
30th VTRMC, 2008, Solutions

1. Write f (x) = xy3+yz3+ zx3−x3y−y3z− z3x. First we look for local max-
ima, so we need to solve ∂ f/∂x = ∂ f/∂y = ∂ f/∂ z = 0. Now ∂ f/∂x =
y3+3x2z−z3−3x2y. If y= z, then f (x,y,z) = 0 and this is not a maximum.
Thus we may divide by y− z and then ∂ f/∂x= 0 yields y2+yz+ z2 = 3x2.
Similarly x2+xz+z2= 3y2 and x2+xy+y2= 3z2. Adding these three equa-
tions, we obtain (x− y)2+(y− z)2+(z− x)2 = 0, which yields x = y = z.
This does not give a maximum, because f = 0 in this case, and we conclude
that the maximum of f must occur on the boundary of the region, so at least
one of x,y,z is 0 or 1.
Let’s look at f on the side x = 0. Here f = yz3− y3z and 0 ≤ y ≤ 1, 0 ≤
z ≤ 1. To find local maxima, we solve ∂ f/∂y = ∂ f/∂ z = 0. This yields
y = z = 0 and f = 0, which is not a maximum, so the maximum occurs on
the edges of the region considered. If y or z= 0, we get f = 0 which is not
a maximum. If y = 1, then f = z3− z ≤ 0, which won’t give a maximum.
Finally if z= 1, then f = y− y3. Since d f/dy= 1−3y2, we see that f has
a maximum at y= 1/

√
3. This gives that the maximum value of f on x= 0

is 1/
√
3−1/

√
33 = 2

√
3/9.

Similarly if y or z= 0, the maximum value of f is 2
√
3/9. Now let’s look at

f on the side x= 1. Here f = y3+yz3+z−y−y3z−z3. Again we first look
for local maxima: ∂ f/∂y = 3y2+ z3− 1− 3y2z. Then ∂ f/∂y = 0 yields
either z= 1 or 3y2 = z2+z+1. If z= 1, then f = 0 which is not a maximum,
so 3y2 = z2+ z+1. Similarly 3z2 = y2+y+1. Adding these two equations,
we find that y2− y/2+ z2− z/2 = 1. Thus (y− 1/2)2+(z− 1/2)2 = 3/2.
This has no solution in the region considered 0≤ y≤ 1, 0≤ z≤ 1. Thus f
must have a maximum on one of the edges. If y or z is 0, then we are back
in the previous case. On the other hand if y or z is 1, then f = 0, which is
not a maximum.
We conclude that the maximum value of f on 0≤ x≤ 1, 0≤ y≤ 1, 0≤ z≤ 1
is 2

√
3/9.

2. For each positive integer n, let f (n) denote the number of sequences of
1’s and 3’s that sum to n. Then f (n+ 3) = f (n+ 2)+ f (n), and we have
f (1) = 1, f (2) = 1, and f (3) = 2. Thus f (4) = f (3)+ f (1) = 3, f (5) =
f (4)+ f (2) = 4, f (6) = 6, . . . , f (15) = 189, f (16) = 277. Thus the number
of sequences required is 277.



3. Let R denote the specified region, i.e. {(x,y) | x4 + y4 ≤ x2− x2y2 + y2}.
Then R can be described as the region inside the curve x4 + x2y2 + y4 =
x2+ y2 ((x,y) $= (0,0)). This can be rewritten as

(x2+ y2− xy)(x2+ y2+ xy) = x2+ y2.

Now change to polar coordinates: write x = r cosθ , y = r sinθ ; then the
equation becomes (r2− r2 cosθ sinθ)(r2+ r2 cosθ sinθ) = r2. Since r $= 0
and 2cosθ sinθ = sin2θ , we now have r2(1− 1

4 sin
2 2θ) = 1. Therefore the

area A of R is
∫∫

R
rdrdθ =

∫ 2π

0

∫ (1− 1
4 sin

2 2θ)−1/2

0
r drdθ =

∫ 2π

0

dθ
2(1− 1

4 sin
2 2θ)

=
∫ π/4

0

16dθ
3+ cos2 2θ =

∫ π/4

0

16sec2 2θ dθ
4+3tan2 2θ .

Now make the substitution 2z =
√
3tan2θ , so dz =

√
3sec2 2θ dθ and we

obtain
A=

4√
3

∫ ∞

0

dz
1+ z2

= 2π/
√
3.

4. Ceva’s theorem applied to the triangle ABC shows that
AP
PB

BM
MC

CN
NA

= 1.

Since BM =MC, we see that
AP
PB

=
AN
NC

and we deduce that PN is parallel
to BC. Therefore ∠NPX = ∠PCB = ∠NAX and we conclude that APXN
is a cyclic quadrilateral. Since that opposite angles of a cyclic quadrilateral
sum to 180◦, we see that ∠APX+∠XNA= 180◦, and the result follows.

5. Let T = {an | n ∈ N} and for t a positive number, let At = {n ∈ N | an ≥ t}.
Since ∑an = 1 and an ≥ 0 for all n, we that if δ > 0, then there are only
finitely many numbers in T greater than δ , and also At is finite. Thus we
may label the nonzero elements of T as t1, t2, t3, . . . , where t1 > t2 > t3 >
· · ·> 0. We shall use the notation X(Y to indicate the symmetric difference
{X \Y ∪Y \X} of two subsets X ,Y .
Consider the sum

∑
i≥1

(ti− ti+1)|Ati (π−1Ati|.

Note that n ∈ At \π−1At if and only if an ≥ t > aπn, and n ∈ π−1At \At if
and only if an < t ≤ aπn. Write an = tp and aπn = tq. We have three cases
to examine:



(a) an = aπn. Then n does not appear in the above sum.
(b) an > aπn. Then p < q and n is in Atr \π−1Atr whenever tp ≥ tr > tq,

that is q> r≥ p and we get a contribution (tp−tp+1)+(tp+1−tp+2)+
· · ·+(tq−1− tq) = tp− tq = an−aπn = |an−aπn|.

(c) an < aπn. Then p > q and n is in π−1Atr \Atr whenever tq ≥ tr > tp,
that is p> r≥ q and we get a contribution (tq− tq+1)+(tq+1− tq+2)+
· · ·+(tp−1− tp) = tq− tp = aπn−an = |an−aπn|.

We conclude that
∞

∑
n=1

|an−aπn| = ∑
i≥1

(ti− ti+1)|Ati (πAti|,

because |Ati (π−1Ati| = |Ati (πAti|. Similarly
∞

∑
n=1

|an−aρn| = ∑
i≥1

(ti− ti+1)|Ati (ρAti|,

and we deduce that
∞

∑
n=1

(|an−aπn|+
∞

∑
n=1

|an−aρn|) = ∑
i≥1

(ti− ti+1)(|Ati (πAti|+ |Ati (ρAti|).

Therefore ∑i≥1(ti − ti+1)(|Ati ( πAti|+ |Ati ( ρAti|) < ε . We also have
∑i≥1(ti− ti+1)|Ati| = 1. Therefore for some i, we must have |Ati (πAti|+
|Ati (ρAti| < ε|Ati| and the result follows.

6. Multiply a4− 3a2+ 1 by b and subtract (a3− 3a)(ab− 1) to obtain a3−
3a+b. Now multiply by b and subtract a2(ab−1) to obtain a2−3ab+b2.
Thus we want to know when ab− 1 divides (a− b)2− 1, where a,b are
positive integers. We cannot have a= b, because a2−1 does not divide−1.
We now assume that a> b.
Suppose ab− 1 does divide (a− b)2− 1 where a,b are positive integers.
Write (a−b)2−1= k(ab−1), where k is an integer. Since (a−b)2−1≥ 0,
we see that k is nonnegative. If k= 0, then we have (a−b)2 = 1, so a−b=
±1. In this case, ab− 1 does divide a4− 3a2+ 1, because a4− 3a2+ 1 =
(a2+a−1)(a2−a−1). We now assume that k ≥ 1.
Now fix k and choose a,b with b as small as possible. Then we have a2+
a(−2b−kb)+b2+k−1= 0. Consider the quadratic equation x2+x(−2b−



kb)+b2+ k−1= 0. This has an integer root x= a. Let v be its other root.
Since the sum of the roots is 2b+ kb, we see that v is also an integer. Also
av = b2+ k− 1. Since b,k ≥ 1, we see that v is also positive. We want to
show that v< b; if this was not the case, then we would have b2+k−1≥ ab,
that is k ≥ ab−b2+1. We now obtain

(a−b)2−1≥ (ab−b2+1)(ab−1).

This simplifies to a2−ab≥ (ab−b2+1)ab, that is a−b≥ (ab−b2+1)b
and we obtain (a− b)(b2− 1)+ b ≤ 0, which is not the case. Thus v < b
and we have v2+ v(−2b− k)+ b2+ k− 1 = 0. Set u = b. Then we have
(u− v)2− 1 = k(uv− 1), where u,v are positive and v < b. By minimality
of b, we conclude that there are no a,b such that (a−b)2−1= k(ab−1).
Putting this altogether, the positive integers required are all a,b such that
b= a±1.

7. Note that for fixed x> 1, the sequence 1/ fn(x) is decreasing with respect to
n and positive, so the given limit exists which means that g is well-defined.
Next we show that g(e1/e) ≥ 1/e, equivalently limn→∞ fn(e1/e) ≤ e. To
do this, we show by induction that fn(e1/e) ≤ e for all positive integers n.
Certainly f1(e1/e) = e1/e ≤ e. Now if fn(e1/e) ≤ e, then

fn+1(e1/e) = (e1/e) fn(e
1/e) ≤ (e1/e)e = e,

so the induction step passes and we have proven that g(e1/e) ≥ 1/e.
We now prove that g(x) = 0 for all x> e1/e; this will show that g is discon-
tinuous at x = e1/e. We need to prove that limn→∞ fn(x) = ∞. If this is not
the case, then we may write limn→∞ fn(x) = y where y is a positive number
> 1. We now have

y= lim
n→∞

fn(x) = lim
n→∞

fn+1(x) = xlimn→∞ fn(x) = xy.

Therefore lny= y lnx and x= y1/y. Since (dx/dy)/x= (1− lny)/y2, we see
by considering the graph of y1/y that it reaches its maximum when y = e,
and we deduce that x ≤ e1/e. This is a contradiction and we conclude that
limn→∞ fn(x) = 0. Thus we have shown that g(x) is discontinuous at x =
e1/e.


