Math 2214, Spring 2018, Form A

1. The functions $y_1(t) = e^{t^2}$ and $y_2(t) = e^{t^2+t}$ are both solutions of the differential equation

$$y''y - (y')^2 = 2y^2.$$

Then we can conclude that the following are also solutions EXCEPT

- (a) $2e^{t^2}$. (b) $e^{t^2} + e^{t^2 + t}$. (c) $e^{(t+1)^2}$. (d) $e^{t^2 + 3t + 2}$.
- 2. The general solution of the system $\mathbf{y}' = A\mathbf{y}$, where

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix},$$

is

(a)
$$c_1 e^t \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^t \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.
(b) $c_1 e^t \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^t \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
(c) $c_1 e^t \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^t \begin{pmatrix} t+1 \\ -t \end{pmatrix}$.
(d) $c_1 e^t \begin{pmatrix} t \\ -t \end{pmatrix} + c_2 e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

- 3. The interval of existence for the solution of the initial value problem $y' = y^2, \ y(3) = 1$ is
 - (a) $(-\infty,\infty)$.
 - (b) $(3, \infty)$.
 - (c) $(-\infty, 4)$.
 - (d) $(0,\infty)$.

- 4. You solve the initial value problem $y' = y^2 + 2t$, y(1) = 2, using the Euler method with h = 0.1. Then the approximation you find for y(1.2) is
 - (a) 3.496.
 - (b) 3.476.
 - (c) 2.6.
 - (d) 2.996.
- 5. A particular solution for the equation $y'' y' = e^t + 1 + \sin t$ should have the form
 - (a) $Ae^t + B + C\sin t + D\cos t$.
 - (b) $Ae^t + Bt + C\sin t$.
 - (c) $Ae^t + Bt + Ct\sin t + Dt\cos t$.
 - (d) $Ate^t + Bt + C\sin t + D\cos t$.
- 6. A stream traverses two lakes flowing downstream, and carrying fresh water as it enters the upper lake. The upper lake contains $4*10^9$ gallons of water, and the lower lake containss $2*10^9$ gallons of water. The flow rate of the stream is the same at all points and is $4*10^6$ gallons per day. A factory situated at the upper lake releases a pollutant at a rate of 200 lbs. per day. Let $Q_1(t)$ and $Q_2(t)$ be the amount, in pounds, of pollutant in the upper and lower lakes, respectively, where time t is measured in days. Assuming that each lake is well mixed, Q_1 and Q_2 obey the system
 - (a) $Q'_1 = 4 * 10^6 (200 Q_1), Q'_2 = 4 * 10^6 (Q_1 Q_2).$
 - (b) $Q'_1 = 200 Q_1/1000, Q'_2 = Q_1/1000 Q_2/500.$
 - (c) $Q'_1 = 200 4 * 10^6 Q_1, Q'_2 = 4 * 10^6 (Q_1 Q_2).$
 - (d) $Q'_1 = 200t 4 * 10^6 Q_1, Q'_2 = 4 * 10^6 (Q_1 Q_2).$

7. The system

$$x' = 2(x - y)y,$$

$$y' = x + y - 2,$$

has an equilbrium point at (1,1). This equilibrium point is a(n)

- (a) unstable node.
- (b) center.
- (c) saddle.
- (d) unstable focus.
- 8. If $x' = \tan x$, and $x(0) = \pi/3$, then x(0.1) is
 - (a) $\pi e^{0.1}/3$.
 - (b) $\arcsin(\sqrt{3}e^{0.1}/2)$.
 - (c) $\pi e^{-0.1}/3$.
 - (d) $\arccos(e^{-0.1}/4)$.
- 9. Consider the system

$$\begin{aligned} x' &= -x + ay, \\ y' &= -x - y. \end{aligned}$$

All solutions of this system approach (0,0) for $t \to \infty$ if and only if

- (a) a < 0.
- (b) a > -1.
- (c) a > 0.
- (d) a < 1.

10. The following plot shows a solution to the equation $y'' + 25y = \cos(\omega t)$.

The value of ω is

- (a) 4.7.
- (b) 20.
- (c) 5.
- (d) 1.
- 11. A nonlinear system is given by

$$x' = y^2 - xy.$$
$$y' = x^3y^2 - x.$$

The number of equilibrium points is

- (a) three.
- (b) five.
- (c) two.
- (d) four.

- 12. The general solution of the equation $t^2y'' + 2ty' = 0$ is $y = c_1 + c_2/t$. You use the variation of parameters method to look for a solution of $t^2y'' + 2ty' = \sin t$ in the form $y = u_1(t) + u_2(t)/t$. Then u_1 and u_2 should satisfy the system
 - (a) $u_1 + u_2/t = 0$, $u'_1 u'_2/t^2 = \sin t$.
 - (b) $u'_1 + u'_2/t = \sin t, \ u'_1 u'_2/t^2 = 0.$
 - (c) $u'_1 + u'_2/t = 0, u'_2 = -\sin t.$
 - (d) $u_1' + u_2'/t = 0, u_2' = -t^2 \sin t.$