30th Annual Virginia Tech Regional Mathematics Contest

From 9:00 a.m. to 11:30 a.m., November 1, 2008

Fill out the individual registration form

- 1. Find the maximum value of $xy^3 + yz^3 + zx^3 x^3y y^3z z^3x$ where $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.
- 2. How many sequences of 1's and 3's sum to 16? (Examples of such sequences are $\{1,3,3,3,3,3\}$ and $\{1,3,1,3,1,3,1,3\}$.)
- 3. Find the area of the region of points (x, y) in the xy-plane such that $x^4 + y^4 \le x^2 x^2y^2 + y^2$.
- 4. Let ABC be a triangle, let M be the midpoint of BC, and let X be a point on AM. Let BX meet AC at N, and let CX meet AB at P. If $\angle MAC = \angle BCP$, prove that $\angle BNC = \angle CPA$.

5. Let a_1, a_2, \ldots be a sequence of nonnegative real numbers and let π, ρ be permutations of the positive integers \mathbb{N} (thus $\pi, \rho \colon \mathbb{N} \to \mathbb{N}$ are one-to-one and onto maps). Suppose that $\sum_{n=1}^{\infty} a_n = 1$ and ε is a real number such that $\sum_{n=1}^{\infty} |a_n - a_{\pi n}| + \sum_{n=1}^{\infty} |a_n - a_{\rho n}| < \varepsilon$. Prove that there exists a finite subset X of \mathbb{N} such that $|X \cap \pi X|, |X \cap \rho X| > (1 - \varepsilon)|X|$ (here |X| indicates the number of elements in X; also the inequalities <, > are strict).

(Please turn over)

- 6. Find all pairs of positive (nonzero) integers a,b such that ab-1 divides a^4-3a^2+1 .
- 7. Let $f_1(x) = x$ and $f_{n+1}(x) = x^{f_n(x)}$ for n a positive integer. Thus $f_2(x) = x^x$ and $f_3(x) = x^{(x^x)}$. Now define $g(x) = \lim_{n \to \infty} 1/f_n(x)$ for x > 1. Is g continuous on the open interval $(1, \infty)$? Justify your answer.