21st Annual

Virginia Tech Regional Mathematics Contest From 8:30 a.m. to 11:00 a.m., October 30, 1999

Fill out the individual registration form

- 1. Let G be the set of all continuous functions $f : \mathbb{R} \to \mathbb{R}$, satisfying the following properties.
 - (i) f(x) = f(x+1) for all *x*,
 - (ii) $\int_0^1 f(x) dx = 1999$.

Show that there is a number α such that $\alpha = \int_0^1 \int_0^x f(x+y) dy dx$ for all $f \in G$.

- 2. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is infinitely differentiable and satisfies both of the following properties.
 - (i) f(1) = 2,
 - (ii) If α, β are real numbers satisfying $\alpha^2 + \beta^2 = 1$, then $f(\alpha x)f(\beta x) = f(x)$ for all x.

Find f(x). Guesswork will not be accepted.

- 3. Let ε, M be positive real numbers, and let A_1, A_2, \ldots be a sequence of matrices such that for all n,
 - (i) A_n is an $n \times n$ matrix with integer entries,
 - (ii) The sum of the absolute values of the entries in each row of A_n is at most M.

If δ is a positive real number, let $e_n(\delta)$ denote the number of nonzero eigenvalues of A_n which have absolute value less that δ . (Some eigenvalues can be complex numbers.) Prove that one can choose $\delta > 0$ so that $e_n(\delta)/n < \varepsilon$ for all n.

4. A rectangular box has sides of length 3, 4, 5. Find the volume of the region consisting of all points that are within distance 1 of at least one of the sides.

- 5. Let $f: \mathbb{R}_+ \to \mathbb{R}_+$ be a function from the set of positive real numbers to the same set satisfying f(f(x)) = x for all positive *x*. Suppose that *f* is infinitely differentiable for all positive *X*, and that $f(a) \neq a$ for some positive *a*. Prove that $\lim_{x\to\infty} f(x) = 0$.
- 6. A set S of distinct positive integers has property ND if no element x of S divides the sum of the integers in any subset of $S \setminus \{x\}$. Here $S \setminus \{x\}$ means the set that remains after x is removed from S.
 - (i) Find the smallest positive integer n such that $\{3,4,n\}$ has property **ND**.
 - (ii) If *n* is the number found in (i), prove that no set *S* with property ND has $\{3,4,n\}$ as a proper subset.