
35th Annual Virginia Tech Regional Mathematics Contest
From 9:00 a.m. to 11:30 a.m., October 26, 2013

Fill out the individual registration form
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, what is x?

2. Let ABC be a right-angled triangle with \ABC = 90
�
, and let D on AB such

that AD = 2DB. What is the maximum possible value of \ACD?

3. Define a sequence (an) for n � 1 by a1 = 2 and an+1 = a1+n�3/2

n . Is (an)
convergent (i.e. lim

n!•
an < •)?

4. A positive integer n is called special if it can be represented in the form

n =
x2 + y2

u2 + v2
, for some positive integers x,y,u,v. Prove that

(a) 25 is special;

(b) 2013 is not special;

(c) 2014 is not special.

5. Prove that
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for any positive real num-

bers x,y,z such that x+ y+ z = xyz.
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A, let A = Y�1 �X and let

B be the inverse of X�1 +A�1
. Find a matrix M such that M2 = XY �BY

(you may assume that A and X�1 +A�1
are invertible).
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