40th VTRMC, 2018, Solutions

1. Let $I = \int_1^2 \frac{\arctan(1+x)}{x} dx$. First we integrate by parts to obtain

$$I = [\ln(x)\arctan(1+x)]_1^2 - \int_1^2 \frac{\ln x}{1 + (1+x)^2} dx$$
$$= \ln(2)\arctan(3) - \int_1^2 \frac{\ln x}{2 + 2x + x^2} dx.$$

Now let $J = \int_1^2 \frac{\ln x}{2 + 2x + x^2} dx$ and make the substitution x = 2/y. We obtain

$$J = \int_{2}^{1} \frac{\ln 2 - \ln y}{2 + 4/y + 4/y^{2}} (-2/y^{2}) \, dy = \int_{1}^{2} \frac{\ln 2}{1 + (1+y)^{2}} \, dy - J.$$

Therefore $2J = \int_1^2 \frac{\ln 2}{1 + (1 + y)^2} dy = [\ln(2)\arctan(1 + y)]_1^2 = \ln(2)(\arctan(3) - \arctan(2))$ and we deduce that $I = \ln(2)(\arctan(3) + \arctan(2))/2$. Now $\tan(\arctan(3) + \arctan(2)) = (3 + 2)(1 - 6) = -1$, which shows that $\arctan(3) - \arctan(2) = 3\pi/4$. Therefore $I = 3\pi \ln(2)/8$, and the answer is q = 3/8.

- 2. First we'll show that if $X, Y \in M_6(\mathbb{Z}), X \equiv I \equiv Y \mod 3$, and XYX = Y, then X = I. Suppose $X \neq I$ and write X = I + pC where p is a positive power of 3 and $C \not\equiv 0 \mod 3$. Note that $XY^TX = Y^T$ for all odd integers r. Write Y = I + 3D where $D \in M_6(\mathbb{Z})$. Then $Y^p \equiv I \mod 3p$, so $X^2 \equiv I \mod 3p$. Therefore $I + 2pC + p^2C \equiv I \mod 3p$ which is not the case. Thus X = I and we conclude that $A^3 = I$. Now write A = I + qD where q is a positive power of 3 and $D \not\equiv 0 \mod 3$. Then $(I + qD)^3 \equiv I \mod 9q$, which shows that $3qD \equiv 0 \mod 9q$ which is not the case.
- 3. Let $\mathbb{M} = \{2,3,\ldots\} = \mathbb{N} \setminus \{1\}$. Then $f^2(\mathbb{N}) = \mathbb{M}$ and therefore $f(\mathbb{N}) = \mathbb{N}$ or \mathbb{M} . The former yields $f^2(\mathbb{N}) = \mathbb{N}$, which is not the case, so we must have the latter which yields $f(\mathbb{M}) = \mathbb{M}$. It follows that $f^2(\mathbb{M}) = \mathbb{M}$ and we have a contradiction, so there is no such f, as required.
- 4. Let $d = \gcd(m, n)$. Then d = an + bm for some integers a and b. Now $\binom{n}{m} = \frac{n}{m} \binom{n-1}{m-1}$, therefore

$$\frac{d}{n}\binom{n}{m} = (a+bm/n)\binom{n}{m} = a\binom{n}{m} + b\binom{n-1}{m-1}.$$

Since $\binom{n}{m}$ and $\binom{n-1}{m-1}$ are integers, the result follows.

5. We'll show that (a_n) is unbounded. We have $a_{n-1} = \int_0^{1/\sqrt{n-1}} \frac{|1-e^{nit}|}{|1-e^{it}|} dt$. Note that $|1-e^{it}| \le t$ for $t \ge 0$. To see this, by squaring both sides, this is equivalent to $2-2\cos t \le t^2$, i.e. $t^2+2\cos t-2 \ge 0$, which is true because we have equality when t=0, and the derivative of the left hand side is non-negative for $t \ge 0$ by using the inequality $\sin t \le t$ for $t \ge 0$. Therefore it will be sufficient to show that $b_n := \int_0^{1/\sqrt{n-1}} |1-e^{nit}|/t \, dt$ is unbounded (because $\pi/4 < 1$). However for $n \in \mathbb{Z}$,

$$\int_{\pi r/n}^{\pi(r+1)/n} |1 - e^{nit}| \, dt = \int_{\pi r/n}^{\pi(r+1)/n} \sqrt{2 - 2\cos nt} = 4/n.$$

Let $k = [\sqrt{n-1}/\pi]$, so k is the greatest positive integer such that $k\pi < \sqrt{n-1}$. Note that $k \to \infty$ as $n \to \infty$. Then $b_n \ge \frac{4}{\pi}(1+1/2+\cdots+1/k)$, which is unbounded because the harmonic series is divergent.

6. First we show that $a_n - b_n \ge 0$ for all $n \ge 1$. This is equivalent to proving

$$(1+\frac{1}{n})(1/2+1/4+\cdots+\frac{1}{2n}) \le 1+1/3+\cdots+\frac{1}{2n-1},$$

that is

$$1+1/2+1/3+\cdots+1/n \le n((2-1)+(2/3-2/4)+\cdots+(\frac{2}{2n-1}-\frac{2}{2n})).$$

Since $1 + 1/2 + \cdots + 1/n \le n$, the assertion follows. Since $a_1 - b_1 = 0$, we see that the minimum of $a_n - b_n$ is zero.

Next we show that $a_n - b_n$ is decreasing for n sufficiently large. We have

$$(a_n - b_n) - (a_{n+1} - b_{n+1}) = a_n - a_{n+1} - (b_n - b_{n+1})$$

$$= \frac{1}{(n+1)(n+2)} (1 + 1/3 + \dots + \frac{1}{2n-1}) - \frac{1}{(n+2)(2n+1)}$$

$$- \frac{1}{n(n+1)} (1/2 + 1/4 + \dots + \frac{1}{2n}) + \frac{1}{(n+1)(2n+2)}.$$

Now $\frac{1}{(n+1)(2n+2)} - \frac{1}{(n+2)(2n+1)} > 0$ for all $n \ge 1$, so we need to prove

$$\frac{1}{(n+1)(n+2)}(1+1/3+\cdots+\frac{1}{2n-1}) > \frac{1}{n(n+1)}(1/2+1/4+\cdots+\frac{1}{2n})$$

for *n* sufficiently large. Multiplying by n(n+1)(n+2) and then subtracting $n(1/2+1/4+\cdots+\frac{1}{2n})$ from both sides, means we want to prove

$$n(1/2+1/12+\cdots+\frac{1}{(2n-1)2n}) > 1+1/2+\cdots+1/n$$

for sufficiently large n. However this is clear for $n \ge 4$. Therefore $a_n - b_n$ takes its maximum value for some $n \le 4$. By inspection, the maximum value occurs when n = 3, which is 7/90.

7. Note that if g and h are continuous piecewise-monotone functions on [a,b], then $\ell(gh) \leq \ell(g)\ell(h)$. Thus $\ell(f^n) \leq (\ell(f))^n$ for all $n \in \mathbb{N}$. Now fix a positive integer k. Given $n \in \mathbb{N}$, there are integers q and r such that n = qk + r with $0 \leq r < k$. Then $\ell(f^n) \leq (\ell(f^k))^q (\ell(f))^r$, consequently

$$\sqrt[n]{\ell(f^n)} \le (\ell(f^k))^{q/n} (\ell(f))^{r/n}.$$

Since k is fixed, $r/n \to 0$ and $q/n \to 1/k$ as $n \to \infty$. Therefore $\limsup \sqrt[n]{\ell(f^n)} \le \sqrt[k]{\ell(f^k)}$ and we deduce that

$$\limsup \sqrt[n]{\ell(f^n)} \leq \inf \sqrt[k]{\ell(f^k)} \leq \liminf \sqrt[k]{\ell(f^k)}$$

and the result follows.