16th Annual

Virginia Tech Regional Mathematics Contest From 9:00 a.m. to 11:30 a.m., October 29, 1994

Fill out the individual registration form

1. Evaluate
$$\int_0^1 \int_0^x \int_0^{1-x^2} e^{(1-z)^2} dz dy dx$$
.

2. Let f be continuous real function, strictly increasing in an interval [0,a] such that f(0) = 0. Let g be the inverse of f, i.e., g(f(x)) = x for all x in [0,a]. Show that for $0 \le x \le a, 0 \le y \le f(a)$, we have

$$xy \leq \int_0^x f(t) dt + \int_0^y g(t) dt.$$

3. Find all continuously differentiable solutions f(x) for

$$f(x)^{2} = \int_{0}^{x} \left(f(t)^{2} - f(t)^{4} + (f'(t))^{2} \right) dt + 100$$

where $f(0)^2 = 100$.

- 4. Consider the polynomial equation $ax^4 + bx^3 + x^2 + bx + a = 0$, where *a* and *b* are real numbers, and a > 1/2. Find the maximum possible value of a + b for which there is at least one positive real root of the above equation.
- 5. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ be a function which satisfies f(0,0) = 1 and

$$f(m,n) + f(m+1,n) + f(m,n+1) + f(m+1,n+1) = 0$$

for all $m, n \in \mathbb{Z}$ (where \mathbb{Z} and \mathbb{R} denote the set of all integers and all real numbers, respectively). Prove that $|f(m,n)| \ge 1/3$, for infinitely many pairs of integers (m,n).

6. Let *A* be an $n \times n$ matrix and let α be an *n*-dimensional vector such that $A\alpha = \alpha$. Suppose that all the entries of *A* and α are positive real numbers. Prove that α is the only linearly independent eigenvector of *A* corresponding to the eigenvalue 1. Hint: if β is another eigenvector, consider the minimum of $\alpha_i/|\beta_i|, i = 1, ..., n$, where the α_i 's and β_i 's are the components of α and β , respectively.

- 7. Define f(1) = 1 and $f(n+1) = 2\sqrt{f(n)^2 + n}$ for $n \ge 1$. If $N \ge 1$ is an integer, find $\sum_{n=1}^{N} f(n)^2$.
- 8. Let a sequence $\{x_n\}_{n=0}^{\infty}$ of rational numbers be defined by $x_0 = 10, x_1 = 29$ and $x_{n+2} = \frac{19x_{n+1}}{94x_n}$ for $n \ge 0$. Find $\sum_{n=0}^{\infty} \frac{x_{6n}}{2^n}$.