3rd Annual

Virginia Tech Regional Mathematics Contest From 9:30 a.m. to 12:00 noon, November 7, 1981

Fill out the individual registration form

- 1. The number $2^{48} 1$ is exactly divisible by what two numbers between 60 and 70?
- 2. For which real numbers *b* does the function f(x), defined by the conditions f(0) = b and f' = 2f x, satisfy f(x) > 0 for all $x \ge 0$?
- 3. Let A be non-zero square matrix with the property that $A^3 = 0$, where 0 is the zero matrix, but with A being otherwise arbitrary.
 - (a) Express $(I A)^{-1}$ as a polynomial in A, where I is the identity matrix.
 - (b) Find a 3×3 matrix satisfying $B^2 \neq 0$, $B^3 = 0$.
- 4. Define F(x) by $F(x) = \sum_{n=0}^{\infty} F_n x^n$ (wherever the series converges), where F_n is the *n*th Fibonacci number defined by $F_0 = F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$, n > 1. Find an explicit closed form for F(x).
- 5. Two elements A, B in a group G have the property $ABA^{-1}B = 1$, where 1 denotes the identity element in G.
 - (a) Show that $AB^2 = B^{-2}A$.
 - (b) Show that $AB^n = B^{-n}A$ for any integer *n*.
 - (c) Find *u* and *v* so that $(B^a A^b)(B^c A^d) = B^u A^v$.
- 6. With *k* a positive integer, prove that $(1 k^{-2})^k \ge 1 1/k$.
- 7. Let $A = \{a_0, a_1, ...\}$ be a sequence of real numbers and define the sequence $A' = \{a'_0, a'_1, ...\}$ as follows for $n = 0, 1, ...: a'_{2n} = a_n, a'_{2n+1} = a_n + 1$. If $a_0 = 1$ and A' = A, find
 - (a) a_1, a_2, a_3 and a_4
 - (b) a_{1981}
 - (c) A simple general algorithm for evaluating a_n , for n = 0, 1, ...
- 8. Let

- (i) 0 < a < 1, (ii) $0 < M_{k+1} < M_k$, for k = 0, 1, ...,
- (iii) $\lim_{k\to\infty} M_k = 0.$

If
$$b_n = \sum_{k=0}^{\infty} a^{n-k} M_k$$
, prove that $\lim_{n \to \infty} b_n = 0$.