40th VTRMC, 2018, Solutions

1. Letl = [? %ﬂﬂ) dx. First we integrate by parts to obtain
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Now let J = || 12 5 ;;;ixz dx and make the substitution x = 2/y. We obtain
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Therefore 2J = |} th‘iy) dy = [In(2)arctan(1 +y)]? = In(2) (arctan(3) —

arctan(2)) and we deduce that I = In(2)(arctan(3) + arctan(2))/2. Now
tan(arctan(3) +arctan(2)) = (3+2)(1 —6) = —1, which shows that arctan(3) —
arctan(2) = 31 /4. Therefore I = 371n(2)/8, and the answer is ¢ = 3/8.

2. First we’ll show thatif X, Y € Mg(Z),X =I=Y mod 3, and XYX =Y, then
X =1. Suppose X # I and write X = I + pC where p is a positive power
of 3 and C # 0 mod 3. Note that XY"X = Y” for all odd integers r. Write
Y =1+ 3D where D € Mg(Z). Then Y” =1 mod 3p, so X?> =1 mod 3p.
Therefore I 4+ 2pC + p?>C = I mod 3p which is not the case. Thus X =1
and we conclude that A3 = I. Now write A = I 4+ gD where ¢ is a positive
power of 3 and D # 0 mod 3. Then (I +¢D)? = I mod 9¢, which shows that
3¢D = 0 mod 9¢ which is not the case.

3. LetM = {2,3,...} =N\ {1}. Then f?(N) = M and therefore f(N) = N or
M. The former yields f2 (N) = N, which is not the case, so we must have
the latter which yields f(IM) = M. It follows that (M) = M and we have
a contradiction, so there is no such f, as required.

4. Let d = gcd(m,n). Then d = an+ bm for some integers a and b. Now
(”) = ﬂ(”_]), therefore

m m \m—1

2(2) = @romm(2) =a( 1) +o(220).

Since () and (,’;:11) are integers, the result follows.



5. We’ll show that (a,) is unbounded. We have a,_; = 01/an1 %dt.
Note that |1 — | <t for t > 0. To see this, by squaring both sides, this is
equivalent to 2 —2cost < 12, i.e. 12 +2cost — 2 > 0, which is true because
we have equality when ¢t = 0, and the derivative of the left hand side is
non-negative for r > 0 by using the inequality sin? <¢ for t > 0. Therefore
it will be sufficient to show that by, := fi/V"~"|1 — | /¢dt is unbounded
(because m/4 < 1). However for n € Z,

n(r+1)/n ) n(r+1)/n
/ \l—e’”t|dt:/ V2 —2cosnt =4/n.
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Let k = [\/n—1/7], so k is the greatest positive integer such that km <
Vn—1. Note that k — o0 as n — co. Then b, > T(1+1/2+ -+ 1/k),
which is unbounded because the harmonic series is divergent.

. First we show that a,, — b,, > 0 for all n > 1. This is equivalent to proving
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Since 1 +1/24---+41/n < n, the assertion follows. Since a; —b; =0, we
see that the minimum of a,, — b,, is zero.

Next we show that a,, — b, is decreasing for n sufficiently large. We have
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for n sufficiently large. Multiplying by n(n+ 1)(n+2) and then subtracting
n(l/24+1/4+---+ %1) from both sides, means we want to prove

n(1/24+1/12+---+ )>1+1/24---+1/n

1
(2n—1)2n

for sufficiently large n. However this is clear for n > 4. Therefore a, — b,
takes its maximum value for some n < 4. By inspection, the maximum
value occurs when n = 3, which is 7/90.

. Note that if g and & are continuous piecewise-monotone functions on [a, b],
then ¢(gh) < ¢(g)¢(h). Thus £(f") < (¢(f))" for all n € N. Now fix a
positive integer k. Given n € N, there are integers g and r such that n = gk+r
with 0 < r < k. Then £(f") < (£(f%))4(¢(f))", consequently

00y < (L)),

Since k is fixed, r/n — 0 and g /n — 1/k as n — oo. Therefore limsup {/£(f*) <
\/£(f¥) and we deduce that

limsup </ £(f") <inf {/£(f*) <liminf\/£( %)

and the result follows.



