BLACKSBURG MATH CIRCLE: SATURDAY, SEPTEMBER 12, 2015

ELEMENTS OF NUMBER THEORY

- 1. Prove that $1^n + 2^n + \ldots + (n-1)^n$ is divisible by n for any odd n > 1.
- 2. Fermat-Wiles theorem: If n is an integer greater than 2, the equation $x^n + y^n = z^n$ has no positive integer solutions (x, y, z).
- 3. Twin prime conjectures: There are infinitely many primes p such that
 - (a) (**Euclid**, 300BC) p + 2 is also prime;
 - (b) (Germain, 1825) 2p + 1 is also prime.
- 4. If a and d are integers and $d \neq 0$, show that we can divide a by d to obtain a *quotient* q and a *remainder* r, i.e.

$$a = q \cdot d + r$$
 such that $0 \leq r < |d|$.

Definition 1. If a = dq for some non-zero integers a, d, and q, we say that d and q divide a or that d and q are divisors of a, and write d|a and q|a.

- 5. Pick your favorite pointive integer d. If integers a_1 and a_2 have remainders r_1 and r_2 when divided by d, is it always true that
 - (a) $a_1 + a_2$ has remainder $r_1 + r_2$ when divided by d?
 - (b) $a_1 a_2$ has remainder $r_1 r_2$ when divided by d?
 - (c) $a_1 \cdot a_2$ has remainder $r_1 \cdot r_2$ when divided by d?
 - (d) a_1/a_2 has remainder r_1/r_2 when divided by d?

Definition 2. Let d be a positive integer. Two numbers a and b are called *congruent* modulo d if they have the same remainder when divided by d, i.e. $a = q \cdot d + r$ and $b = p \cdot d + r$. We denote this by $a \equiv b \pmod{d}$.

6. What does the world modulo d looks like? For d = 5, the world consists of 5 'trees', each named after one of the 5 possible remainders. Find formulas describing all numbers residing in each tree. How about the general d?

Lemma 1. Let a and b be integers. In the world mod d

- (a) d|a iff $a \equiv 0 \pmod{d}$;
- (b) a is congruent to its own remainder (mod d);
- (c) $a \equiv b \pmod{d}$ iff d | (a b).

Lemma 2. Let a, b and c be integers. Then

- (a) Reflexivity $a \equiv a \pmod{d}$;
- (b) Symmetry $a \equiv b \pmod{d}$ implies $b \equiv a \pmod{d}$;
- (c) Transitivity $a \equiv b \pmod{d}$ and $b \equiv c \pmod{d}$ implies $a \equiv c \pmod{d}$.

Lemma 3. $a \equiv b \pmod{d}$ and $c \equiv e \pmod{d}$, then

(a) $a + c \equiv b + e \pmod{d}$; (b) $a - c \equiv b - e \pmod{d}$; (c) $a \cdot c \equiv b \cdot e \pmod{d}$.

Corollary 1. If $a \equiv b \pmod{d}$, then for all natural numbers h and k

- (a) $a \pm h \equiv b \pm h \pmod{d}$ and $a \cdot h \equiv b \cdot h \pmod{d}$;
- (b) $a^k \equiv b^k \pmod{d}$.

7. Find the remainder of $2^{2015} \pmod{3}$ and $2^{2015} \pmod{5}$.