23rd VTRMC, 2001, Solutions

1. We calculate the volume of the region which is in the first octant and above $\{(x,y,0) \mid x \ge y\}$; this is 1/16 of the required volume. The volume is above R, where R is the region in the xy-plane and bounded by y = 0, y = x and $y = \sqrt{1 - x^2}$, and below $z = \sqrt{1 - x^2}$. This volume is

$$\begin{split} &\int_0^{1/\sqrt{2}} \int_0^x \int_0^{\sqrt{1-x^2}} dz dy dx + \int_{1/\sqrt{2}}^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2}} dz dy dx \\ &= \int_0^{1/\sqrt{2}} \int_0^x \sqrt{1-x^2} dy dx + \int_{1/\sqrt{2}}^1 \int_0^{\sqrt{1-x^2}} \sqrt{1-x^2} dy dx \\ &= \int_0^{1/\sqrt{2}} x \sqrt{1-x^2} dx + \int_{1/\sqrt{2}}^1 (1-x^2) dx \\ &= \left[-(1-x^2)^{3/2}/3 \right]_0^{1/\sqrt{2}} + \left[x - x^3/3 \right]_{1/\sqrt{2}}^1 \\ &= \frac{1}{3} - \frac{1}{6\sqrt{2}} + \frac{2}{3} + \frac{1}{6\sqrt{2}} - \frac{1}{\sqrt{2}} \\ &= 1 - 1/\sqrt{2}. \end{split}$$

Therefore the required volume is $16 - 8\sqrt{2}$.

2. Let the circle with radius 1 have center P, the circle with radius 2 have center Q, and let R be the center of the third circle, as shown below. Let $\overline{AR} = a$, $\overline{RB} = b$, and let the radius of the third circle be r. By Pythagoras on the triangles PAR and QRB, we obtain

$$(1-r)^2 + a^2 = (1+r)^2$$
, $(2-r)^2 + b^2 = (2+r)^2$.

Therefore $a^2 = 4r$ and $b^2 = 8r$. Also $(a+b)^2 + 1 = 9$, so $2\sqrt{r} + 2\sqrt{2r} = \sqrt{8}$ and we deduce that $r = 6 - 4\sqrt{2}$.

3. Let m, n be a positive integers where $m \le n$. For each $m \times m$ square in an $n \times n$ grid, replace it with the $(m-1) \times (m-1)$ square obtained by deleting the first row and column; this means that the 1×1 squares become nothing. Then these new squares (don't include the squares which are nothing) are in a one-to-one correspondence with the squares of the $(n-1) \times (n-1)$ grid obtained by deleting the first row and column of the $n \times n$ square. Therefore S_{n-1} is the number of squares in an $n \times n$ grid which have size at least 2×2 . Since there are $n^2 \times 1 \times 1$ squares in an $n \times n$ grid, we deduce that $S_n = S_{n-1} + n^2$.

Thus

$$S_8 = 1^2 + 2^2 + \dots + 8^2 = 204.$$

4. If $p \le q < (p+1)^2$, then p divides q if and only if $q = p^2$, $p^2 + p$ or $p^2 + 2p$. Therefore if $a_k = p^2$, then $a_{k+3} = (p+1)^2$. Since $a_1 = 1^2$, we see that

$$a_{10000} = (1 + 9999/3)^2 = 3334^2 = 11115556.$$

5. Let $a_n = n^n x^n / n!$. First we use the ratio test:

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1} x^{n+1} n!}{n^n x^n (n+1)!} = (1+1/n)^n x.$$

Since $\lim_{n\to\infty} (1+1/n)^n = e$, we see that the interval of convergence is of the form $\{-1/e, 1/e\}$, where we need to decide whether the interval is open or closed at its two endpoints. By considering $\int_n^{n+1} dx/x$, we see that

$$\frac{1}{n+1} < \ln(1+1/n) < \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1} \right) < \frac{3}{3n+1}$$

because 1/n is a concave function, consequently $(1+1/n)^{n+1/3} < e < (1+1/n)^{n+1}$. Therefore when |x|=1/e, we see that $|a_n|$ is a decreasing sequence. Furthermore by induction on n and the left hand side of the last inequality, we see that $|a_n| < 1/\sqrt[3]{n}$. Thus when x=-1/e, we see that $\lim_{n\to\infty} a_n = 0$ and it follows that the given series is convergent, by the alternating series test. On the other hand when x=1/e, the series is $\sum n^n/(e^n n!)$. By induction on n and the above inequality, we see that $n^n/(e^n/n!) > 1/(en)$ for all n > 1. Since $\sum 1/n$ is divergent, we deduce that the given series is divergent when x=1/e, consequently the interval of convergence is [-1/e, 1/e).

6. Let $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$. If we can find a matrix $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $B^2 = A$ or even AA and set $f(x) = \frac{ax+b}{cx+d}$, then $f(f(x)) = \frac{3x+1}{x+3}$. So we want to find a square root of A. The eigenvalues of A are 2 and 4, and the corresponding eigenvectors are $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ respectively. Thus if $X = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, then $XAX^{-1} = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$. Set $C = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 2 \end{pmatrix}$. Then $C^2 = XAX^{-1}$, so if we let $B = (X^{-1}CX)^2$, then $B^2 = A$. Since

$$2B = \begin{pmatrix} 2 + \sqrt{2} & 2 - \sqrt{2} \\ 2 - \sqrt{2} & 2 + \sqrt{2} \end{pmatrix}$$

we may define (multiply top and bottom by $1 + \sqrt{2}/2$)

$$f(x) = \frac{(3+2\sqrt{2})x+1}{x+3+2\sqrt{2}}.$$

Finally we should remark that f still maps \mathbb{R}^+ to \mathbb{R}^+ . Of course there are many other solutions and answers.

7. Choose $x \in A$ and $y \in B$ so that f(xy) is as large as possible. Suppose we can write xy in another way as ab with $a \in A$ and $b \in B$ (so $a \neq x$). Set $g = ax^{-1}$ and note that $I \neq g \in G$. Therefore either f(gxy) > f(xy) or $f(g^{-1}xy) > f(xy)$. We deduce that either f(ay) > f(xy) or f(xb) > f(xy), a contradiction and the result follows.