BLACKSBURG MATH CIRCLE: SATURDAY, AUGUST 29, 2015

Warm-up Problems, multiple sources

Choose a few of these problems to work on as you get settled in today. You don't need to complete all of the problems now. Once you've thought about a problem on your own, talk to someone sitting near you about your ideas.

1. Find a two-digit number, the sum of whose digits does not change when the number is multiplied by any one-digit number.
2. Find a way to cut a 3×9 rectangle into 8 squares.
3. In the following multiplication problem, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ are different positive integers. Determine their values.

$$
\begin{gathered}
A B C D E \\
\times 4 \\
----- \\
E D C B A
\end{gathered}
$$

4. Find the smallest integer whose first digit is 7 and which is reduced to $1 / 3$ of its original value when its first digit is transferred to the end. Then find all integers with this property.
5. In equilateral triangle $A B C$, the point P is on $A B$ so that $A P=A B / 3$ and the point Q is on BC so that $\mathrm{BQ}=\mathrm{BC} / 3$, and the point R is on CA so that $\mathrm{CR}=\mathrm{CA} / 3$. The lines $\mathrm{CP}, \mathrm{AQ}, \mathrm{BR}$ enclose a triangle. Find the ratio of the area of this triangle to the area of ABC .
6. Five different numbers are given. By computing all of the different sums of 2 numbers, we get the list $8,11,13,14,15,16,18,19,21$, where, possibly, some of the numbers in the list have occurred more than once. Find the 5 numbers.
7. Can you arrange the numbers $1,2, \ldots, 9$ along a circle in such a way that the sum of two neighbors is never divisible by 3,5 , or 7 ?
