13th VTRMC, 1991, Solutions

. Let P denote the center of the circle. Then ZACP = ZABP = r/2 and
/BAP = /2. Therefore BP = atan(a/2) and we see that ABPC has area
a’tan(a/2). Since ZBPC = 1 — «, we find that the area of the sector BPC
is (m/2 — o /2)a’tan?( ot /2). Therefore the area of the curvilinear triangle
is

. If we differentiate both sides with respect to x, we obtain 3 f(x)%f’(x) =
f(x)?. Therefore f(x) =0 or f'(x) = 1/3. In the latter case, f(x) =x/3+C
where C is a constant. However f(0)° = 0 and we see that C = 0. We
conclude that f(x) =0 and f(x) = x/3 are the functions required.

. We are given that o satisfies (1 +x)x"*! = 1, and we want to show that a
satisfies (14 x)x"*2 = x. This is clear, by multiplying the first equation by
X.

. Set f(x) = x"/(x+ 1)""!, the left hand side of the inequality. Then
n—1

fix) = (x+ 1)m+2

(n—x).
This shows, for x > 0, that f(x) has its maximum value when x = n and we
deduce that f(x) < n"/(n+1)"*! for all x > 0.

. Clearly there exists ¢ such that f(x) — ¢ has a root of multiplicity 1, e.g.
x=c=0. Suppose f(x)— c has a multiple root r. Then r will also be a root
of (f(x) —c) = 5x* —15x> +4. Also if r is a triple root of f(x) — c, then
it will be a double root of this polynomial. But the roots of 5x* — 15x + 4
are &((15++/145)/10)'/2, and we conclude that f(x) — ¢ can have double
roots, but neither triple nor quadruple roots.

. Expand (1 —1)" by the binomial theorem and divide by n!. We obtain for

n>0
1 1 1 (—1)"

ol Tn—1)! " 2in—2)1 T mor

Clearly the result is true for n = 0. We can now proceed by induction; we
assume that the result is true for positive integers < n and plug into the




above formula. We find that

ap ajg ap an—1 (_1>n
n!+(n—1)!+(n—2)!+ - 1! n!0!

and the result follows.

. Suppose 2/3 < ap,b, < 7/6. Then 2/3 < api2,by42 < 7/6. Now if ¢ =
1.26, then 2/3 < az,by < 1,s0if x, = azy41 or byyy1, then x| = xn/4+
1/2 for all n > 1. This has the general solution of the form x, = C(1/4)" +
2/3. We deduce that as n — oo, ay,11,b2,+1 decrease monotonically with
limit 2/3, and ay,, by, decrease monotonically with limit 4/3.

On the other hand suppose a, > 3/2 and b, < 1/2. Then a,4+; > 3/2 and
by+1 < 1/2. Now if ¢ = 1.24, then a3 > 3/2 and b3 < 1/2. We deduce that
ap+1 =ay/2+1and b, = b, /2. This has general solution a, = C(1/2)" +
2, by = D(1/2)". We conclude that as n — oo, a,, increases monotonically
to 2 and b,, decreases monotonically to 0.

. Let A be a base campsite and let / be a hike starting and finishing at A which
covers each segment exactly once. Let B be the first campsite which £ visits
twice (i.e. B is the earliest campsite that 4 reaches a second time). This
could be A after all segments have been covered, and then we are finished
(just choose € = {h}). Otherwise let i; be the hike which is the part of &
which starts with the first visit to B and ends with the second visit to B (so B
is the base campsite for /7). Let &’ be the hike obtained from A by omitting
hy (so i’ doesn’t visit all segments). Now do the same with /’; let C be the
first campsite on 4’ (starting from A) that is visited twice and let &, be the
hike which is the part of /4’ that starts with the first visit to C and ends with
the second visit to C. Then 4 can be chosen to be the collection of hikes
{h1,hy,...} to do what is required.



