7th Annual

Virginia Tech Regional Mathematics Contest From 9:30 a.m. to noon November 2, 1985

Fill out the individual registration form

- 1. Prove that $\sqrt{ab} \le (a+b)/2$ where a and b are positive real numbers.
- 2. Find the remainder $r, 1 \le r \le 13$, when 2^{1985} is divided by 13.
- 3. Find real numbers c_1 and c_2 so that

$$I+c_1M+c_2M^2=\begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix},$$

where $M = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$ and *I* is the identity matrix.

4. Consider an infinite sequence $\{c_k\}_{k=0}^{\infty}$ of circles. The largest, C_0 , is centered at (1,1) and is tangent to both the *x* and *y*-axes. Each smaller circle C_n is centered on the line through (1,1) and (2,0) and is tangent to the next larger circle C_{n-1} and to the *x*-axis. Denote the diameter of C_n by d_n for $n = 0, 1, 2, \dots$ Find

(a)
$$d_1$$

(b) $\sum_{n=0}^{\infty} d_n$

- 5. Find the function f = f(x), defined and continuous on $\mathbb{R}^+ = \{x \mid 0 \le x < \infty\}$, that satisfies f(x+1) = f(x) + x on \mathbb{R}^+ and f(1) = 0.
- 6. (a) Find an expression for 3/5 as a finite sum of distinct reciprocals of positive integers. (For example: 2/7 = 1/7 + 1/8 + 1/56.)
 - (b) Prove that any positive rational number can be so expressed.
- 7. Let f = f(x) be a real function of a real variable which has continuous third derivative and which satisfies, for a given *c* and all real $x, x \neq c$,

$$\frac{f(x) - f(c)}{x - c} = (f'(x) + f'(c))/2.$$

Show that f''(x) = f'(x - f'(c))/(x - c).

8. Let $p(x) = a_0 + a_1x + \dots + a_nx^n$, where the coefficients a_i are real. Prove that p(x) = 0 has at least one root in the interval $0 \le x \le 1$ if $a_0 + a_1/2 + \dots + a_n/(n+1) = 0$.