
22nd VTRMC, 2000, Solutions

1. Let I =
∫ α

0

dθ
5−4cosθ

. Using the half angle formula cosθ= 2cos2(θ/2)−
1, we obtain

I =
∫ α

0

dθ
9−8cos2(θ/2) =

∫ α

0

sec2(θ/2)dθ
9sec2(θ/2)−8 =

∫ α

0

sec2(θ/2)dθ
9tan2(θ/2)+1

.

Nowmake the substitution x= 3tan(θ/2). Then 2dx= 3sec2(θ/2)dθ, con-
sequently

3I =
∫ 3tan(α/2)

0

2dx
1+ x2

= 2tan−1(3tan(α/2)).

Therefore I= 2
3 tan

−1(3tan(α/2)). By using the facts that tan(π/6)= 1/
√
3

and tan(π/3) =
√
3, we see that when α= π/3,

I =
2
3
tan−1

√
3=

2π
9
.

2. Let J denote the Jordan canonical form of A. Then A and J will have the
same trace, and the entries on the main diagonal of J will satisfy 4x4+1= 0.
This equation has roots ±1/2± i/2, so the trace of A will be a sum of such
numbers. But the trace of A is real, hence the imaginary parts must cancel
and we see that there must be an even number of terms in the sum. It follows
that the trace of A is an integer.

3. Make the substitution y= x− t. Then the equation becomes x′ = x2−2xt+
1. We will show that limt→∞ x′(t) exists and is 0, and then it will follow that
limt→∞ y′(t) exists and is −1.
When t = 0, the initial condition tells us that x = 0, so x′(0) = 1 and we
see that x(t)> 0 for small t. Suppose for some positive t we have x(t)≤ 0.
Then there is a least positive number T such that x(T ) = 0. Then x′(T ) = 1,
which leads to a contradiction because x(t)> 0 for t < T . We deduce that
x(t)> 0 for all t.
Now x′ −1= x(x−2t) and since x′(0) = 1, we see that x−2t < 0 for small
t. We deduce that for t sufficiently small, x(t) < t, consequently y(t) < 0
for small t. We now claim that y(t)< 0 for all positive t. If this is not the



case, then there is a least positive number T such that y(T ) = 0, and then we
must have y′(S) = 0 for some S with 0< S< T . But from y′ = (y− t)(y+ t)
and (y+ t) > 0, we would have to have y(S) = S, a contradiction because
y(S)< 0. We deduce that x(t)< t for all positive t.
Now consider x′ = x(x−2t)+1. Note that we cannot have x′(t)≥ 0 for all
t, because then x→ 0 as t→∞ which is clearly impossible, consequently x′
takes on negative values. Next we have x′′ = 2(xx′ − tx′ −x), so if x′(t) = 0,
we see that x′′(t) < 0. We deduce that if x′(T ) < 0, then x′(t) < 0 for all
t > T . Thus there is a positive number T such that x′(t)< 0 for all t > T .
Now differentiate again to obtain x′′′ = 2(xx′′+ x′x′ − tx′′ − 2x′). Then we
see that if x′′(t) = 0 and t > T , then x′′′(t) > 0, consequently there is a
positive number S > T such that either x′′(t)< 0 for all t > S or x′′(t)> 0
for all t > S. We deduce that x′(t) is monotonic increasing or decreasing for
t > S and hence limt→∞ x′(t) exists (possibly infinite).
We now have x′(t) is monotonic and negative for t > S, yet x(t)> 0 for all
t > S. We deduce that limt→∞ x′(t) = 0 and the result follows.

4. Set y= AP. Then

l22 = (l− x)2+ y2+2(l− x)ycosθ
l21 = x2+ y2−2xycosθ

Subtracting the second equation from the first we obtain

l22− l21 = l2−2lx+2lycosθ

which yields

2ycosθ=
l22− l21+2lx− l2

l
.

From the second equation and the above, we obtain

l21− x2+ x
l22 − l21 +2lx− l2

l
= y2.

By differentiating the above with respect to x, we now get

2x+
l22− l21 − l2

l
= 2y

dy
dx



and we deduce that dy/dx= cosθ. Therefore

l2− l1 = y(l)− y(0) =
∫ l

0
cosθdx

as required.

5. Open out the cylinder so that it is an infinitely long rectangle with width 4.
Then the brush paints out two ellipses (one on either side of the cylinder)
which have radius

√
3 in the direction of the axis of the cylinder, which we

shall call the y-axis, and radius 2 in the perpendicular direction, which we
shall call the x-axis. Then the equation of the ellipse is x2/4+y2/3= 1. By
considering just one of the ellipses, we see that the area required is

4
∫ 1

−1
ydx= 8

√
3
∫ 1

0

√

1− x2

4
dx.

By making the substitution x= 2sinθ, this evaluates to 6+
4π

√
3

3
.

6. Let α=
∞

∑
n=1

antn. Then

α2 =
∞

∑
n=1

antn
∞

∑
n=1

antn.

Consider the coefficient of tn on the right hand side of the above; it is

an−1a1+an−2a2+ · · ·+a2an−2+a1an−1

for n ≥ 2 and 0 for n = 1. Using the given hypothesis, we see that this
is an for all n ≥ 2. We deduce that t +α2 = α. For the problem under
consideration, we need to calculate α when t = 2/9, so we want to find α
when α2−α+2/9= 0. Since the roots of this equation are 1/3 and 2/3, we
are nearly finished. However we ought to check that α '= 2/3,∞.
Suppose this is not the case. Let βn = ∑nm=1 am(2/9)m. If α = 2/3 or ∞,
then there exists a positive integer N such that bN < 1/3 and bN+1 ≥ 1/3.
Then the same argument as above gives

2
9
+β2N > βN+1,

which is not possible, so the result follows.



7. There are three possible positions for the tiles, namely
[ •

•
∣

∣ •
]

,
[

•
∣

∣
•
•
]

and
[•

•
∣

∣

•
•
]

, which we shall call A,B and C respectively. Consider An+2.
Then whatever the n+1 st tile is in the chain, we can complete it to a chain
of length n+2. Therefore An+2 = An+1+x for some nonnegative integer x.
However if the n+ 1 st tile is position A, then there is exactly one way to
add a tile to get a chain of length n+2 (namely add tile B), whereas if the
tile is B or C, then there are exactly two ways to add a tile to get a chain of
length n+2 (namely add tiles A or C). Therefore x is the number of ways
a chain ends of length n+1 ends in B plus the number of ways a chain of
length end in C, which is precisely An. Therefore An+2 = An+1+An. This
recurrence relation is valid for n ≥ 1. Since A1 = 3 and A2 = 5, we get
A3 = 8, A4 = 13 and A10 = 233.


