## Math 2214, Fall 2013, Form A

1. The general solution of the system $y^{\prime}=A y$, where

$$
A=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right),
$$

is
(a) $c_{1} \cos (2 t)\binom{1}{1}+c_{2} \sin (2 t)\binom{1}{-1}$.
(b) $c_{1}\binom{\sin (2 t)}{\cos (2 t)}+c_{2}\binom{\cos (2 t)}{-\sin (2 t)}$.
(c) $c_{1} e^{2 t}\binom{1}{-1}+c_{2} e^{-2 t}\binom{1}{1}$.
(d) $c_{1} e^{2 t}\binom{1}{1}+c_{2} e^{-2 t}\binom{1}{-1}$.
2. A water tank initially contains 40 gallons of water in which 200 grams of salt are dissolved. Fresh water enters the tank at a rate of 2 gallons per minute, and the well-mixed solution leaves the tank at a rate of 1.5 gallon per minute. The amount of salt in the tank, measured in grams, with time measured in minutes, is found by solving the equation
(a) $Q^{\prime}=2-1.5 Q / 40, Q(0)=200$.
(b) $Q^{\prime}=-1.5 Q /(40+t / 2), Q(0)=200$.
(c) $Q^{\prime}=1 / 2-1.5 Q / 40, Q(0)=200$.
(d) $Q^{\prime}=-1.5 * 200 / 40, Q(0)=200$.
3. You solve the initial value problem $y_{1}^{\prime}=3+y_{2}^{2}, y_{2}^{\prime}=4 t-y_{1}, y_{1}(1)=1$, $y_{2}(1)=3$ using the Euler method with $h=0.05$. Then the approximation you find for $y(1.05)$ is
(a) $y_{1}=1.6, y_{2}=3.15$.
(b) $y_{1}=1.6, y_{2}=3.16$.
(c) $y_{1}=1.6, y_{2}=2.95$.
(d) $y_{1}=2.2, y_{2}=3.3$.
4. Which of the following is not a linear equation?
(a) $y^{\prime}-y=y^{\prime \prime \prime}$
(b) $y^{\prime \prime} / y=\sin t$.
(c) $y^{\prime \prime}+|y|=0$.
(d) $y^{\prime \prime \prime}=y / t$.
5. A mass of 5 kg stretches a spring by 9.8 cm in equilibrium. Then the damping constant for critical damping is
(a) $100 \mathrm{~kg} / \mathrm{sec}$.
(b) $\sqrt{20} \mathrm{~kg} / \mathrm{sec}$.
(c) $50 \mathrm{~kg} / \mathrm{sec}$.
(d) $\sqrt{5} \mathrm{~kg} / \mathrm{sec}$.
6. The general solution of the system $y^{\prime}=A y$, where

$$
A=\left(\begin{array}{cc}
1 & -1 / 2 \\
2 & -1
\end{array}\right)
$$

is given by
(a) $c_{1}\binom{1}{2}+c_{2} e^{t}\binom{1}{0}$.
(b) $c_{1}\binom{1}{2}+c_{2}\left(t\binom{1}{2}+\binom{1}{0}\right)$.
(c) $c_{1}\binom{1}{2}+c_{2} t\binom{1}{0}$.
(d) $c_{1}\binom{1}{2}+c_{2}\binom{1}{2}$.
7. If $x^{\prime}=-x^{3} \cos t$, and $x(0)=1$, then $x(1)$ is
(a) $\cos 1 /(\sin 1)^{3}$.
(b) $\exp \left(-\frac{1}{3} \sin 1\right)$.
(c) $1 / \sqrt{2 \sin 1+1}$.
(d) $1 / \sqrt{\sin 2+1}$.
8. A nonlinear system is given by

$$
\begin{gathered}
x_{1}^{\prime}=x_{1}^{2}-x_{2}^{3} x_{1} \\
x_{2}^{\prime}=x_{2}-x_{1}
\end{gathered}
$$

The linearization at the equilibrium point $(1,1)$ is the system
(a)

$$
\begin{gathered}
y_{1}^{\prime}=-y_{2} \\
y_{1}^{\prime}=-y_{1}+y_{2}
\end{gathered}
$$

(b)

$$
\begin{aligned}
y_{1}^{\prime} & =2 y_{1}-3 y_{2}, \\
y_{1}^{\prime} & =-y_{1}+y_{2} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
& y_{1}^{\prime}=y_{1}-3 y_{2}, \\
& y_{1}^{\prime}=-y_{1}+y_{2} .
\end{aligned}
$$

(d)

$$
\begin{gathered}
y_{1}^{\prime}=0, \\
y_{1}^{\prime}=-y_{1}+y_{2}
\end{gathered}
$$

9. Which of the following is a particular solution of the equation $y^{\prime \prime \prime}-y=$ $e^{t}$ ?
(a) $t^{3} e^{t} / 6$.
(b) $e^{t} / 2$.
(c) $t e^{t} / 3$.
(d) $t^{2} e^{t} / 2$.
10. Which of the following is a direction field for the equation $y^{\prime}=y^{2}-$ 1 ?

11. A particular solution of the equation $y^{\prime \prime}-y=1 / t^{2}$ should have the form
(a) $u(t) e^{t}+v(t) e^{-t}$.
(b) $y=A / t^{2}+B / t+C$.
(c) $y=A / t^{2}+B / t^{3}+D / t^{4}$.
(d) $y=A / t^{2}+B e^{t}+C e^{-t}$.
12. For the system

$$
\begin{aligned}
& x^{\prime}=6 x+5 y, \\
& y^{\prime}=7 x+9 y,
\end{aligned}
$$

the origin is $\mathrm{a}(\mathrm{n})$
(a) stable focus.
(b) unstable focus.
(c) unstable node.
(d) saddle.

