18th Annual

Virginia Tech Regional Mathematics Contest From 9:00 a.m. to 11:30 a.m., October 26, 1996

Fill out the individual registration form

1. Evaluate
$$\int_0^1 \int_{\sqrt{y-y^2}}^{\sqrt{1-y^2}} x e^{(x^4+2x^2y^2+y^4)} dx dy.$$

2. For each rational number r, define f(r) to be the smallest positive integer n such that r = m/n for some integer m, and denote by P(r) the point in the (x, y) plane with coordinates P(r) = (r, 1/f(r)). Find a necessary and sufficient condition that, given two rational numbers r_1 and r_2 such that $0 < r_1 < r_2 < 1$,

$$P\Big(\frac{r_1f(r_1) + r_2f(r_2)}{f(r_1) + f(r_2)}\Big)$$

will be the point of intersection of the line joining $(r_1, 0)$ and $P(r_2)$ with the line joining $P(r_1)$ and $(r_2, 0)$.

- 3. Solve the differential equation $y^y = e^{dy/dx}$ with the initial condition y = e when x = 1.
- 4. Let f(x) be a twice continuously differentiable in the interval $(0, \infty)$. If

$$\lim_{x \to \infty} (x^2 f''(x) + 4x f'(x) + 2f(x)) = 1,$$

find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to\infty} xf'(x)$. Do **not** assume any special form of f(x). Hint: use l'Hôpital's rule.

5. Let a_i , i = 1, 2, 3, 4, be real numbers such that $a_1 + a_2 + a_3 + a_4 = 0$. Show that for arbitrary real numbers b_i , i = 1, 2, 3, the equation

$$a_1 + b_1x + 3a_2x^2 + b_2x^3 + 5a_3x^4 + b_3x^5 + 7a_4x^6 = 0$$

has at least one real root which is on the interval $-1 \le x \le 1$.

6. There are 2*n* balls in the plane such that no three balls are on the same line and such that no two balls touch each other. *n* balls are red and the other *n* balls are green. Show that there is at least one way to draw *n* line segments by connecting each ball to a unique different colored ball so that no two line segments intersect.

7. Let us define

$$f_{n,0}(x) = x + \frac{\sqrt{x}}{n} \qquad \text{for } x > 0, \ n \ge 1,$$

$$f_{n,j+1}(x) = f_{n,0}(f_{n,j}(x)), \qquad j = 0, 1, \dots, n-1.$$

Find $\lim_{n\to\infty} f_{n,n}(x)$ for x > 0.