BLACKSBURG MATH CIRCLE

Lesson I: Vector calculus and its applications

To represent a vector, we draw an arrow connecting two points in space (as in figure below), and write it as $\overrightarrow{A B} . A$ is the tail and B is the head of this vector. Two vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are called equal if they are equal in both magnitude and direction, meaning that one can be obtained from another by translation. Note that $\overrightarrow{A B}=\overrightarrow{C D}$ exactly when the quadrilateral $A \underline{B D C}$ is a parallelogram. We will denote by $|\overrightarrow{A B}|=A B$ the magnitude of vector $\overrightarrow{A B}$.

Addition of vectors. Given two vectors, \vec{u} and \vec{v}, their sum $\vec{u}+\vec{v}$ is defined as follows. Pick any $\overrightarrow{A B}=\vec{u}$ and choose $\overrightarrow{B C}=\vec{v}$. Then $\vec{u}+\vec{v}=\overrightarrow{A C}$ (tail to head rule).

Commutativity: $\vec{u}+\vec{v}=\vec{v}+\vec{u}$ for all vectors \vec{u}, \vec{v}.
Associativity: $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$ for all vectors $\vec{u}, \vec{v}, \vec{w}$.

Problem 0.1. Prove the relations above.
Multiplication of vectors by scalars. Given a scalar (i.e. a real number) α and a vector \vec{v}, one can form a new vector denoted $\alpha \vec{v}$ and called the product of the scalar and the vector. Let $\vec{v}=\overrightarrow{A B}$, then we fix the head A, and send the head B to another point C such that the segment $A C$ is on the same line as $A B$, but is scaled by a factor α. If $\alpha>0$ than points B, C are chosen to lie on the same side from the point A (the vectors $\alpha \vec{v}$ and \vec{v} point in the same direction). If $\alpha<0$ than A lies between B and C (i.e. the vector $\alpha \vec{v}$ reverse direction if $\alpha<0$). When $\alpha=0$ we get the zero vector $\overrightarrow{0}$ (meaning that points A and C coincide).

Distributivity and compatibility:

$$
\alpha(\vec{u}+\vec{v})=\alpha \vec{v}+\alpha \vec{u} ; \quad(\alpha+\beta) \vec{u}=\alpha \vec{u}+\beta \vec{u} ; \quad(\alpha \beta) \vec{u}=\alpha(\beta \vec{u})
$$

for all vectors \vec{u}, \vec{v} and all scalars α, β.
Problem 0.2. Check the relations above.
The vector $(-1) \vec{u}$ is denoted simply by $-\vec{u}$. If $\vec{u}=\overrightarrow{A B}$, then by distributive property $-\vec{u}=\overrightarrow{B A}$ (the opposite vector).

If $\vec{u}=\overrightarrow{A B}$ and $\vec{v}=\overrightarrow{A C}$ (common tail), then the difference of vectors \vec{v} and \vec{u} is $\vec{v}-\vec{u}=\overrightarrow{B C}$ (because $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$).

Problem 0.3. Prove the Varignon's theorem (1731): The midpoints of the sides of an arbitrary quadrangle form a parallelogram.

Problem 0.4. Let A, B, C, D be points on a plane such that $A C$ and $B D$ are noncollinear segments. Suppose that numbers α, β are such that the vectors $\vec{u}=\alpha \overrightarrow{A C}$ and $\vec{v}=\beta \overrightarrow{B D}$ satisfy $\vec{u}+\vec{v}=0$. Prove that $\alpha=\beta=0$.

Problem 0.5. Prove that the diagonals of a parallelogram bisect one another.

Problem 0.6. Prove that two medians of a triangle ABC meet at the point M dividing each of them in the proportion 2:1 counting from the vertex.

In applications, we will often represent all vectors by segments with a common tail, called the origin. Once the origin O is chosen, each point A in space becomes represented by a unique vector $\overrightarrow{O A}$, called the radius-vector or position vector with respect to the origin O.

Problem 0.7. Compute the radius-vector of the point M in the previous problem, given the radius-vectors \vec{a}, \vec{b}, and \vec{c} of its vertices.

Corollary 0.1. The medians of a triangle meet at a single point (are concurrent) which divides each median in the $2: 1$ ratio, counting from the vertex. This point is called the barycenter (or centroid) of the triangle.

Appendix: Mathematical Propositions

Definitions. Definitions are propositions which explain what meaning one attributes to a name or expression.
Axioms. Axioms are the fact which are accepted without proof.
Theorems. Theorems are those propositions whose truth is only found through a certain reasoning process (proof). In any theorem one can distinguish two parts: the hypothesis and the conclusion. The hypothesis expresses what is considered given, the conclusion what is required to prove.

Corollaries. Corollaries are those propositions which follow directly from an axiom or a theorem.

