36th Annual Virginia Tech Regional Mathematics Contest

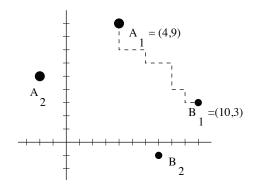
From 9:00 a.m. to 11:30 a.m., October 25, 2014

Fill out the individual registration form

- 1. Find $\sum_{n=2}^{n=\infty} \frac{n^2 2n 4}{n^4 + 4n^2 + 16}.$
- 2. Evaluate $\int_0^2 \frac{(16-x^2)x}{16-x^2+\sqrt{(4-x)(4+x)(12+x^2)}} dx.$
- 3. Find the least positive integer n such that 2^{2014} divides $19^n 1$.
- 4. Suppose we are given a 19×19 chessboard (a table with 19^2 squares) and remove the central square. Is it possible to tile the remaining $19^2 1 = 360$ squares with 4×1 and 1×4 rectangles? (So each of the 360 squares is covered by exactly one rectangle.) Justify your answer.
- 5. Let $n \ge 1$ and $r \ge 2$ be positive integers. Prove that there is no integer m such that $n(n+1)(n+2) = m^r$.
- 6. Let *S* denote the set of 2 by 2 matrices with integer entries and determinant 1, and let *T* denote those matrices of *S* which are congruent to the identity matrix $I \mod 3$ (so $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in T$ means that $a,b,c,d \in \mathbb{Z}$, ad-bc=1, and 3 divides b,c,a-1,d-1; " \in " means "is in").
 - (a) Let $f: T \to \mathbb{R}$ (the real numbers) be a function such that for every $X,Y \in T$ with $Y \neq I$, either f(XY) > f(X) or $f(XY^{-1}) > f(X)$ (or both). Show that given two finite nonempty subsets A,B of T, there are matrices $a \in A$ and $b \in B$ such that if $a' \in A$, $b' \in B$ and a'b' = ab, then a' = a and b' = b.
 - (b) Show that there is no $f: S \to \mathbb{R}$ such that for every $X, Y \in S$ with $Y \neq \pm I$, either f(XY) > f(X) or $f(XY^{-1}) > f(X)$.

(Please turn over)

- 7. Let A,B be two points in the plane with integer coordinates $A=(x_1,y_1)$ and $B=(x_2,y_2)$. (Thus $x_i,y_i\in\mathbb{Z}$, for i=1,2.) A path $\pi\colon A\to B$ is a sequence of **down** and **right** steps, where each step has an integer length, and the initial step starts from A, the last step ending at B. In the figure below, we indicated a path from $A_1=(4,9)$ to $B_1=(10,3)$. The distance d(A,B) between A and B is the number of such paths. For example, the distance between A=(0,2) and B=(2,0) equals 6. Consider now two pairs of points in the plane $A_i=(x_i,y_i)$ and $B_i=(u_i,z_i)$ for i=1,2, with integer coordinates, and in the configuration shown in the picture (but with arbitrary coordinates):
 - $x_2 < x_1$ and $y_1 > y_2$, which means that A_1 is North-East of A_2 ; $u_2 < u_1$ and $z_1 > z_2$, which means that B_1 is North-East of B_2 .
 - Each of the points A_i is North-West of the points B_j , for $1 \le i, j \le 2$. In terms of inequalities, this means that $x_i < \min\{u_1, u_2\}$ and $y_i > \max\{z_1, z_2\}$ for i = 1, 2.



- (a) Find the distance between two points *A* and *B* as before, as a function of the coordinates of *A* and *B*. Assume that *A* is North-West of *B*.
- (b) Consider the 2×2 matrix $M = \begin{pmatrix} d(A_1, B_1) & d(A_1, B_2) \\ d(A_2, B_1) & d(A_2, B_2) \end{pmatrix}$. Prove that for any configuration of points A_1, A_2, B_1, B_2 as described before, $\det M > 0$.