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1. Three infinitely long circular cylinders each with unit radius have their axes
along the x, y and z-axes. Determine the volume of the region common to
all three cylinders. (Thus one needs the volume common to {y2+ z2 ≤ 1},
{z2+ x2 ≤ 1}, {x2+ y2 ≤ 1}.)

2. Two circles with radii 1 and 2 are placed so that they are tangent to each
other and a straight line. A third circle is nestled between them so that it
is tangent to the first two circles and the line. Find the radius of the third
circle.
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3. For each positive integer n, let Sn denote the total number of squares in an
n× n square grid. Thus S1 = 1 and S2 = 5, because a 2× 2 square grid
has four 1×1 squares and one 2×2 square. Find a recurrence relation for
Sn, and use it to calculate the total number of squares on a chess board (i.e.
determine S8).

4. Let an be the nth positive integer k such that the greatest integer not exceed-
ing

√
k divides k, so the first few terms of {an} are {1,2,3,4,6,8,9,12, . . .}.

Find a10000 and give reasons to substantiate your answer.

5. Determine the interval of convergence of the power series
∞

∑
n=1

nnxn

n!
. (That is,

determine the real numbers x for which the above power series converges;
you must determine correctly whether the series is convergent at the end
points of the interval.)



6. Find a function f : R+ → R+ such that f ( f (x)) =
3x+1
x+3

for all positive
real numbers x (here R+ denotes the positive (nonzero) real numbers).

7. Let G denote a set of invertible 2×2 matrices (matrices with complex num-
bers as entries and determinant nonzero) with the property that if a,b are
in G, then so are ab and a−1. Suppose there exists a function f : G→ R
with the property that either f (ga) > f (a) or f (g−1a) > f (a) for all a,g in
G with g $= I (here I denotes the identity matrix, R denotes the real num-
bers, and the inequality signs are strict inequality). Prove that given finite
nonempty subsets A,B of G, there is a matrix in G which can be written in
exactly one way in the form xy with x in A and y in B.


