Math 2214, Fall 2013, Form A

1. The general solution of the system y' = Ay, where

$$A = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix},$$

is

(a)
$$c_1 \cos(2t) \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \sin(2t) \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

(b) $c_1 \begin{pmatrix} \sin(2t) \\ \cos(2t) \end{pmatrix} + c_2 \begin{pmatrix} \cos(2t) \\ -\sin(2t) \end{pmatrix}$.
(c) $c_1 e^{2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{-2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
(d) $c_1 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

- 2. A water tank initially contains 40 gallons of water in which 200 grams of salt are dissolved. Fresh water enters the tank at a rate of 2 gallons per minute, and the well-mixed solution leaves the tank at a rate of 1.5 gallon per minute. The amount of salt in the tank, measured in grams, with time measured in minutes, is found by solving the equation
 - (a) Q' = 2 1.5Q/40, Q(0) = 200.
 - (b) Q' = -1.5Q/(40 + t/2), Q(0) = 200.
 - (c) Q' = 1/2 1.5Q/40, Q(0) = 200.
 - (d) Q' = -1.5 * 200/40, Q(0) = 200.
- 3. You solve the initial value problem $y'_1 = 3 + y^2_2$, $y'_2 = 4t y_1$, $y_1(1) = 1$, $y_2(1) = 3$ using the Euler method with h = 0.05. Then the approximation you find for y(1.05) is
 - (a) $y_1 = 1.6, y_2 = 3.15.$
 - (b) $y_1 = 1.6, y_2 = 3.16.$
 - (c) $y_1 = 1.6, y_2 = 2.95.$
 - (d) $y_1 = 2.2, y_2 = 3.3.$

- 4. Which of the following is not a linear equation?
 - (a) y' y = y'''
 - (b) $y''/y = \sin t$.
 - (c) y'' + |y| = 0.
 - (d) y''' = y/t.
- 5. A mass of 5 kg stretches a spring by 9.8 cm in equilibrium. Then the damping constant for critical damping is
 - (a) 100 kg/sec.
 - (b) $\sqrt{20}$ kg/sec.
 - (c) 50 kg/sec.
 - (d) $\sqrt{5}$ kg/sec.
- 6. The general solution of the system y' = Ay, where

$$A = \begin{pmatrix} 1 & -1/2 \\ 2 & -1 \end{pmatrix}$$

is given by

(a)
$$c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
.
(b) $c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 (t \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix})$
(c) $c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 t \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
(d) $c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

7. If $x' = -x^3 \cos t$, and x(0) = 1, then x(1) is

- (a) $\cos 1/(\sin 1)^3$.
- (b) $\exp(-\frac{1}{3}\sin 1)$.
- (c) $1/\sqrt{2\sin 1 + 1}$.
- (d) $1/\sqrt{\sin 2 + 1}$.

8. A nonlinear system is given by

$$x_1' = x_1^2 - x_2^3 x_1.$$
$$x_2' = x_2 - x_1.$$

The linearization at the equilibrium point (1, 1) is the system

- (a) $y'_1 = -y_2,$ $y'_1 = -y_1 + y_2.$ (b) $y'_1 = 2y_1 - 3y_2,$ $y'_1 = -y_1 + y_2.$ (c) $y'_1 = y_1 - 3y_2,$ $y'_1 = -y_1 + y_2.$ (d) $y'_1 = 0,$ $y'_1 = -y_1 + y_2.$
- 9. Which of the following is a particular solution of the equation $y''' y = e^t$?
 - (a) $t^3 e^t / 6$.
 - (b) $e^t/2$.
 - (c) $te^t/3$.
 - (d) $t^2 e^t / 2$.

10. Which of the following is a direction field for the equation $y' = y^2 - 1$?

- 11. A particular solution of the equation $y'' y = 1/t^2$ should have the form
 - (a) $u(t)e^t + v(t)e^{-t}$.
 - (b) $y = A/t^2 + B/t + C$.
 - (c) $y = A/t^2 + B/t^3 + D/t^4$.
 - (d) $y = A/t^2 + Be^t + Ce^{-t}$.
- 12. For the system

$$x' = 6x + 5y,$$
$$y' = 7x + 9y,$$

the origin is a(n)

- (a) stable focus.
- (b) unstable focus.
- (c) unstable node.
- (d) saddle.