Math 1225 Syllabus - SPRING 2020 (Revised 3/30/2020)						
Week		Day	$\begin{gathered} \text { Sectio } \\ \mathrm{n} \end{gathered}$	Topic	Textbook	WebAssign (for Reference)
Week 1	$\begin{gathered} \underset{\sim}{\underset{N}{N}} \\ \underset{\sim}{N} \\ \underset{\sim}{0} \end{gathered}$	1		Martin Luther King Holiday (No Class)		
		2	2.1	The Tangent and Velocity Problems	p. 82 \# 3a: ii,iv,vi,viii,b,c	\# 1, 5, 8
		3	2.2	The Limit of a Function (limits using numerical approximations, graphs, one-sided limits)	p. 92 \# 1, 3, 11, 15, 16	\# 6, 7, 9
		4	2.2	The Limit of a Function (Infinite Limits, VA)	p. 94 \# 32, 33, 38, 41, 42, 43, 44a, 52, 54. p. 166 T/F \#15 Find the V.A. (s) of $f(x)=\left(x^{2}+5 x+6\right) /\left(x^{2}+2 x-3\right)$	\# 31, 40
Week 2	$\begin{aligned} & \underset{\sim}{N} \\ & \stackrel{1}{N} \\ & \underset{\sim}{c} \\ & \underset{\sim}{c} \end{aligned}$	1	2.3	Calculating Limits Using the Limit Laws (Limit Laws, Factoring, Rationalizing)	$\begin{aligned} & \text { p. } 102 \text { \# 10, 16, 19, 26, 27, 29, 51, 59, 60, 62, } 65 \\ & \text { p. } 169 \text { \# 2 } \\ & \text { p. } 166 \text { T/F \# 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, } 12 \end{aligned}$	\# 1, 2, 9, 11, 13, 21
		2	2.3	Calculating Limits Using the Limit Laws (Absolute Values, Sandwich Theorem)	$\begin{aligned} & \hline \text { p. } 103 \# 37,39,40,42,45,46,47,50 \\ & \text { p. } 170 \text { \# 3 } \\ & \text { Find } \lim _{1}\left(x \rightarrow 2^{-}\right)\left\|2 x^{2}+10 x-28\right\| /(x-2) \\ & \hline \end{aligned}$	\# 41, 49, 52
		3	2.4	The Precise Definition of a Limit (Limits at Finite Values)	p. 114 \# 12, 13a, 14 (using a graph only) Supplementary Problems (2.4a)	\# 1, 2, 3, 4, 11
		4	2.4	The Precise Definition of a Limit (Infinite Limits)	Supplementary Problems (2.4b)	Limit Simulator
Week 3		1	2.5	Continuity (Left/Right Continuous, Functions Continuous on Their Domains)	p. 124 \# 6, 18, 20, 21, 48 Supplementary Problems (2.5) p. 166 T/F \# 25, 26	\# 20, 43
		2	2.5	Continuity (Continuous Extensions, Continuity of Piecewise Functions)	p. 125 \# 40, 41, 42, 43, 45, 46, 47	\# 46
		3	2.5	Continuity (IVT)	$\begin{aligned} & \text { p. } 125 \text { \# 50, } 52,53,56,57 \mathrm{a}, 69 \\ & \text { p. } 166 \text { T/F \# 18, } 24 \\ & \text { p. } 167 \text { \# } 8 \\ & \text { p. } 170 \text { \# } 8 \end{aligned}$	None
		4	2.6	Limits at Infinity; Horizontal Asympotes	p. $137 \# 4,6,9,18,23,24,28,35,38,52,55,58,59,65 a, 67$ p. 166 T/F \# 13, 14	\# 3, 17, 51, 68
Week 4		1	2.7	Derivatives and Rates of Change	$\begin{aligned} & \text { p. } 148 \text { \# 5, 11, 13, 17, 21, 22, 34, 37, 38, } 42 \\ & \text { p. } 166 \text { T/F \# } 21 \end{aligned}$	\# 7, 11, 44, 47, 53, 57
		2	2.8	The Derivative as a Function \& Review	$\begin{aligned} & \text { p. } 162 \text { \# 23, 26, 29, 34a, 40, 42, 48, 49, 50, 57, 64, } 65 \\ & \text { p. } 166 \text { T/F \# 22, } 23 \\ & \text { p. } 168 \text { \# } 49 \end{aligned}$	\# 1, 3, 5, 9, 26, 41
		3	3.1	Derivatives of Polynomials and Exponentials	$\begin{aligned} & \text { p. } 180 \# \text { 14, 20, 25, 31, 32, 55, 57, 59, 66, 67, 76, 77, } 81 \\ & \text { p. } 266 \text { T/F \# 1, 6, 7, 8, 11, 14, } 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \# 4,11,19,23,37,46,47,48 \text {, } \\ & 52 \end{aligned}$
			3.2	The Product and Quotient Rules	$\text { p. } 188 \text { \# 3, 6, 17, 18, 25, 29, 34, 45, 46, 48, } 61$ Find a formula for the nth derivative of $f(x)=e^{-x}$. Find a formula for the nth derivative of $f(x)=x e^{-x}$. p. 266 T/F \# 2, 13	\#3, 11, 26, 30, 41, 43, 49, 57
Week 5		1	3.3	Special Trig Limits \& Derivatives of Trigonometric Functions	p. 196 \# 4, 7, 13, 18, 23, 31, 32, 33 (on [0,2世]), 35, 37, 39, 41, $42,44,46,48,50$ and $\lim _{x \rightarrow 0} 3 x^{*} \cot (5 x)$ p. 271 \# 5	\# 5, 7, 9, 22, 29, 39, 51
		2	3.4	The Chain Rule	$\begin{aligned} & \text { p. } 204 \text { \# 4, 5, 27, 28, 30, 33, 35, } 36 \\ & \text { p. } 266 \text { T/F \# 3, 4, } 5 \end{aligned}$	\# 1, 7, 11, 19, 37, 41, 46
		3	3.4	The Chain Rule	$\begin{aligned} & \text { p. } 205 \# 59,61,65,74,77,87,88,98 a, b \\ & \text { p. } 271 \# 5,18,20 \\ & \text { p. } 266 \text { T/F \# 9, 10, } 12 \end{aligned}$	\# 50, 63, 71, 85, 86
		4	3.5	Implicit Differentiation	p. 215 \# 10, 16, 20, 21, 25, 31, 36, 39, 42b, 74a	\# 5, 11, 15, 23
Week 6	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \\ & \stackrel{\sim}{\infty} \end{aligned}$	1	3.5	Implicit Differentiation (Inverse Trig Derivatives)	p. 216 \# 50, 53, 57, 58, 63	\# 17, 51, 55
		2	3.6	Derivatives of Logarithmic Functions	p. 223 \# 7, 21, 22, 25, 30, 34, 37	\# 2, 3, 4, 6, 8, 19, 26
		3	3.6	Derivatives of Logarithmic Functions (Log Diff)	p. 223 \# 38, 40, 45, 49, 50, 52	\# 43
		4	3.7	Rates of Change in the Natural and Social Sciences (Particle Motion)	$\begin{aligned} & \text { p. } 233 \# 6,10 \\ & \text { p. } 268 \text { \# 88, } 89 \\ & \hline \end{aligned}$	\# 1, 5, 7, 8
Week 7	$\left\lvert\, \begin{gathered} \stackrel{0}{4} \\ N \\ \stackrel{N}{N} \\ \Sigma \\ \Sigma \end{gathered}\right.$	1 D	3.9	Related Rates	p. 249 \# 2, 12, 16, 17, 48	\# 4, 9, 13
		2	3.9	Related Rates	p. 249 \# 19, 24, 25, 30, 41	\# 20, 33, 40
		3	3.10	Linear Approximations and Differentials	p. 256 \# 2, 10, 23, 28, 32a, 34a, 35, 36, 44, M1	\# 2, 5, 13, 15, 40
		4		Test 1 Day Off		
Spring break (Mar 9-20)						

Note: M1, M2 and M3 are MATLAB assignments. This semester these are not required

