30th VTRMC, 2008, Solutions

1. Write f(x) = xy> +yz> +2¢> — x>y — y’z— 23x. First we look for local max-
ima, so we need to solve df/dx=0df/dy=0df/dz=0. Now df/dx =
y3 +3x%z— 73 —3x%y. If y = z, then f(x,,z) = 0 and this is not a maximum.
Thus we may divide by y —z and then 0 f/dx = 0 yields y?> + yz + 7> = 3x2.
Similarly x> +xz+z% = 3y? and x> +xy+y?> = 3z2. Adding these three equa-
tions, we obtain (x —y)? + (y — z)? + (z —x)? = 0, which yields x = y = z.
This does not give a maximum, because f = 0 in this case, and we conclude
that the maximum of f must occur on the boundary of the region, so at least
one of x,y,zisOor 1.

Let’s look at f on the side x = 0. Here f = yz —y’zand 0 <y < 1,0 <
z < 1. To find local maxima, we solve df/dy = df/dz = 0. This yields
y=z=0and f = 0, which is not a maximum, so the maximum occurs on
the edges of the region considered. If y or z =0, we get f = 0 which is not
a maximum. If y =1, then f = z> —z < 0, which won’t give a maximum.
Finally if z= 1, then f =y —y>. Since df/dy =1—3y?, we see that f has
amaximumaty =1/ /3. This gives that the maximum value of f onx =0
is 1/3v/3—1/v/3 =2/3/9.

Similarly if y or z = 0, the maximum value of f is 2v/3/9. Now let’s look at
f on the side x = 1. Here f = y* +yz’ +z—y—y3z—2>. Again we first look
for local maxima: df/dy = 3y> 42> — 1 —3y?z. Then df/dy = 0 yields
either z=1or 3y =72 +z+ 1. If z= 1, then f = 0 which is not a maximum,
50 3y? = z> +z+ 1. Similarly 3z> = y? + y+ 1. Adding these two equations,
we find that y?> —y/2 427> —z/2 = 1. Thus (y — 1/2)?> + (z —1/2)?> = 3/2.
This has no solution in the region considered 0 <y < 1,0 <z < 1. Thus f
must have a maximum on one of the edges. If y or z is 0, then we are back
in the previous case. On the other hand if y or z is 1, then f = 0, which is
not a maximum.

We conclude that the maximum valueof fon0<x<1,0<y<1,0<z<1

is 24/3/9.

2. For each positive integer n, let f(n) denote the number of sequences of
1’s and 3’s that sum to n. Then f(n+3) = f(n+2)+ f(n), and we have
() =1, £2) = 1, and f(3) = 2. Thus £(4) = £(3) + £(1) = 3, £(5) =
f@)+f(2)=4,f(6)=6,..., f(15) =189, f(16) =277. Thus the number
of sequences required is 277.



3. Let R denote the specified region, i.e. {(x,y) | x* +y* < x? —x?y* +y?}.
Then R can be described as the region inside the curve x* 4+ x2y? +y* =
x% +y? ((x,y) # (0,0)). This can be rewritten as

(% +3% =) (% + % +ay) =2 47
Now change to polar coordinates: write x = rcos 6, y = rsin; then the
equation becomes (> —r?cos @sin 0)(r?> +r>cos @sin @) = r. Since r # 0
and 2cos 0sin§ = sin26, we now have r*(1 — % sin?26) = 1. Therefore the
area A of R is

2w (1—4sin?20)71/2 2n de
J[rarao= [ [ rdrdo = [ °
R 0 2(1—zsin"20)

B /n/4 16d6 /”/416sec226d0
34+c0s220  Jo 4+3tan226

Now make the substitution 2z = v/3tan26, so dz = v/3sec2260d6 and we

obtain 4 i
< az
= — =21t/V/3.
V3Jo 14722 /
AP BM CN

4. th lied to the t le ABC sh that ——-— =
Ceva’s theorem applied to Z Prlani; C shows tha PEMC NA
Since BM = MC, we see that 7B = NC and we deduce that PN is parallel

to BC. Therefore /NPX = /PCB = /NAX and we conclude that APXN
is a cyclic quadrilateral. Since that opposite angles of a cyclic quadrilateral
sum to 180°, we see that ZAPX + /XNA = 180°, and the result follows.

5. Let J = {a, | n € N} and for ¢ a positive number, let A, = {n € N | a, > 1}.
Since Y a, = 1 and a,, > 0 for all n, we that if 6 > 0, then there are only
finitely many numbers in .7 greater than §, and also A; is finite. Thus we
may label the nonzero elements of .7 as t,1,,t3,..., where t; > t, > t3 >

-+ > 0. We shall use the notation X AY to indicate the symmetric difference
{X\YUY\ X} of two subsets X,Y.

Consider the sum

Z(l‘i — ti—i—l)‘Ati AN ﬂilA[i’.

i>1
Note that n € A, \ n~ 1A, if and only if a, >t > az,,and n € n 1A, \ A if
and only if a, <t < ap,. Write a, =1, and arp, = t,. We have three cases
to examine:



(a) a, = azy,. Then n does not appear in the above sum.

(b) a, > an,. Then p < g and n is in A, \ n’lA,r whenever 1, > 1, > 1,
thatis ¢ > r > p and we get a contribution (t, —t,1) + (tp+1 —tp42) +
vt (tym1 —tg) =ty —tg = ap — Agp = |Gp — agn).

(¢) a, < apy. Then p > g and n is in nflAtr \ A;. whenever tg 2t > tp,
that is p > r > g and we get a contribution (t; —t,11) + (441 —t442) +
vt (tp—1 —tp) =tg—tp = gy — Ay = |Gp — Agnl.

We conclude that

[

z ‘an _aﬂin‘ = Z(ti_ti+1)‘AtiAﬂAli’7

n=1 i>1

because |A, A A, | = |A,, A A, Similarly

Z lan —apn| = Z(Ii_ti+l)|AtiApA[i’7
n=1

i>1

and we deduce that

oo

D (Jan —azal + Y lan —apal) = D (1 = ti41) (|Ay A WAL+ Ay A pAL]).
n=1

n=1 i>1

Therefore Y~ (t; — tiy1)(|A; A wA,| + |A, A pA,|) < €. We also have
Yi>1(ti —tiy1)|A;| = 1. Therefore for some i, we must have |A; A A, | +
|A;; A\ pA;;| < €|A;;| and the result follows.

. Multiply a* — 3a® + 1 by b and subtract (a> —3a)(ab — 1) to obtain a® —
3a+ b. Now multiply by b and subtract a?(ab — 1) to obtain a®> — 3ab + b?.
Thus we want to know when ab — 1 divides (a —b)? — 1, where a,b are
positive integers. We cannot have a = b, because a> — 1 does not divide —1.
We now assume that a > b.

Suppose ab — 1 does divide (a — b)2 — 1 where a,b are positive integers.
Write (a —b)?> — 1 = k(ab — 1), where k is an integer. Since (a —b)?>—1>0,
we see that k is nonnegative. If k = 0, then we have (a —b)?> =1,s0a—b =
+1. In this case, ab — 1 does divide a* — 3a% + 1, because a* —3a> +1 =
(a>+a—1)(a’> —a—1). We now assume that k > 1.

Now fix k and choose a,b with b as small as possible. Then we have a* +
a(—2b—kb)+b*>+k—1=0. Consider the quadratic equation x? +x(—2b —



kb) +b* +k —1 =0. This has an integer root x = a. Let v be its other root.
Since the sum of the roots is 2b + kb, we see that v is also an integer. Also
av=b*+k—1. Since b,k > 1, we see that v is also positive. We want to
show that v < b; if this was not the case, then we would have b*>+k— 1 > ab,
that is k > ab — b* 4+ 1. We now obtain

(a—b)>—1> (ab—b*+1)(ab—1).

This simplifies to a> —ab > (ab — b*> + 1)ab, thatis a — b > (ab—b* +1)b
and we obtain (a — b) (b* — 1) +b < 0, which is not the case. Thus v < b
and we have v? +v(—2b —k) +b>+k—1=0. Set u = b. Then we have
(u—v)? —1 = k(uv — 1), where u,v are positive and v < b. By minimality
of b, we conclude that there are no a,b such that (a —b)?> — 1 = k(ab—1).

Putting this altogether, the positive integers required are all a,b such that
b=a=xl.

. Note that for fixed x > 1, the sequence 1/ f,(x) is decreasing with respect to
n and positive, so the given limit exists which means that g is well-defined.
Next we show that g(e'/¢) > 1/e, equivalently lim, ... f,(e'/¢) < e. To
do this, we show by induction that f;(e'/¢) < e for all positive integers .
Certainly fi(e'/¢) = e!/¢ < e. Now if f,(e'/¢) < e, then

Fori (/€)= (e eyle) < (elfeye e,

so the induction step passes and we have proven that g(e'/¢) > 1/e.

We now prove that g(x) = 0 for all x > e!/¢; this will show that g is discon-
tinuous at x = e¢!/¢. We need to prove that lim,,_... f,(x) = oo. If this is not
the case, then we may write lim,,_... f,,(x) = y where y is a positive number
> 1. We now have

y=lim f,(x) = lim fp (x) = fimoe o) = 3,
n—oo n—oo

Therefore Iny = ylnx and x = y'/?. Since (dx/dy) /x = (1 —Iny)/y?, we see
by considering the graph of y!/? that it reaches its maximum when y = e,
and we deduce that x < el/¢. This is a contradiction and we conclude that

lim,, e f4(x) = 0. Thus we have shown that g(x) is discontinuous at x =
1/e
ee.



