1st Annual

Virginia Tech Regional Mathematics Contest

From 9:30 a.m. to 12:00 noon, November 10, 1979

Fill out the individual registration form

- 1. Show that the right circular cylinder of volume V which has the least surface area is the one whose diameter is equal to its altitude. (The top and bottom are part of the surface.)
- 2. Let S be a set which is closed under the binary operation \circ , with the following properties:
 - (i) there is an element $e \in S$ such that $a \circ e = e \circ a = a$, for each $a \in S$,
 - (ii) $(a \circ b) \circ (c \circ d) = (a \circ c) \circ (b \circ d)$, for all $a, b, c, d \in S$.

Prove or disprove:

- (a) \circ is associative on S
- (b) \circ is commutative on S
- 3. Let A be an $n \times n$ nonsingular matrix with complex elements, and let \overline{A} be its complex conjugate. Let $B = A\overline{A} + I$, where I is the $n \times n$ identity matrix.
 - (a) Prove or disprove: $A^{-1}BA = \overline{B}$.
 - (b) Prove or disprove: the determinant of $A\overline{A} + I$ is real.
- 4. Let f(x) be continuously differentiable on $(0, \infty)$ and suppose $\lim_{x \to \infty} f'(x) = 0$. Prove that $\lim_{x \to \infty} f(x)/x = 0$.
- 5. Show, for all positive integers n = 1, 2, ..., that 14 divides $3^{4n+2} + 5^{2n+1}$.
- 6. Suppose $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ diverges. Determine whether $\sum_{n=1}^{\infty} a_n / S_n^2$ converges, where $S_n = a_1 + a_2 + \dots + a_n$.
- 7. Let *S* be a finite set of non-negative integers such that $|x y| \in S$ whenever $x, y \in S$.
 - (a) Give an example of such a set which contains ten elements.

- (b) If *A* is a subset of *S* containing more than two-thirds of the elements of *S*, prove or disprove that *every* element of *S* is the sum or difference of two elements from *A*.
- 8. Let *S* be a finite set of polynomials in two variables, *x* and *y*. For *n* a positive integer, define $\Omega_n(S)$ to be the collection of all expressions $p_1p_2...p_k$, where $p_i \in S$ and $1 \le k \le n$. Let $d_n(S)$ indicate the maximum number of linearly independent polynomials in $\Omega_n(S)$. For example, $\Omega_2(\{x^2, y\}) = \{x^2, y, x^2y, x^4, y^2\}$ and $d_2(\{x^2, y\}) = 5$.
 - (a) Find $d_2(\{1, x, x+1, y\})$.
 - (b) Find a closed formula in *n* for $d_n(\{1, x, y\})$.
 - (c) Calculate the least upper bound over all such sets of $\overline{\lim}_{n\to\infty} \frac{\log d_n(S)}{\log n}$. $(\overline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} (\sup\{a_n, a_{n+1}, \dots\}))$, where sup means supremum or least upper bound.)