2nd Annual

Virginia Tech Regional Mathematics Contest From 9:30 a.m. to 12:00 noon, November 8, 1980

Fill out the individual registration form

1. Let * denote a binary operation on a set S with the property that

$$(w * x) * (y * z) = w * z$$
 for all $w, x, y, z \in S$.

Show

- (a) If a * b = c, then c * c = c.
- (b) If a * b = c, then a * x = c * x for all $x \in S$.
- 2. The sum of the first *n* terms of the sequence

1, (1+2), $(1+2+2^2)$, ..., $(1+2+\dots+2^{k-1})$, ...

is of the form $2^{n+R} + Sn^2 + Tn + U$ for all n > 0. Find R, S, T and U.

3. Let
$$a_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}$$
.

(a) Prove that
$$\lim_{n\to\infty} a_n$$
 exists

(b) Show that
$$a_n = \frac{(1 - (\frac{1}{2})^2)(1 - (\frac{1}{4})^2)\dots(1 - (\frac{1}{2n})^2)}{(2n+1)a_n}$$

- (c) Find $\lim_{n\to\infty} a_n$ and justify your answer.
- 4. Let P(x) be any polynomial of degree at most 3. It can be shown that there are numbers x_1 and x_2 such that $\int_{-1}^{1} P(x) dx = P(x_1) + P(x_2)$, where x_1 and x_2 are independent of the polynomial *P*.
 - (a) Show that $x_1 = -x_2$.
 - (b) Find x_1 and x_2 .
- 5. For x > 0, show that $e^x < (1+x)^{1+x}$.
- 6. Given the linear fractional transformation of x into $f_1(x) = (2x-1)/(x+1)$, define $f_{n+1}(x) = f_1(f_n(x))$ for n = 1, 2, 3, ... It can be shown that $f_{35} = f_5$. Determine A, B, C, and D so that $f_{28}(x) = (Ax+B)/(Cx+D)$.

- 7. Let S be the set of all ordered pairs of integers (m,n) satisfying m > 0 and n < 0. Let ζ be a partial ordering on S defined by the statement: (m,n) ζ (m',n') if and only if m ≤ m' and n ≤ n'. An example is (5,-10) ζ (8,-2). Now let O be a completely ordered subset of S, i.e. if (a,b) ∈ O and (c,d) ∈ O, then (a,b) ζ (c,d) or (c,d) ζ (a,b). Also let O denote the collection of all such completely ordered sets.
 - (a) Determine whether an arbitrary $O \in O$ is finite.
 - (b) Determine whether the cardinality ||O|| of *O* is bounded for $O \in O$.
 - (c) Determine whether ||O|| can be countably infinite for any $O \in O$.
- 8. Let z = x + iy be a complex number with x And y rational and with |z| = 1.
 - (a) Find two such complex numbers.
 - (b) Show that $|z^{2n} 1| = 2|\sin n\theta|$, where $z = e^{i\theta}$.
 - (c) Show that $|z^{2n} 1|$ is rational for every *n*.