Math 2214, Spring 2018, Form A

1. The functions $y_{1}(t)=e^{t^{2}}$ and $y_{2}(t)=e^{t^{2}+t}$ are both solutions of the differential equation

$$
y^{\prime \prime} y-\left(y^{\prime}\right)^{2}=2 y^{2}
$$

Then we can conclude that the following are also solutions EXCEPT
(a) $2 e^{t^{2}}$.
(b) $e^{t^{2}}+e^{t^{2}+t}$.
(c) $e^{(t+1)^{2}}$.
(d) $e^{t^{2}+3 t+2}$.
2. The general solution of the system $\mathbf{y}^{\prime}=A \mathbf{y}$, where

$$
A=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right)
$$

is
(a) $c_{1} e^{t}\binom{1}{-1}+c_{2} e^{t}\binom{0}{0}$.
(b) $c_{1} e^{t}\binom{1}{-1}+c_{2} e^{t}\binom{1}{-1}$.
(c) $c_{1} e^{t}\binom{1}{-1}+c_{2} e^{t}\binom{t+1}{-t}$.
(d) $c_{1} e^{t}\binom{t}{-t}+c_{2} e^{t}\binom{1}{0}$.
3. The interval of existence for the solution of the initial value problem $y^{\prime}=y^{2}, y(3)=1$ is
(a) $(-\infty, \infty)$.
(b) $(3, \infty)$.
(c) $(-\infty, 4)$.
(d) $(0, \infty)$.
4. You solve the initial value problem $y^{\prime}=y^{2}+2 t, y(1)=2$, using the Euler method with $h=0.1$. Then the approximation you find for $y(1.2)$ is
(a) 3.496 .
(b) 3.476 .
(c) 2.6 .
(d) 2.996 .
5. A particular solution for the equation $y^{\prime \prime}-y^{\prime}=e^{t}+1+\sin t$ should have the form
(a) $A e^{t}+B+C \sin t+D \cos t$.
(b) $A e^{t}+B t+C \sin t$.
(c) $A e^{t}+B t+C t \sin t+D t \cos t$.
(d) $A t e^{t}+B t+C \sin t+D \cos t$.
6. A stream traverses two lakes flowing downstream, and carrying fresh water as it enters the upper lake. The upper lake contains $4 * 10^{9}$ gallons of water, and the lower lake containss $2 * 10^{9}$ gallons of water. The flow rate of the stream is the same at all points and is $4 * 10^{6}$ gallons per day. A factory situated at the upper lake releases a pollutant at a rate of 200 lbs . per day. Let $Q_{1}(t)$ and $Q_{2}(t)$ be the amount, in pounds, of pollutant in the upper and lower lakes, respectively, where time t is measured in days. Assuming that each lake is well mixed, Q_{1} and Q_{2} obey the system
(a) $Q_{1}^{\prime}=4 * 10^{6}\left(200-Q_{1}\right), Q_{2}^{\prime}=4 * 10^{6}\left(Q_{1}-Q_{2}\right)$.
(b) $Q_{1}^{\prime}=200-Q_{1} / 1000, Q_{2}^{\prime}=Q_{1} / 1000-Q_{2} / 500$.
(c) $Q_{1}^{\prime}=200-4 * 10^{6} Q_{1}, Q_{2}^{\prime}=4 * 10^{6}\left(Q_{1}-Q_{2}\right)$.
(d) $Q_{1}^{\prime}=200 t-4 * 10^{6} Q_{1}, Q_{2}^{\prime}=4 * 10^{6}\left(Q_{1}-Q_{2}\right)$.
7. The system

$$
\begin{aligned}
x^{\prime} & =2(x-y) y, \\
y^{\prime} & =x+y-2,
\end{aligned}
$$

has an equilbrium point at $(1,1)$. This equilibrium point is a(n)
(a) unstable node.
(b) center.
(c) saddle.
(d) unstable focus.
8. If $x^{\prime}=\tan x$, and $x(0)=\pi / 3$, then $x(0.1)$ is
(a) $\pi e^{0.1} / 3$.
(b) $\arcsin \left(\sqrt{3} e^{0.1} / 2\right)$.
(c) $\pi e^{-0.1} / 3$.
(d) $\arccos \left(e^{-0.1} / 4\right)$.
9. Consider the system

$$
\begin{gathered}
x^{\prime}=-x+a y, \\
y^{\prime}=-x-y .
\end{gathered}
$$

All solutions of this system approach $(0,0)$ for $t \rightarrow \infty$ if and only if
(a) $a<0$.
(b) $a>-1$.
(c) $a>0$.
(d) $a<1$.
10. The following plot shows a solution to the equation $y^{\prime \prime}+25 y=\cos (\omega t)$.

The value of ω is
(a) 4.7 .
(b) 20 .
(c) 5 .
(d) 1 .
11. A nonlinear system is given by

$$
\begin{aligned}
x^{\prime} & =y^{2}-x y \\
y^{\prime} & =x^{3} y^{2}-x
\end{aligned}
$$

The number of equilibrium points is
(a) three.
(b) five.
(c) two.
(d) four.
12. The general solution of the equation $t^{2} y^{\prime \prime}+2 t y^{\prime}=0$ is $y=c_{1}+c_{2} / t$. You use the variation of parameters method to look for a solution of $t^{2} y^{\prime \prime}+2 t y^{\prime}=\sin t$ in the form $y=u_{1}(t)+u_{2}(t) / t$. Then u_{1} and u_{2} should satisfy the system
(a) $u_{1}+u_{2} / t=0, u_{1}^{\prime}-u_{2}^{\prime} / t^{2}=\sin t$.
(b) $u_{1}^{\prime}+u_{2}^{\prime} / t=\sin t, u_{1}^{\prime}-u_{2}^{\prime} / t^{2}=0$.
(c) $u_{1}^{\prime}+u_{2}^{\prime} / t=0, u_{2}^{\prime}=-\sin t$.
(d) $u_{1}^{\prime}+u_{2}^{\prime} / t=0, u_{2}^{\prime}=-t^{2} \sin t$.

