next up previous
Next: About this document ... Up: No Title Previous: No Title

How to integrate rational trigonometric functions

There is a general method to evaluate integrals of the form

\begin{displaymath}
\int^t R(\cos s,\sin s)\,ds,\end{displaymath}

where R is some rational function. The method is based on the substitution $u=\tan(s/2)$ and the identities

\begin{displaymath}
\sin s=2\sin(s/2)\cos(s/2)=2\tan(s/2)\cos^2(s/2)={2\tan(s/2)\over 
1+\tan^2(s/2)}={2u\over 1+u^2},\end{displaymath}

\begin{displaymath}
\cos s=2\cos^2(s/2)-1={2\over 1+u^2}-1={1-u^2\over 1+u^2},\end{displaymath}

\begin{displaymath}
{du\over ds}={1\over 2\cos^2(s/2)}={1+u^2\over 2}.\end{displaymath}

The integral then becomes

\begin{displaymath}
\int^{\tan(t/2)} R({1-u^2\over 1+u^2},{2u\over 1+u^2}){2\over 1+u^2}\,du.\end{displaymath}


Example:

\begin{displaymath}
\int^t {1\over\sin s}\,ds=\int^{\tan(t/2)} {1+u^2\over 2u}{2...
 ...^2}\,du
=\int^{\tan(t/2)}{1\over u}\,du=\ln\vert\tan(t/2)\vert,\end{displaymath}

Note: You can use double angle formulas to show that

\begin{displaymath}
\csc(t)-\cos(t)=\tan(t/2).\end{displaymath}



Michael Renardy
1998-02-25