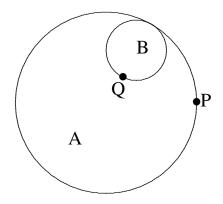
32nd Annual Virginia Tech Regional Mathematics Contest

From 9:00 a.m. to 11:30 a.m., October 30, 2010

Fill out the individual registration form

- 1. Let d be a positive integer and let A be a $d \times d$ matrix with integer entries. Suppose $I + A + A^2 + \cdots + A^{100} = 0$ (where I denotes the identity $d \times d$ matrix, so I has 1's on the main diagonal, and 0 denotes the zero matrix, which has all entries 0). Determine the positive integers $n \le 100$ for which $A^n + A^{n+1} + \cdots + A^{100}$ has determinant ± 1 .
- 2. For n a positive integer, define $f_1(n) = n$ and then for i a positive integer, define $f_{i+1}(n) = f_i(n)^{f_i(n)}$. Determine $f_{100}(75) \mod 17$ (i.e. determine the remainder after dividing $f_{100}(75)$ by 17, an integer between 0 and 16). Justify your answer.
- 3. Prove that $\cos(\pi/7)$ is a root of the equation $8x^3 4x^2 4x + 1 = 0$, and find the other two roots.
- 4. Let $\triangle ABC$ be a triangle with sides a, b, c and corresponding angles A, B, C (so a = BC and $A = \angle BAC$ etc.). Suppose that $4A + 3C = 540^{\circ}$. Prove that $(a b)^2(a + b) = bc^2$.
- 5. Let *A*, *B* be two circles in the plane with *B* inside *A*. Assume that *A* has radius 3, *B* has radius 1, *P* is a point on *A*, *Q* is a point on *B*, and *A* and *B* touch so that *P* and *Q* are the same point. Suppose that *A* is kept fixed and *B* is rolled once round the inside of *A* so that *Q* traces out a curve starting and finishing at *P*. What is the area enclosed by this curve?



(Please turn over)

- 6. Define a sequence by $a_1 = 1$, $a_2 = 1/2$, and $a_{n+2} = a_{n+1} \frac{a_n a_{n+1}}{2}$ for n a positive integer. Find $\lim_{n \to \infty} n a_n$.
- 7. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series of positive terms (so $a_i > 0$ for all i) and set $b_n = \frac{1}{na_n^2}$ for $n \ge 1$. Prove that $\sum_{n=1}^{\infty} \frac{n}{b_1 + b_2 + \dots + b_n}$ is convergent.