Form A

Instructions: Fill in A, B or C in the Test Version section. Then enter your NAME, ID Number, CRN (under Class ID) and write A, B, or C (under Test ID) on the op-scan sheet. Darken the appropriate circles below your ID number and Class ID (CRN). Use a number 2 pencil. Machine grading may ignore faintly marked circles.

Mark your answers to the test questions in rows $1-15$ of the op-scan sheet. Your score on this test will be the number of correct answers. You have one hour to complete this portion of the exam. Turn in the op-scan sheet with your answers, this exam and all scrap paper at the end of this part of the final exam.

Exam Policies: You may not use a book, notes, formula sheet, or a calculator or computer. Giving or receiving unauthorized aid is an Honor Code Violation.

Signature: \qquad

Name (printed): \qquad

Student ID \#: \qquad

1. Determine the largest interval on which the initial value problem

$$
(t-3) y^{\prime \prime}+\frac{y^{\prime}}{t-5}-\frac{3 y}{t}=\frac{7}{\cos (t)}, \quad y(2)=8, y^{\prime}(2)=3
$$

is guaranteed to have a unique solution. DO NOT attempt to find the soluton
(A) $\left(\frac{\pi}{2}, 3\right)$
(B) $\left(\frac{\pi}{2}, 5\right)$
(C) $(0,3)$
(D) $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
2. What is the integrating factor for the differential equation

$$
\frac{y^{\prime}}{t}-\frac{2 y}{t^{2}}=t \cos (t) \quad t>0
$$

(A) $\mu(t)=-2 \ln (t)$
(B) $\quad \mu(t)=\frac{1}{t^{2}}$
(C) $\mu(t)=e^{-2 / t}$
(D) $\quad \mu(t)=\frac{2}{t}$
3. Rewrite the third-order differential equation $y^{\prime \prime \prime}+t^{2} y^{\prime \prime}=(\sin t) y$ as a linear system of first-order differential equations.
(A) $\quad \mathbf{y}^{\prime}(t)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -\sin t & 0 & t^{2}\end{array}\right] \mathbf{y}(t)$
(B) $\quad \mathbf{y}^{\prime}(t)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ t^{2} & 0 & -\sin t\end{array}\right] \mathbf{y}(t)$
(C) $\quad \mathbf{y}^{\prime}(t)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ \sin t & 0 & -t^{2}\end{array}\right] \mathbf{y}(t)$
(D) $\quad \mathbf{y}^{\prime}(t)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -t^{2} & 0 & \sin t\end{array}\right] \mathbf{y}(t)$
4. The general solution of

$$
y^{\prime}-t^{2} \frac{e^{-y^{2}}}{y}=0
$$

is
(A) $\frac{1}{2} e^{y^{2}}=\frac{t^{3}}{3}+C$
(B) $\frac{e^{y^{2}}}{2 y}=\frac{t^{3}}{3} \ln |y|+C$
(C) $y^{2} e^{y^{2}}=C-\frac{t^{3}}{3}$
(D) $y^{2}=\ln \left|\frac{t^{3}}{3}+C\right|$
5. What are the possible values for the sum $x_{0}+y_{0}$, if a point $\left(x_{0}, y_{0}\right)$ is an equilibrium solution of the following system of equations?

$$
\begin{aligned}
x^{\prime} & =y^{2}-2 x y \\
y^{\prime} & =6 y+x^{2}
\end{aligned}
$$

(A) 0 only
(B) 0 or -12
(C) 0 or -36
(D) $0,-12$, or -36
6. Which of the following statements are true
I. The differential equation $y^{\prime}+e^{t y}=e^{y} \sin (t)$ is separable.
II. The differential equation $4 t y+y^{\prime} y=1$ is nonlinear.
III. The differential equation $y^{\prime}=\tan \left(y^{2}-5 y-6\right)$ has an equilibrium solution $y=6$.
(A) Only (II) and (III)
(B) Only (I) and (III)
(C) Only (I) and (II)
(D) (I), (II), and (III)
7. Suppose the solution to a spring system is

$$
y(t)=4 e^{-2 t}+5 t e^{-2 t}
$$

Then the characteristic equation must be
(A) $(\lambda-4)(\lambda-5)=0$
(B) $(\lambda+2)(\lambda-2)=0$
(C) $(\lambda+2)(\lambda-2)=0$
(D) $(\lambda+2)(\lambda+2)=0$
8. The trial form for the particular solution of $y^{\prime \prime}+2 y^{\prime}=9 e^{t}+6 t$ is
(A) $A e^{t}+B t+C$
(B) $A e^{t}+B t^{2}+C t$
(C) $A t e^{t}+B t+C$
(D) $A t e^{t}+B t^{2}+C t$
9. Suppose that a 3×3 matrix A in the system $\mathbf{y}^{\prime}=A \mathbf{y}$ has the following eigenpairs

$$
\lambda_{1}=2, \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad \lambda_{2}=2, \mathbf{x}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right], \quad \lambda_{3}=-1, \mathbf{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

If the fundamental matrix $\Psi(t)$ is constructed using these eigenvectors, its Wronskian is (here K is a nonzero constant):
(A) $\quad W(t)=K e^{-3 t}$
(B) $\quad W(t)=K e^{-4 t}$
(C) $W(t)=K e^{4 t}$
(D) $W(t)=K e^{3 t}$
10. Suppose that a 3×3 linear system $\mathbf{y}^{\prime}=A \mathbf{y}$ has an eigenvalue $\lambda=2+5 i$ with eigenvector $\left[\begin{array}{c}1+i \\ 1-i \\ 2\end{array}\right]$. Select a pair of real valued solutions that we can obtain with this information.

$$
\begin{aligned}
& \text { A: } \quad e^{2 t}\left[\begin{array}{c}
\cos (5 t)+\sin (5 t) \\
\sin (5 t)-\cos (5 t) \\
2 \cos (5 t)
\end{array}\right] \text { B: } e^{2 t}\left[\begin{array}{c}
\cos (5 t)-\sin (5 t) \\
\cos (5 t)+\sin (5 t) \\
2 \cos (5 t)
\end{array}\right] \\
& \text { C: } e^{2 t}\left[\begin{array}{c}
\cos (5 t)+\sin (5 t) \\
\sin (5 t)-\cos (5 t) \\
2 \sin (5 t)
\end{array}\right] \text { D: } e^{2 t}\left[\begin{array}{c}
\cos (5 t)-\sin (5 t) \\
\cos (5 t)+\sin (5 t) \\
2 \sin (5 t)
\end{array}\right]
\end{aligned}
$$

(A) B and C
(B) B and D
(C) A and D
(D) A and C
11. A 2×2 matrix A has a repeated eigenvalue $\lambda=2$. If the matrix has an eigenvector $\mathbf{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and a corresponding generalized eigenvector $\mathbf{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, then the general solution to the first order system $\mathbf{y}^{\prime}=A \mathbf{y}$ has the form
(A) $\mathbf{y}=c_{1}\left[\begin{array}{c}2 e^{2 t} \\ e^{2 t}\end{array}\right]+c_{2}\left[\begin{array}{c}(2+t) e^{2 t} \\ (1-t) e^{2 t}\end{array}\right]$
(B) $\mathbf{y}=c_{1}\left[\begin{array}{c}2 e^{2 t} \\ e^{2 t}\end{array}\right]+c_{2}\left[\begin{array}{c}(2 t+1) e^{2 t} \\ (t-1) e^{2 t}\end{array}\right]$
(C) $\mathbf{y}=c_{1}\left[\begin{array}{c}2 e^{2 t} \\ e^{2 t}\end{array}\right]+c_{2}\left[\begin{array}{c}t e^{2 t} \\ -t e^{2 t}\end{array}\right]$
(D) $\mathbf{y}=c_{1}\left[\begin{array}{c}2 e^{2 t} \\ e^{2 t}\end{array}\right]+c_{2}\left[\begin{array}{c}e^{2 t} \\ -e^{2 t}\end{array}\right]$
12. Consider the linear system $\mathbf{y}^{\prime}=\left[\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right] \mathbf{y}$. Classify the stability of the equilibrium point $\mathbf{y}_{e}=\mathbf{0}$.
(A) The origin is an asymptotically stable equilibrium point.
(B) The origin is a stable, but not asymptotically stable, equilibrium point.
(C) The origin is an unstable equilibrium point.
(D) The origin is not an equilibrium point at all.
13. The general solution to

$$
y^{\prime \prime}+y=\sec (t)
$$

is:
(A) $\quad c_{1} \cos (t)+c_{2} \sin (t)-\sin (t) \int \tan (t) d t+\cos (t) \int 1 d t$
(B) $\quad c_{1} \cos (t)+c_{2} \sin (t)-\int \tan (t) d t+\int 1 d t$
(C) $\quad c_{1} \cos (t)+c_{2} \sin (t)-\cos (t) \int \tan (t) d t+\sin (t) \int 1 d t$
(D) $\quad c_{1} \cos (t)+c_{2} \sin (t)-1+\frac{\sin (t)}{\cos (t)}$
14. Find the linearization $\mathbf{y}^{\prime}=A \mathbf{y}$ of the system

$$
\begin{aligned}
& x_{1}{ }^{\prime}=x_{1}+x_{2}-2 \\
& x_{2}{ }^{\prime}=x_{1}{ }^{2}-x_{2}{ }^{2}+4
\end{aligned}
$$

at its equilibrium point $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
(A) $\mathbf{y}^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 0 & 4\end{array}\right] \mathbf{y}$
(B) $\quad \mathbf{y}^{\prime}=\left[\begin{array}{rr}1 & 1 \\ 0 & -4\end{array}\right] \mathbf{y}$
(C) $\quad \mathbf{y}^{\prime}=\left[\begin{array}{rr}1 & 1 \\ 0 & -2\end{array}\right] \mathbf{y}$
(D) $\mathbf{y}^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 1 & 4\end{array}\right] \mathbf{y}$

