5th Annual Virginia Tech Regional Mathematics Contest From 9:30 a.m. to 12:00 noon, November 5, 1983
 Fill out the individual registration form

1. In the expansion of $(a+b)^{n}$, where n is a natural number, there are $n+1$ dissimilar terms. Find the number of dissimilar terms in the expansion of $(a+b+c)^{n}$.
2. A positive integer N (in base 10) is called special if the operation C of replacing each digit d of N by its nine's-complement $9-d$, followed by the operation R of reversing the order of the digits, results in the original number. (For example, 3456 is a special number because $R[(C 3456)]=$ 3456.) Find the sum of all special positive integers less than one million which do not end in zero or nine.
3. Let a triangle have vertices at $O(0,0), A(a, 0)$, and $B(b, c)$ in the (x, y)-plane.
(a) Find the coordinates of a point $P(x, y)$ in the exterior of $\triangle O A B$ satisfying area $(O A P)=\operatorname{area}(O B P)=\operatorname{area}(A B P)$.
(b) Find a point $Q(x, y)$ in the interior of $\triangle O A Q$ satisfying area $(O A Q)=$ $\operatorname{area}(O B Q)=\operatorname{area}(A B Q)$.
4. A finite set of roads connect n towns $T_{1}, T_{2}, \ldots, T_{n}$ where $n \geq 2$. We say that towns T_{i} and $T_{j}(i \neq j)$ are directly connected if there is a road segment connecting T_{i} and T_{j} which does not pass through any other town. Let $f\left(T_{k}\right)$ be the number of other towns directly connected to T_{k}. Prove that f is not one-to-one.
5. Find the function $f(x)$ such that for all $L \geq 0$, the area under the graph of $y=f(x)$ and above the x-axis from $x=0$ to $x=L$ equals the arc length of the graph from $x=0$ to $x=L$. (Hint: recall that $\frac{d}{d x} \cosh ^{-1} x=1 / \sqrt{x^{2}-1}$.)
6. Let $f(x)=1 / x$ and $g(x)=1-x$ for $x \in(0,1)$. List all distinct functions that can be written in the form $f \circ g \circ f \circ g \circ \cdots \circ f \circ g \circ f$ where \circ represents composition. Write each function in the form $\frac{a x+b}{c x+d}$, and prove that your list is exhaustive.
7. If a and b are real, prove that $x^{4}+a x+b=0$ cannot have only real roots.
8. A sequence f_{n} is generated by the recurrence formula

$$
f_{n+1}=\frac{f_{n} f_{n-1}+1}{f_{n-2}}
$$

for $n=2,3,4, \ldots$, with $f_{0}=f_{1}=f_{2}=1$. Prove that f_{n} is integer-valued for all integers $n \geq 0$.

