\qquad CRN: \qquad
MATH 1225 Test 1 (44 pts)

Multiple Choice

(2 pts each) • No partial credit will be given. - Clearly circle your answer. • No calculator!

1. Consider the graphs of $y=f(x)$ and $y=g(x)$ given below.

Consider the following two statements:

Statement $1 \lim _{x \rightarrow 3} f(x) g(x)=-4$
Statement $2 \lim _{x \rightarrow-2}|g(x)|=2$

Which of the following must be true?
(A) Only Statement 1 is correct.
(C) Both Statement 1 and Statement 2 are correct.
(B) Only Statement 2 is correct.
(D) Neither Statement 1 nor Statement 2 is correct.

C
2. The vertical line $x=0$ is a vertical asymptote of which of the following functions? Circle only one answer choice.
(A) $f(x)=e^{x}$
(B) $g(x)=1+\ln (x)$
(C) $h(x)=\frac{x(x-3)}{x(x+7)}$
(D) $k(x)=\frac{1}{x-3}$

B
3. Let $f(x)=x^{3}-2 x+5$. Which of the following is not equal to the slope of the tangent line to the curve $y=f(x)$ at $x=2$? Circle only one answer choice.
(A) The instantaneous rate of change of $y=f(x)$ with respect to x at $x=2$
(B) $f^{\prime}(2)$
(C) $\lim _{x \rightarrow 2} \frac{\left(x^{3}-2 x+5\right)-9}{x-2}$
(D) $\lim _{h \rightarrow 2} \frac{\left((x+h)^{3}-2(x+h)+5\right)-\left(x^{3}-2 x+5\right)}{h}$

D

Free Response

- Show reasoning that is complete and correct by the standards of this course.
- Whenever using theorems, you should explicitly check that all hypotheses are satisfied.
- Improper use of (or the absence of) proper notation will be penalized. • No calculator!

4. (14 pts) Calculate the following limits. Give the limit if it exists, and where no finite limit exists be as precise as possible among $+\infty,-\infty$, or DNE. Tables alone will not suffice as justification. Cite theorems when appropriate.
(a) $(7 \mathrm{pts}) \lim _{t \rightarrow 3^{-}} \frac{t^{2}-3 t}{|3-t|}$

Note that $\lim _{t \rightarrow 3^{-}} \frac{t^{2}-3 t}{|3-t|}=\lim _{t \rightarrow 3^{-}} \frac{t(t-3)}{|3-t|}$.
Observe $|3-t|=\left\{\begin{array}{l}-(3-t) \quad t \geq 3 \\ (3-t) \quad t<3\end{array}\right.$
For $t<3,(3-t)>0$, so $|3-t|=(3-t)$
So

$$
\lim _{t \rightarrow 3^{-}} \frac{t(t-3)}{|3-t|}=\lim _{t \rightarrow 3^{-}} \frac{t(t-3)}{(3-t)}=\lim _{t \rightarrow 3^{-}} \frac{t(t-3)}{-(t-3)}=\lim _{t \rightarrow 3^{-}}-t=-3
$$

(b) $(7 \mathrm{pts}) \lim _{x \rightarrow-\infty}\left(5+\frac{\sin (3 x)}{x^{2}+10}\right)$

Notice that $-1 \leq \sin (3 x) \leq 1$
Then $5+\frac{-1}{x^{2}+1} \leq 5+\frac{\sin (3 x)}{x^{2}+1} \leq 5+\frac{1}{x^{2}+1}$ for all x.
Note $\lim _{x \rightarrow-\infty}\left(5+\frac{-1}{x^{2}+1}\right)=5+\lim _{x \rightarrow-\infty} \frac{-1}{x^{2}+1}=5-0=5$

Similarly $\lim _{x \rightarrow-\infty}\left(5+\frac{1}{x^{2}+1}\right)=5+\lim _{x \rightarrow-\infty} \frac{1}{x^{2}+1}=5+0=5$
So $\lim _{x \rightarrow-\infty}\left(5+\frac{-1}{x^{2}+1}\right)=\lim _{x \rightarrow-\infty}\left(5+\frac{1}{x^{2}+1}\right)=5$
So by the Squeeze Theorem:
$\lim _{x \rightarrow-\infty}\left(5+\frac{\sin (3 x)}{x^{2}+1}\right)=5$
5. (10 pts) Provide an example for each of the following.

No justification is needed, however, incorrect answers with justification may receive some partial credit.
(a) (4 pts) The equation of a function that has a horizontal asymptote $y=7$, vertical asymptotes at $x=1$ and $x=5$, and a removable singularity at $x=-1$.

One possible function is

$$
f(x)=\frac{x+1}{(x+1)(x-1)(x-5)}+7
$$

because:

- Needing vertical asymptotes at $x=1$ and $x=5$ is a sign that one could have $x-1$ and $x-5$ in the denominator.
- We can multiply by $\frac{x+1}{x+1}$ for a removable singularity.
- Since the limit as x goes to infinity of $\frac{x+1}{(x+1)(x-1)(x-5)}$ is 0 , and so has a horizontal asymptote at $y=0$, just add 7 to the whole thing.

Another correct solution is

$$
g(x)=\frac{7(x+1)(x+2)(x+3)}{(x+1)(x-1)(x-5)}
$$

(b) (2 pts) The equation of a function that is continuous on $(-\infty, \infty)$.

From class and/or the text, any polynomial is continuous on $(-\infty, \infty)$, so one could pick $f(x)=x$. Other functions, like $g(x)=\sin (x)$, would also be acceptable.
(c) (4 pts) The graph of a function, $y=f(x)$, that is not continuous on $(-\infty, \infty)$ because $\lim _{x \rightarrow 1} f(x) \neq f(1)$ and $\lim _{x \rightarrow-2^{+}} f(x)=-\infty$.
One possible graph is given below:

6. (6 pts) Consider the graph of $y=f(x)$ below.

Find the largest value of δ such that $|f(x)-3|<1.5$ whenever $0<|x-2|<\delta$, if it exists.
If no such value exists, explain why.
Support your answer graphically (on the graph below) or by providing a written explanation, consistent with the methods demonstrated in class.

If we require that $|f(x)-3|<1.5$, then this is the same as $1.5<f(x)<4.5$. The maximum value of $f(x)$ is 3.5 , so we only focus on the lower bound of $y=1.5 . f(x)=1.5$ when $x=0.5$ and $x=4.5$ which are distance 0.5 and 2.5 from $x=2$ respectively.
Of those distances, we pick $\delta=0.5$, because if we were to pick $\delta=2.5$, we would have values which are 2.5 away from $x=2$ where $|f(x)-3|>1.5$, as is the case at $x=0$, since $|f(0)-3|=|0-3|=3>1.5$.
7. (8 pts) Show that the function $f(x)=\frac{1}{x}+5 \cos (x)+7$ must attain the value $y=4$ at least once on the interval $[\pi, 3 \pi]$. Justify your answer using a theorem from class, and give the explicit conclusion of the theorem.
First note that $\frac{1}{x}$ is continuous on $[\pi, 3 \pi]$ because it excludes the only point at which $\frac{1}{x}$ is not continuous $-x=0$. Note that $5 \cos (x)+7$ is a trig function and continuous on its domain of $(-\infty, \infty)$. Thus, f is a continuous function on $[\pi, 3 \pi]$ because it is the sum of the two continuous functions $\frac{1}{x}, 5 \cos (x)+7$ on that interval.
We observe that

$$
f(\pi)=\frac{1}{\pi}+5 \cos (\pi)+7=\frac{1}{\pi}-5+7=2+\frac{1}{\pi}<3<4
$$

and

$$
f(2 \pi)=\frac{1}{2 \pi}+5 \cos (2 \pi)+7=\frac{1}{2 \pi}+5+7=12+\frac{1}{2 \pi}>12>4
$$

Thus, $f(\pi)<4<f(2 \pi)$. So we can apply the Intermediate Value Theorem on the interval $[\pi, 2 \pi]$ to conclude that there exists a c in $(\pi, 2 \pi)$ with $f(c)=4$. We conclude f must attain the value $y=4$ at least once on the interval $[\pi, 3 \pi]$.

