28th Annual Virginia Tech Regional Mathematics Contest

From 9:00 a.m. to 11:30 a.m., October 28, 2006

Fill out the individual registration form

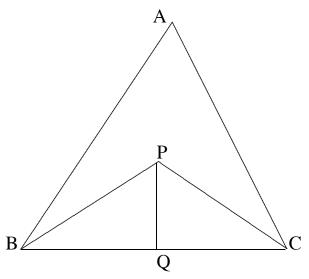
- 1. Find, and give a proof of your answer, all positive integers n such that neither n nor n^2 contain a 1 when written in base 3.
- 2. Let S(n) denote the number of sequences of length n formed by the three letters A,B,C with the restriction that the C's (if any) all occur in a single block immediately following the first B (if any). For example ABCCAA, AAABAA, and ABCCCC are counted in, but ACACCB and CAAAAA are not. Derive a simple formula for S(n) and use it to calculate S(10).
- 3. Recall that the Fibonacci numbers F(n) are defined by F(0) = 0, F(1) = 1, and F(n) = F(n-1) + F(n-2) for $n \ge 2$. Determine the last digit of F(2006) (e.g. the last digit of 2006 is 6).
- 4. We want to find functions p(t), q(t), f(t) such that
 - (a) p and q are continuous functions on the open interval $(0,\pi)$.
 - (b) f is an infinitely differentiable nonzero function on the whole real line $(-\infty,\infty)$ such that f(0)=f'(0)=f''(0).
 - (c) $y = \sin t$ and y = f(t) are solutions of the differential equation y'' + p(t)y' + q(t)y = 0 on $(0, \pi)$.

Is this possible? Either prove this is not possible, or show this is possible by providing an explicit example of such f, p, q.

5. Let $\{a_n\}$ be a monotonic decreasing sequence of positive real numbers with limit 0 (so $a_1 \ge a_2 \ge \cdots \ge 0$). Let $\{b_n\}$ be a rearrangement of the sequence such that for every non-negative integer m, the terms $b_{3m+1}, b_{3m+2}, b_{3m+3}$ are a rearrangement of the terms $a_{3m+1}, a_{3m+2}, a_{3m+3}$ (thus, for example, the first 6 terms of the sequence $\{b_n\}$ could be $a_3, a_2, a_1, a_4, a_6, a_5$). Prove or give a counterexample to the following statement: the series $\sum_{n=1}^{\infty} (-1)^n b_n$ is convergent.

(Please turn over)

6. In the diagram below *BP* bisects $\angle ABC$, *CP* bisects $\angle BCA$, and *PQ* is perpendicular to *BC*. If $BQ.QC = 2PQ^2$, prove that AB + AC = 3BC.



7. Three spheres each of unit radius have centers P,Q,R with the property that the center of each sphere lies on the surface of the other two spheres. Let C denote the cylinder with cross-section PQR (the triangular lamina with vertices P,Q,R) and axis perpendicular to PQR. Let M denote the space which is common to the three spheres and the cylinder C, and suppose the mass density of M at a given point is the distance of the point from PQR. Determine the mass of M.