Zero divisors and group von Neumann algebras

Peter A. Linnell

Virginia Tech, Blacksburg

Friday, February 5

Let G be a group and let k be a field. Then the group algebra kG is the k-vector space with basis G, so

 $kG = \{\sum_{g \in G} a_g g \mid a_g \in k, a_g = 0 \text{ for all but finitely many } g\}$, and multiplication

$$\sum_{g} a_{g}g \sum_{h} b_{h}h = \sum_{g,h} a_{g}b_{h}gh = \sum_{g \in G} \left(\sum_{x \in G} a_{x}b_{x^{-1}g}\right)g.$$

Example

Let $G = \mathbb{Z}^n$. Then $kG \cong k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$, the Laurent polynomial ring in *n* variables.

Let G be a group. Then G is torsion free if all nonidentity elements have infinite order.

Example

• \mathbb{Z}^n is torsion free.

 Let p be an odd prime, let d be a positive integer, and let Z_p denote the p-adic integers. Let C_p = {A ∈ GL_d(Z_p) | A ≡ I mod p}, a congruence subgroup. Then C_p is torsion free.

Conjecture (Zero divisor conjecture)

Let k be a field and let G be a torsion-free group. Then kG is a domain (i.e. has no nonzero zerodivisors).

Proposition

The zero divisor conjecture is true for $G = \mathbb{Z}^n$.

Proof.

 $k[\mathbb{Z}^n] \cong k[x_1^{\pm 1}, \dots, x_n^{\pm n}]$ and Laurent polynomial rings are domains.

Proposition

The zero divisor conjecture is true for

- Solvable groups.
- Congruence subgroups C_p if k has characteristic 0 or p.

Let $\ell^2(G)$ denote the Hilbert space with Hilbert basis G:

$$\ell^2(G) = \{\sum_{g \in G} a_g g \mid \sum_{g \in G} |a_g|^2 < \infty\}$$

 $\begin{aligned} & \text{Multiplication (convolution)} \\ & \ell^2(G) \times \ell^2(G) \to \ell^\infty(G) = \{ \sum_{g \in G} a_g g \mid \sup_{g \in G} |a_g| < \infty \} \\ & \sum a_g g \sum b_g g = \sum a_h b_g g h = \sum (\sum a_{gx^{-1}} b_x) g \end{aligned}$

 $g \in G$ $g \in G$ $h, g \in G$ $g \in G$ $x \in G$

Then the group von Neumann algebra $\mathcal{N}(G)$ is $\{\alpha \in \ell^2(G) \mid \alpha\beta \in \ell^2(G) \mid \forall\beta \in \ell^2(G)\}$. So $\mathcal{N}(G)$ is a subspace of $\ell^2(G)$ which is also an algebra.

Example

- If G is finite, then $\mathcal{N}(G) \cong \mathbb{C}G$.
- If $G = \mathbb{Z}$, then $\mathcal{N}(G) \cong \mathcal{M}(\mathbb{T})$.

Here \mathbb{T} is the torus $\{z \in \mathbb{C} \mid |z| = 1\}$ and $\mathcal{M}(\mathbb{T})$ denotes the bounded measurable functions on \mathbb{T} with the operations of pointwise addition and multiplication.

Conjecture (Special case of Atiyah conjecture)

Let G be a torsion-free group. If $0 \neq \alpha \in \mathbb{C}G$ and $0 \neq \beta \in \mathcal{N}(G)$, then $\alpha\beta \neq 0$.

Proposition

The Atiyah conjecture is true for $G = \mathbb{Z}$.

Proof.

 $\mathcal{N}(\mathbb{Z}) \cong \mathcal{M}(\mathbb{T})$ and \mathbb{CZ} corresponds to the polynomial functions on \mathbb{T} . A nonzero polynomial has only finitely many zeros, so can be zero only on a set of measure 0.

Theorem

The Atiyah conjecture is true when G is

- solvable
- a congruence subgroup C_p
- G is left orderable.

A group G is left orderable means G has a total order \leq such that $x \leq y$ implies $gx \leq gy$ for all $g, x, y \in G$.

- Left orderable groups are torsion free.
- Not all torsion-free groups are left orderable.
- \mathbb{Z} , \mathbb{R} with the usual order.
- Zⁿ

Proposition

A countable group G is left orderable if and only if it is isomorphic to a subgroup of Homeo⁺(\mathbb{R}), the orientation preserving homeomorphisms of \mathbb{R} .

The left orders LO(G) can be given a topology. For $g \in G$, let $O_g = \{ < \in LO(G) \mid 1 < g \}$. Then a subbase of open sets for this topology is $\{O_g \mid g \in G \setminus 1\}$.

Proposition

- LO(G) is a compact Hausdorff space
- If G is finitely generated, it is metrizable
- G acts on LO(G) by homeomorphisms

Can apply theorems from ergodic theory on this space, such as the Poincaré recurrence theorem.