8th Annual

Virginia Tech Regional Mathematics Contest From 9:30 a.m. to 12:00 noon, November 1, 1986

Fill out the individual registration form

1. Let $x_1 = 1, x_2 = 3$, and

$$x_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n} x_i$$
 for $n = 2, 3, \dots$

Find $\lim_{n\to\infty}$ and give a proof of your answer.

- 2. Given that a > 0 and c > 0, find a necessary and sufficient condition on *b* so that $ax^2 + bx + c > 0$ for all x > 0.
- 3. Express $\sinh 3x$ as a polynomial in $\sinh x$. As an example, the identity $\cos 2x = 2\cos^2 x 1$ shows that $\cos 2x$ can be expressed as a polynomial in $\cos x$. (Recall that sinh denotes the hyperbolic sine defined by $\sinh x = (e^x e^{-x})/2$.)
- 4. Find the quadratic polynomial $p(t) = a_0 + a_1t + a_2t^2$ such that $\int_0^1 t^n p(t) dt = n$ for n = 0, 1, 2.
- 5. Verify that, for f(x) = x + 1,

$$\lim_{r \to 0^+} (\int_0^1 (f(x))^r \, dx)^{1/r} = e^{\int_0^1 \ln f(x) \, dx}.$$

- 6. Sets *A* and *B* are defined by $A = \{1, 2, ..., n\}$ and $B = \{1, 2, 3\}$. Determine the number of distinct functions from *A* onto *B*. (A function $f: A \rightarrow B$ is "onto" if for each $b \in B$ there exists $a \in A$ such that f(a) = b.)
- 7. A function f from the positive integers to the positive integers has the properties:
 - f(1) = 1,
 - f(n) = 2 if $n \ge 100$,
 - f(n) = f(n/2) if *n* is even and n < 100,

- $f(n) = f(n^2 + 7)$ if *n* is odd and n > 1.
- (a) Find all positive integers *n* for which the stated properties require that f(n) = 1.
- (b) Find all positive integers *n* for which the stated properties do not determine f(n).
- 8. Find all pairs N, M of positive integers, N < M, such that

$$\sum_{j=N}^{M} \frac{1}{j(j+1)} = \frac{1}{10}.$$