36th VTRMC, 2014, Solutions

1. Let S denote the sum of the given series. By partial fractions,

$$2\frac{n^2 - 2n - 4}{n^4 + 4n^2 + 16} = \frac{n - 2}{n^2 - 2n + 4} - \frac{n}{n^2 + 2n + 4}.$$

If $f(n) = \frac{n-2}{n^2-2n+4}$, then $2S = \sum_{n=2}^{n=\infty} f(n) - f(n+2)$. Since $\lim_{n\to\infty} f(n) = 0$, it follows by telescoping series that the series is convergent and $2S = f(2) - f(4) + f(3) - f(5) + f(4) - f(6) + \cdots$, so 2S = f(2) + f(3) and we deduce that S = 1/14.

2. Let *I* denote the given integral. First we make the substitution $y = x^2$, so dy = 2xdx. Then

$$2I = \int_0^4 \frac{16 - y}{16 - y + \sqrt{(16 - y)(12 + y)}} \, dy = \int_0^4 \frac{\sqrt{16 - y}}{\sqrt{16 - y} + \sqrt{12 + y}} \, dy.$$

Now make the substitution z = 4 - y, so dz = -dy. Then

$$2I = \int_0^4 \frac{\sqrt{12+z}}{\sqrt{12+z} + \sqrt{16-z}} dz.$$

Adding the last two equations, we obtain $4I = \int_0^4 dz = 4$ and hence I = 1.

3. Let $m = \phi(2^{2014}) = 2^{2013}$ (here $\phi(x)$ is Euler's totient function, the number of positive integers $\langle x \rangle$ which are prime to x). Then $19^m \equiv 1 \mod 2^{2014}$ by Euler's theorem. Therefore *n* divides 2^{2013} , so $n = 2^k$ for some positive integer *k*. Now

$$19^{2^{k}} - 1 = (19 - 1)(19 + 1)(19^{2} + 1)(19^{4} + 1)\dots(19^{2^{k-1}} + 1);$$

we calculate the power of 2 in the above expression. This is 1+2+1+1+ $\dots+1=k+2$. Therefore k+2=2014 and it follows that $n=2^{2012}$.

4. Put i^{a+2b} in the square in the (a,b) position. Note that the sum of all the entries in a 4×1 or 1×4 rectangle is zero, because $\sum_{k=0}^{3} i^{a+k+2b} = (1+i+i^2+i^3)i^{a+2b} = 0$ and $\sum_{k=0}^{3} i^{a+2(b+k)} = (1+i^2+i^4+i^6)i^{a+2b} = 0$. Therefore if we have a tiling with 4×1 and 1×4 rectangles, the sum of the entries in

all 361 squares is the value on the central square, namely $i^{10+20} = -1$. On the other hand this sum is also

$$(i+i^2+\dots+i^{19})(i^2+i^4+\dots+i^{38}) = i\frac{i^{19}-1}{i-1}\cdot(-1+1-\dots-1)$$
$$= i\frac{-i-1}{i-1}\cdot-1 = 1.$$

This is a contradiction and therefore we have no such tiling.

- 5. Suppose by way of contradiction we can write $n(n+1)(n+2) = m^r$, where $n \in \mathbb{N}$ and $r \ge 2$. If a prime *p* divides n(n+2) and n+1, then it would have to divide n+1, and *n* or n+2, which is not possible. Therefore we may write $n(n+2) = x^r$ and $n+1 = y^r$ for some $x, y \in \mathbb{N}$. But then $n(n+2)+1 = (n+1)^2 = z^r$ where $z = y^2$. Since $(n+1)^2 > n(n+2)$, we see that z > x and hence $z \ge x+1$, because $x, z \in \mathbb{N}$. We deduce that $z^r \ge (x+1)^r > x^r + 1$, a contradiction and the result follows.
- 6. (a) Since A and B are finite subsets of T, we may choose a ∈ A and b ∈ B so that f(ab) is as large as possible. Suppose we can write g := ab = cd with c ∈ A and d ∈ B. Let h = d⁻¹b and d ≠ b. Note that g, h ∈ T. Then h ≠ I and we see that either f(gh⁻¹) > f(g) or f(gh) > f(g). This contradicts the maximality of f(ab). Therefore d = b and because b is an invertible matrix, we deduce that a = c and the result is proven.
 - (b) Set $M = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$. Then $M \in S$ and $M^3 = I$. Suppose f(M) > f(I). Then (X = M and Y = M) we obtain either $f(M^2) > f(M)$ or f(I) > f(M), hence $f(M^2) > f(M)$. Now do the same with $X = M^2$ and Y = M: we obtain $f(M^3) > f(M^2)$. Since $M^3 = I$, we now have $f(I) > f(M^2) > f(M) > f(I)$, a contradiction. The argument is similar if we start out with f(M) < f(I). This shows that there is no such f.

7. (a) Let
$$A = (x_A, y_A)$$
 and $B = (x_B, y_B)$. Then $d(A, B) = \begin{pmatrix} x_B - x_A + y_A - y_B \\ x_B - x_A \end{pmatrix}$.

(b) By definition det $M = d(A_1, B_1)d(A_2, B_2) - d(A_1, B_2)d(A_2, B_1)$. Note that the first term counts all pairs of paths (π_1, π_2) where $\pi_i : A_i \to B_i$, and the second term is the negative of the number of pairs (π_1, π_2) where $\pi_1 : A_1 \to B_2$ and $\pi_2 : A_2 \to B_1$. The configuration of the points implies that every pair of paths (π_1, π_2) where $\pi_1 : A_1 \to B_2$ and $\pi_2 : A_2 \to B_1$ must intersect. Let $\mathscr{I} := \{(\pi_1, \pi_2) : \pi_1 \cap \pi_2 \neq \emptyset\}$ (this is the set of all intersecting paths, regardless of their endpoints). Define $\Phi : \mathscr{I} \to \mathscr{I}$ as follows. If $(\pi_1, \pi_2) \in \mathscr{I}$ then $\Phi((\pi_1, \pi_2)) = (\pi'_1, \pi'_2)$ and the new pair of paths is obtained from the old one by switching the tails of π_1, π_2 after their *last* intersection point. In particular, the pairs (π_1, π_2) and (π'_1, π'_2) must appear in different terms of det M. But it is clear that $\Phi \circ \Phi = id_{\mathscr{I}}$, therefore Φ is an involution. This implies that all intersecting pairs of paths must cancel each other, and that the only pairs which contribute to the determinant are those from the set $\{(\pi_1, \pi_2) : \pi_1 \cap \pi_2 = \emptyset\}$. Since all the latter pairs can appear only with positive sign (in the first term of det M), this finishes the solution. (In fact, we proved that det $M = \#\{(\pi_1, \pi_2) : \pi_1 \cap \pi_2 = \emptyset\}$.)