BLACKSBURG MATH CIRCLE

LESSON I: VECTOR CALCULUS AND ITS APPLICATIONS

To represent a vector, we draw an arrow connecting two points in space (as in figure below), and write it as \overrightarrow{AB} . A is the **tail** and B is the **head** of this vector. Two vectors \overrightarrow{AB} and \overrightarrow{CD} are called **equal** if they are equal in both magnitude and direction, meaning that one can be obtained from another by translation. Note that $\overrightarrow{AB} = \overrightarrow{CD}$ exactly when the quadrilateral \overrightarrow{ABDC} is a parallelogram. We will denote by $|\overrightarrow{AB}| = \overrightarrow{AB}$ the **magnitude** of vector \overrightarrow{AB} .

Addition of vectors. Given two vectors, \vec{u} and \vec{v} , their sum $\vec{u} \pm \vec{v}$ is defined as follows. Pick any $\vec{AB} = \vec{u}$ and choose $\vec{BC} = \vec{v}$. Then $\vec{u} + \vec{v} = \vec{AC}$ (tail to head rule).

 $Commutativity: \ \vec{u} + \vec{v} = \vec{v} + \vec{u} \text{ for all vectors } \vec{u}, \ \vec{v}.$ Associativity: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ for all vectors $\vec{u}, \ \vec{v}, \vec{w}.$

Problem 0.1. Prove the relations above.

Multiplication of vectors by scalars. Given a scalar (i.e. a real number) α and a vector \vec{v} , one can form a new vector denoted $\alpha \vec{v}$ and called the **product** of the scalar and the vector. Let $\vec{v} = \vec{AB}$, then we fix the head A, and send the head Bto another point C such that the segment AC is on the same line as AB, but is scaled by a factor α . If $\alpha > 0$ than points B, C are chosen to lie on the same side from the point A (the vectors $\alpha \vec{v}$ and \vec{v} point in the same direction). If $\alpha < 0$ than A lies between B and C (i.e. the vector $\alpha \vec{v}$ reverse direction if $\alpha < 0$). When $\alpha = 0$ we get the **zero vector** $\vec{0}$ (meaning that points A and C coincide).

Distributivity and compatibility:

 $\alpha(\vec{u} + \vec{v}) = \alpha \vec{v} + \alpha \vec{u}; \ (\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{u}; \ (\alpha \beta)\vec{u} = \alpha(\beta \vec{u})$

for all vectors \vec{u} , \vec{v} and all scalars α, β .

Problem 0.2. Check the relations above.

The vector $(-1)\vec{u}$ is denoted simply by $-\vec{u}$. If $\vec{u} = \overrightarrow{AB}$, then by distributive property $-\vec{u} = \overrightarrow{BA}$ (the opposite vector).

If $\vec{u} = \overrightarrow{AB}$ and $\vec{v} = \overrightarrow{AC}$ (common tail), then the **difference** of vectors \vec{v} and \vec{u} is $\vec{v} - \vec{u} = \overrightarrow{BC}$ (because $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$).

Problem 0.3. Prove the Varignon's theorem (1731): The midpoints of the sides of an arbitrary quadrangle form a parallelogram.

Problem 0.4. Let A, B, C, D be points on a plane such that AC and BD are noncollinear segments. Suppose that numbers α, β are such that the vectors $\vec{u} = \alpha \overrightarrow{AC}$ and $\vec{v} = \beta \overrightarrow{BD}$ satisfy $\vec{u} + \vec{v} = 0$. Prove that $\alpha = \beta = 0$.

Problem 0.5. Prove that the diagonals of a parallelogram bisect one another.

Problem 0.6. Prove that two medians of a triangle ABC meet at the point M dividing each of them in the proportion 2:1 counting from the vertex.

In applications, we will often represent all vectors by segments with a common tail, called the **origin**. Once the origin O is chosen, each point A in space becomes represented by a unique vector \overrightarrow{OA} , called the **radius-vector** or **position vector** with respect to the origin O.

Problem 0.7. Compute the radius-vector of the point M in the previous problem, given the radius-vectors \vec{a} , \vec{b} , and \vec{c} of its vertices.

Corollary 0.1. The medians of a triangle meet at a single point (are concurrent) which divides each median in the 2 : 1 ratio, counting from the vertex. This point is called the **barycenter** (or **centroid**) of the triangle.

Appendix: Mathematical Propositions

Definitions. Definitions are propositions which explain what meaning one attributes to a name or expression.

Axioms. Axioms are the fact which are accepted without proof.

Theorems. Theorems are those propositions whose truth is only found through a certain reasoning process (proof). In any theorem one can distinguish two parts: the hypothesis and the conclusion. The **hypothesis** expresses what is considered given, the **conclusion** what is required to prove.

Corollaries. Corollaries are those propositions which follow directly from an axiom or a theorem.