{\omega_{k}}{\|\mathbf{A}\|} \leq 1-\frac{s_{n-k+1}}{s_{1}}
$$

which includes this bound on the trailing singular values,

$$
\frac{s_{n-k+1}}{s_{1}} \leq 1-\frac{\omega_{k}}{\|\mathbf{A}\|},
$$

which gives faster singular value decay as the departure of \mathbf{A} from normality increases.
[Baker, E., Sabino, arXiv:1410.8741]

Possible and Impossible $W(\mathbf{A})$

Corollary. $\quad-\frac{\|\mathbf{B}\|^{2}}{2 s_{1}} \leq \omega_{1} \leq \frac{s_{1}-s_{n}}{s_{1}+s_{n}}\|\mathbf{A}\|$
Suppose that $\|\mathbf{A}\|=\|\mathbf{B}\|=s_{1}=1$ and $s_{n}=1 / 2$.

Given this data, the two dashed curves are not possible boundaries of $W(\mathbf{A})$, while the solid curve could be the boundary of $W(\mathbf{A})$.

Summary

$$
\frac{s_{n-k+1}}{s_{1}} \leq 1-\frac{\omega_{k}}{\|\mathbf{A}\|}
$$

- The bound does not depend on $\operatorname{rank}(\mathbf{B})$.
- The departure from normality (as reflected by $\omega_{k}>0$) plays a very different role from the previously known bounds.
- The bound is not necessarily sharp. Take $\alpha \rightarrow \infty$ in the Jordan example:

$$
\mid \mathbf{A} \| \sim \alpha, \quad \omega_{1}(\mathbf{A})=\frac{\alpha}{2}-1
$$

so

$$
\frac{s_{n}}{s_{1}} \rightarrow 0 \quad \text { while } \quad 1-\frac{\omega_{1}}{\|\mathbf{A}\|} \sim \frac{1}{2}
$$

- There is more to understand about the solutions to Lyapunov (and Sylvester) equations with coefficients that are far from normal.
- The eigenvalues of $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right)$ reveal a great deal! Cf. [Carden, E. 2012].

