9th Annual

Virginia Tech Regional Mathematics Contest From 9:30 a.m. to 12:00 noon, October 31, 1987

Fill out the individual registration form

- 1. A path zig-zags from (1,0) to (0,0) along line segments $\overline{P_nP_{n+1}}$, where P_0 is (1,0) and P_n is $(2^{-n},(-2)^{-n})$, for n > 0. Find the length of the path.
- 2. A triangle with sides of lengths *a*, *b*, and *c* is partitioned into two smaller triangles by the line which is perpendicular to the side of length *c* and passes through the vertex opposite that side. Find *integers* a < b < c such that each of the two smaller triangles is similar to the original triangle and has sides of integer lengths.
- 3. Let a_1, a_2, \ldots, a_n be an arbitrary rearrangement of $1, 2, \ldots, n$. Prove that if *n* is odd, then $(a_1 1)(a_2 2) \ldots (a_n n)$ is even.
- 4. Let p(x) be given by $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ and let $|p(x)| \le |x|$ on [-1, 1].
 - (a) Evaluate a_0 . (b) Prove that $|a_1| \leq 1$.
- 5. A sequence of integers $\{n_1, n_2, ...\}$ is defined as follows: n_1 is assigned arbitrarily and, for k > 1,

$$n_k = \sum_{j=1}^{j=k-1} z(n_j),$$

where z(n) is the number of 0's in the binary representation of *n* (each representation should have a leading digit of 1 except for zero which has the representation 0). An example, with $n_1 = 9$, is $\{9, 2, 3, 3, ...\}$, or in binary, $\{1001, 10, 11, 11, 11, ...\}$.

- (a) Find n_1 so hat $\lim_{k\to\infty} n_k = 31$, and calculate n_2, n_3, \ldots, n_{10} .
- (b) Prove that, for every choice of n_1 , the sequence $\{n_k\}$ converges.
- 6. A sequence of polynomials is given by $p_n(x) = a_{n+2}x^2 + a_{n+1}x a_n$, for $n \ge 0$, where $a_0 = a_1 = 1$ and, for $n \ge 0$, $a_{n+2} = a_{n+1} + a_n$. Denote by r_n and s_n the roots of $p_n(x) = 0$, with $r_n \le s_n$. Find $\lim_{n\to\infty} r_n$ and $\lim_{n\to\infty} s_n$.

- 7. Let $A = \{a_{ij}\}$ and $B = \{b_{ij}\}$ be $n \times n$ matrices such that A^{-1} exists. Define $A(t) = \{a_{ij}(t)\}$ and $B(t) = \{b_{ij}(t)\}$ by $a_{ij}(t) = a_{ij}$ for i < n, $a_{nj}(t) = ta_{nj}$, $b_{ij}(t) = b_{ij}$ for i < n, and $b_{nj}(t) = tb_{nj}$. For example, if $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then $A(t) = \begin{bmatrix} 1 & 2 \\ 3t & 4t \end{bmatrix}$. Prove that $A(t)^{-1}B(t) = A^{-1}B$ for t > 0 and any n. (Partial credit will be given for verifying the result for n = 3.)
- 8. On Halloween, a black cat and a witch encounter each other near a large mirror positioned along the y-axis. The witch is *invisible except by reflection* in the mirror. At t = 0, the cat is at (10, 10) and the witch is at (10, 0). For $t \ge 0$, the witch moves toward the cat at a speed numerically equal to their distance of separation and the cat moves toward the apparent position of the witch, as seen by reflection, at a speed numerically equal to their reflected distance of separation. Denote by (u(t), v(t)) the position of the cat and by (x(t), y(t)) the position of the witch.
 - (a) Set up the equations of motion of the cat and the witch for $t \ge 0$.
 - (b) Solve for x(t) and u(t) and find the time when the cat strikes the mirror. (Recall that the mirror is a perpendicular bisector of the line joining an object with its apparent position as seen by reflection.)