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by making the substitution x = y�1. We conclude that I =
p ln2
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2. Set an =
(2n)!

4nn!n!
. Then an/an�1 = (2n�1)/(2n) = 1�1/(2n). Therefore

(n�1)/n  (an/an�1)
2  n/(n+1)

for all n 2 N. Now if bn = 1/n, then

bn/bn�1  (an/an�1)
2  bn+1/bn.

Therefore 1/4n  a2
n  1/(n+1) and hence

1

(4n)k/2
 an 

1

(n+1)k/2
.

Since Â1/nk/2
is convergent if and only if k > 2, we deduce that the series

is convergent for k > 2 and divergent for k  2.

3. Let I denote the identity matrix in Mn(Z2). If A 2 Mn(Z2) and A2 = 0,

then (I +A)2 = I + 2A+A2 = I because we are working mod 2, and we

see that I +A 2 GLn(Z2), the invertible matrices in Mn(Z2). Conversely if

X 2 GLn(Z2), and X2 = I, then (I +X)2 = 0. We deduce that the number

of matrices A satisfying A2 = 0 is precisely the number of matrices satis-

fying X2 = I. Since n � 2, the number of matrices in GLn(Z2) is even (if

Y 2 GLn(Z2), then we can pair it with the matrix Y 0
obtained from Y by

interchanging the first two rows of Y , and note that Y 6= Y 0
otherwise Y

would have two rows equal and therefore would not be invertible). Now

if Z 2 GLn(Z2) and Z2 6= I, then we can pair it with Z�1
and we see that

the number of matrices satisfying Z2 6= I in GLn(Z2) is even. Therefore the

number of matrices satisfying X2 = I is even and the result follows.



4. First observe that if p> 2 is a prime and a< p is such that a2+1 is divisible

by p, then a 6= p�a and P(a) = P(p�a) = p. Indeed a2+1 and (p�a)2+
1 = (a2 +1)+ p(p�2a) are divisible by p and are smaller than p2

, so they

cannot be divisible by any prime greater than p.

We will prove the stronger statement that there are infinitely many primes p
for which P(x) = p has at least three positive integer solutions, so assume

by way of contradiction that there are finitely many such primes and let s be

the maximal prime among these; if there are no solutions, set s = 2. Let S
be the product of all primes not exceeding s. If p = P(S), then p is coprime

to S and thus p> s. Let a be the least positive integer such that a⌘ S mod p.

Then a2+1 is divisible by p, hence P(a) = P(p�a) = p because p> a. Let

b = a if a is even, otherwise let b = p�a. Then (b+ p)2 +1 is divisible by

2p, so P(b+ p)� p. If P(b+ p) = p, we arrive at a contradiction. Therefore

P(b+ p) =: q > p and (b+ p)2 +1 is divisible by 2pq and thus (b+ p)2 +
1 � 2pq. This means q < b+ p, otherwise (b+ p)2 + 1  (2p� 1)q+ 1

(because b < p) < 2pq. Now let c be the least positive integer such that

c = b+ p mod q. We have P(c) = P(q�c) = P(b+ p) = q > p > s, another

contradiction and the proof is finished.

5. The equality yields 1+m�n
p

3=(2�
p

3)2r�1
and hence (1+m)2�3n2 =

1
2r�1 =�1. Therefore m(m+2) = 3n2

. If p 6= 2,3 is a prime and pa
is the

largest power of p dividing n, then p2a
is the largest power of p dividing

3n2
. Since p cannot divide both m and m+ 2, we see that either p - m or

p2a | m, in either case the power of p that divides m is an even. It remains

to prove that the largest power of 2 and 3 that divides m is also even. Now

if 2 divides m, then the largest power of 2 that divides m(m+2), and hence

also 3n2
, is odd which is not possible. All that remains to be proven is that

3 does not divide m. However we have 1+m = 2
2r�1

mod 3, which shows

that 3 does not divide m as required.

6. Write M =

✓
I +A �X
�Y I +P

◆
, N =

✓
I +B X

Y I +Q

◆
.

Then

MN =

✓
I +A+B+AB�XY AX �XQ

PY �Y B I +P+Q+PQ�Y X

◆
= I.

Therefore NM = I and in particular I +A+B+BA�XY = I. The result

follows.



7. Proceed by induction on k. Let ck denote the constant term of fk. For the

base case k = 1, we need only observe that f1(X) = (1�X)(1� qX�1) =
1+q�X �qX�1

and c1 = (1�q2)/(1�q) = 1+q. For any k, we have

ck+1 =
(1�q2k+1)(1�q2k+2)

(1�qk+1)2
ck =

(1�q2k+1)(1+qk+1)

1�qk+1
ck.

We will prove that the constant term of fk(X) satisfies the same recurrence

relation, which gives the induction step. Let a(i)k denote the coefficient of Xi

in fk. From

fk+1(X) = (1�qkX)(1�qk+1X�1) fk(X)

= (1�qkX �qk+1X�1 +q2k+1) fk(X)

we deduce that

a(0)k+1
= (1+q2k+1)a(0)k �qka(�1)

k �qk+1a(1)k .

We want a recurrence relation for a(0)k . To relate a(±1)
k to a(0)k , we consider

fk(qX) =
k�1

’
i=0

⇣
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⌘
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(1�qkX)(1�X�1)

(1�X)(1�qkX�1)
fk(X)

=
1�qkX
qk �X

fk(X).

Hence (qk �X) fk(qX) = (1� qkX) fk(X). Equating coefficients of X0
and

X1
on both sides, we obtain

a(�1)
k = q

qk �1

1�qk+1
a(0)k , a(1)k =

qk �1

1�qk+1
a(0)k .

Therefore

a(0)k+1
=
⇣

1+q2k+1 �2qk+1
qk �1

1�qk+1

⌘
a(0)k =

(1�q2k+1)(1+qk+1)

1�qk+1
a(0)k

and this completes the proof.


