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by making the substitution x =y — 1. We conclude that I =

dx. We make the substitution y = 2 /x. Then dx =
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. Seta, = 20 Then anfan—1 = (2n—1)/(2n) = 1 —1/(2n). Therefore
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for all n € N. Now if b, = 1/n, then
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Therefore 1/4n < a2 < 1/(n+1) and hence
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Since Y"1/ nk/? is convergent if and only if k > 2, we deduce that the series
is convergent for k£ > 2 and divergent for k < 2.

. Let I denote the identity matrix in M, (Z,). If A € M,(Z;) and A% = 0,
then (I +A)2 = [ +2A + A% = | because we are working mod 2, and we
see that / +A € GL,(Z,), the invertible matrices in M,,(Z,). Conversely if
X € GL,(Z,), and X? =1, then (I+X)? = 0. We deduce that the number
of matrices A satisfying A> = 0 is precisely the number of matrices satis-
fying X? = I. Since n > 2, the number of matrices in GL,(Z,) is even (if
Y € GL,(Z;), then we can pair it with the matrix ¥’ obtained from Y by
interchanging the first two rows of Y, and note that Y # Y’ otherwise Y
would have two rows equal and therefore would not be invertible). Now
if Z € GL,(Z,) and Z? # I, then we can pair it with Z~! and we see that
the number of matrices satisfying Z? # I in GL,(Z,) is even. Therefore the
number of matrices satisfying X2 = I is even and the result follows.



4. First observe that if p > 2 is a prime and a < p is such that a® + 1 is divisible
by p, thena # p—a and P(a) = P(p —a) = p. Indeed a* + 1 and (p —a)> +
1 = (a> +1) + p(p —2a) are divisible by p and are smaller than p?, so they
cannot be divisible by any prime greater than p.

We will prove the stronger statement that there are infinitely many primes p
for which P(x) = p has at least three positive integer solutions, so assume
by way of contradiction that there are finitely many such primes and let s be
the maximal prime among these; if there are no solutions, set s = 2. Let §
be the product of all primes not exceeding s. If p = P(S), then p is coprime
to S and thus p > s. Let a be the least positive integer such that a = S mod p.
Then a4 1 is divisible by p, hence P(a) = P(p —a) = p because p > a. Let
b = aif a is even, otherwise let b = p —a. Then (b+ p)? + 1 is divisible by
2p,so P(b+p) > p. If P(b+ p) = p, we arrive at a contradiction. Therefore
P(b+p) =:q > p and (b+ p)? 4+ 1 is divisible by 2pg and thus (b + p)? +
1 > 2pg. This means g < b+ p, otherwise (b+p)>+1< (2p—1)g+1
(because b < p) < 2pq. Now let c be the least positive integer such that
¢=b+ pmod q. We have P(c) = P(q—c) =P(b+ p) =g > p > s, another
contradiction and the proof is finished.

5. The equality yields 1 +m—nv/3 = (2—+/3)> ! and hence (1+m)? —3n* =
12~ = —1. Therefore m(m +2) = 3n?. If p # 2,3 is a prime and p“ is the
largest power of p dividing n, then p?“ is the largest power of p dividing
3n2. Since p cannot divide both m and m + 2, we see that either p { m or
p* | m, in either case the power of p that divides m is an even. It remains
to prove that the largest power of 2 and 3 that divides m is also even. Now
if 2 divides m, then the largest power of 2 that divides m(m+2), and hence
also 3n?, is odd which is not possible. All that remains to be proven is that
3 does not divide m. However we have 1 +m = 2%"~! mod 3, which shows
that 3 does not divide m as required.

6. WriteM:(1+A _X),N:(I+B X )
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Then
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Therefore NM = I and in particular / +A + B+ BA — XY = 1. The result
follows.



7. Proceed by induction on k. Let c; denote the constant term of f;. For the
base case k = 1, we need only observe that f;(X) = (1 —X)(1 —gX~!) =
l+g—X—¢gX 'andc; = (1—¢?)/(1 —q) = 1+q. For any k, we have

(1 o q2k+l)(1 _q2k+2)
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B (1 _q2k+1>(1 +qk+l)
- 1 —ghtl Ck-

We will prove that the constant term of f;(X) satisfies the same recurrence

relation, which gives the induction step. Let a,((’) denote the coefficient of X'
in fx. From

fir1(X) = (1=¢"X) (1= ¢ 'X ) fi(X)
(1 —qu—qk+1X_l +q2k+l)fk(X)

we deduce that
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We want a recurrence relation for a(o)

v - To relate a,((il) to a,(co), we consider

k—1

filaX) =TT (1= X1 - X))

i=0
(1—-¢g"X)(1—-X"1)

=100 —gx Ty &)
1 —g*'X
L

Hence (¢* — X) fi(gX) = (1 — ¢"X) fi(X). Equating coefficients of X° and
X! on both sides, we obtain

Jie(X).
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Therefore
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and this completes the proof.




