
ANALYTIC VERSIONS OF THE ZERO DIVISOR CONJECTURE

PETER A. LINNELL

1. Introduction

This is an expanded version of the three lectures I gave at the Durham conference.
The material is mainly expository, though there are a few new results, and for
those I have given complete proofs. While the subject matter involves analysis, it
is written from an algebraic point of view. Thus hopefully algebraists will find the
subject matter comprehensible, though analysts may find the analytic part rather
elementary.

The topic considered here can be considered as an analytic version of the zero
divisor conjecture over C: recall that this states that if G is a torsion free group
and 0 �= α, β ∈ CG, then αβ �= 0. Here we will study the conjecture that if
0 �= α ∈ CG and 0 �= β ∈ Lp(G), then αβ �= 0 (precise definitions of some of the
terminology used in this paragraph can be found in later sections). We shall also
discuss applications to Lp-cohomology.

Since these notes were written, the work of Rosenblatt and Edgar [19, 54] has
come to my attention. This is closely related to the work of Section 6.

2. Notation and Terminology

All rings will have a 1, and to say that R is a field will imply that R is commuta-
tive (because we use the terminology division ring for not necessarily commutative
“fields”). A nonzero divisor in a ring R will be an a ∈ R such that ab �= 0 �= ba for
all b ∈ R\0. To say that the ring R is a domain will mean that if a, b ∈ R\0, then
ab �= 0; equivalently R\0 is the set of nonzero divisors of R. We shall use the nota-
tion C, R, Z, N and P for the complex numbers, real numbers, integers, nonnegative
integers and positive integers respectively. Ring homomorphisms will preserve the
1, and unless otherwise stated, mappings will be on the left and modules will be
right modules. If n ∈ N, then Mn will indicate the direct sum of n copies of the
R-module M . As usual, ker θ and im θ will denote the kernel and image of the map
θ. The closure of a subset X in a Banach space will be denoted by X; in particular
if θ is a continuous map between Banach spaces, then im θ denotes the closure of
the image of θ. If H is a Hilbert space and K is a subspace of H, we shall let L(H)
denote the set of bounded linear operators on H, and K⊥ denote the orthogonal
complement of K in H. We shall let Mn(R) indicate the set of n× n matrices over
a ring R, GLn(R) the set of invertible elements of Mn(R), 1n the identity matrix
of Mn(R), and 0n the zero matrix of Mn(R). If t ∈ P and Ai ∈ Mni

(R) (1 ≤ i ≤ t),
1
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then diag(A1, . . . , At) denotes the matrix in Mn1+···+nt
(R)⎛

⎜⎜⎜⎝
A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . At

⎞
⎟⎟⎟⎠ .

For any ring R, we let K0(R) denote the Grothendieck group associated with the
category of all finitely generated projective R-modules: thus K0(R) has generators
[P ] where P runs through the class of finitely generated projective R-modules, and
relations [P ] = [Q] ⊕ [U ] whenever P , Q and U are finitely generated projective
R-modules and P ∼= Q⊕ U .

When R is a right Noetherian ring, the Grothendieck group associated with
the category of all finitely generated R-modules will be denoted by G0(R): thus
G0(R) has generators [M ] where M runs through the class of finitely generated R-
modules, and relations [L] = [M ]⊕ [N ] whenever L, M and N are finitely generated
R-modules and there is a short exact sequence 0 → M → L → N → 0. There is
then a natural map K0(R) → G0(R) given by [P ] → [P ], and in the case R is
semisimple Artinian, this map is an isomorphism.

We shall use the notation G ∗A H for the free product of the groups G and H
amalgamating the subgroup A, [G : A] for the index of A in G, G′ for the commu-
tator subgroup of G, and F(G) for the set of finite subgroups of G. If the orders of
the subgroups in F(G) are bounded, we shall let lcm(G) stand for the lcm (lowest
common multiple) of the orders of the subgroups in F(G). The characteristic sub-
group of G generated by its finite normal subgroups will be indicated by Δ+(G).
If S is a subset or an element of G, then 〈S〉 will denote the subgroup generated by
S. For g ∈ G, we shall let CG(g) indicate the centralizer of g ∈ G. If X and Y are
classes of groups, then G ∈ XY will mean that G has a normal subgroup X ∈ X
such that G/X ∈ Y.

3. Definitions and Lp(G)

Here we will define the Banach spaces Lp(G) and discuss some elementary results
from functional analysis. Throughout this section G will be a group.

As usual, we define the complex group ring

CG = {
∑
g∈G

αgg
∣∣ αg ∈ C and αg = 0 for all but finitely many g}.

For α =
∑

g∈G αgg, β =
∑

g∈G βgg ∈ CG, the multiplication is defined by

αβ =
∑

g,h∈G

αgβhgh =
∑
g∈G

(∑
x∈G

αgx−1βx

)
g.

Then for 1 ≤ p ∈ R, we define

Lp(G) = {α =
∑
g∈G

αgg
∣∣ αg ∈ C and

∑
g∈G

|αg|p <∞},

‖α‖p =
(∑
g∈G

|αg|p
)1/p

.
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Thus Lp(G) is a Banach space under the norm ‖.‖p (of course Lp(G) can also
be defined for p < 1, but then it would no longer satisfy the triangle inequality
‖α+ β‖p ≤ ‖α‖p + ‖β‖p and so would not be a Banach space). Also we define

L∞(G) = {α =
∑
g∈G

αgg
∣∣ αg ∈ C and sup

g∈G
|αg| <∞},

C0(G) = {α =
∑
g∈G

αgg
∣∣ αg ∈ C and given ε > 0,

there exist only finitely many g such that |αg| > ε},
‖α‖∞ = sup

g∈G
|αg|.

Then L∞(G) and C0(G) are Banach spaces under the norm ‖.‖∞. If α ∈ L∞(G),
then αg ∈ C is determined by the formula α =

∑
g∈G αgg. For p < q,

CG ⊆ Lp(G) ⊆ Lq(G) ⊆ C0(G) ⊆ L∞(G),

and there is equality everywhere if and only if |G| <∞ and strict inequality every-
where if and only if |G| = ∞. The multiplication in CG extends to a multiplication

L1(G) × L∞(G) → L∞(G)

according to the formula

(3.1)
∑
g∈G

αgg
∑
g∈G

βgg =
∑

g,h∈G

αgβhgh =
∑
g∈G

(∑
x∈G

αgx−1βx

)
g,

and this also induces a multiplication L1(G)×Lp(G) → Lp(G) for all p ≥ 1; in the
case p = 1, this makes L1(G) into a ring. Another multiplication is L2(G)×CG→
L2(G); this is useful because it means that L2(G) can be viewed as a right CG-
module, as we do in Section 11.

The central topic of these notes is the following:

Problem 3.1. Let G be a torsion free group and let 1 ≤ p ≤ ∞. Does 0 �= α ∈ CG
and 0 �= β ∈ Lp(G) imply αβ �= 0?

We shall also consider generalizations of this to groups with torsion and to matrix
rings. Since this can be considered as an extension of the classical zero divisor
conjecture, let us consider the current status of that problem.

4. The classical zero divisor conjecture

We shall briefly review the status of the classical zero divisor conjecture. Recall
that the group G is right ordered means that there exists a total order ≤ on G
such that x ≤ y implies that xz ≤ yz for all x, y, z ∈ G. The class of right ordered
groups includes all torsion free abelian groups, all free groups, and is closed under
taking subgroups, directed unions, free products, and group extension (i.e. H and
G/H are right ordered implies that G is right ordered). It also includes the class
of locally indicable groups, where G is locally indicable means that if H �= 1 is a
finitely generated subgroup of G, then there exists H0 �H such that H/H0

∼= Z.
Furthermore if G has a family of normal subgroups {Hi | i ∈ I} for some indexing
set I such that G/Hi is right orderable for all i ∈ I and

⋂
i∈I Hi = 1, then G is

right orderable. These results can be found in [44, §7.3]. Then the usual argument
which shows that a polynomial ring is a domain can be extended to show
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Theorem 4.1. Let k be a field and let G be a right ordered group. Then kG is a
domain.

Variants of this result have been around in the literature for a long time. For
instance back in 1940, Higman [29] proved the above result in the case G is locally
indicable.

Little further progress was made until the 1970’s, though in 1959 Cohn proved
that the free product of two domains amalgamating a common division ring is also
a domain [13, theorem 2.5]. The significance of this result was not realized for group
rings until Lewin applied it to show that under fairly mild restrictions, the group
ring of a free product with amalgamation is a domain. To describe his results, we
need to recall the definition of the Ore condition.

Let R be a ring, let S be the set of nonzero divisors in R, and let S0 be a subset
of R which is closed under multiplication and contains 1. Then R satisfies the right
Ore condition with respect to S0 means that for each r ∈ R and s ∈ S0, there exists
r1 ∈ R and s1 ∈ S0 such that rs1 = sr1, and then we can form the ring RS−1

0

which consists of elements {rs−1 | r ∈ R, s ∈ S0}. Normally S0 will be contained
in S, but this is not essential. We say that R satisfies the right Ore condition if it
satisfies the right Ore condition with respect S. Also a classical right quotient ring
for R is a ring Q which contains R such that every element of S is invertible in Q,
and every element of Q can be written in the form rs−1 with r ∈ R and s ∈ S. If
such a ring Q exists, then R satisfies the right Ore condition and RS−1 ∼= Q. In the
case that R is also domain, this is equivalent to saying that R can be embedded as
a right order in a division ring D; in other words, each element of D can be written
in the form rs−1 where r, s ∈ R and s �= 0. It is well known that a semiprime right
Noetherian ring satisfies the right Ore condition.

A right Ore domain will mean a domain which satisfies the right Ore condition;
thus by the above, a right Noetherian domain is a right Ore domain. Of course one
can replace “right” with “left” in all of the above, and then an Ore domain will
mean a domain which satisfies the Ore condition; i.e. both the right and left Ore
condition. If G is a solvable group and k is a field such that kG is a domain, then
the proposition of [36] shows that kG satisfies the Ore condition. Then one of the
consequences of Lewin’s results for example, is (see [36, theorem 1])

Theorem 4.2. Let k be a field and let G = G1 ∗H G2 be groups such that H �G.
Suppose kG1 and kG2 are domains, and kH satisfies the right Ore condition. Then
kG is a domain.

This result was applied by Formanek [25] to prove that if k is a field and G is a
torsion free supersolvable group, then kG is a domain.

The next step was made by Brown, Farkas and Snider [6, 24] who realized that
a combination of ring and K-theoretic techniques could be applied to the prob-
lem, especially solvable groups. Their techniques established that if k is a field of
characteristic zero and G is a torsion free polycyclic-by-finite group, then kG is a
domain. Building on these ideas, Cliff [8] established the zero divisor conjecture for
group rings of polycyclic-by-finite groups over fields of arbitrary characteristic.

At this time it was already folklore that a suitable generalization of some well
knownK-theoretic theorems on polynomial rings, in particular on the Grothendieck
group G0, would yield stronger results for the zero divisor conjecture, especially for
solvable groups. Let G be a group, let R be a ring, and let R ∗ G be a crossed
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product (see [47]). Thus R∗G is an associative ring with a 1, and it may be viewed
as a free R-module with basis {ḡ | g ∈ G}, where each ḡ is a unit in R∗G. Another
way of describing R ∗G is that it is a G-graded ring with a unit in each degree (see
[47, chapter 1, §2]). Of course R ∗ G is not uniquely determined by R and G in
general, but this never seems to cause any confusion. Also it is clear that if H � G,
then R ∗H (the free R-submodule of R ∗G with R-basis the elements of H) is also
a crossed product and is a subring of R ∗ G. Many theorems for group rings go
over immediately to the crossed product situation. Thus for example, Theorem 4.1
becomes

Theorem 4.3. Let k be a domain, let G be a right ordered group, and let k ∗G be
a crossed product. Then k ∗G is a domain.

To make induction arguments work, we would prefer to work with R ∗G rather
than the group ring RG. Indeed if H � G, then a crossed product R ∗ G can be
expressed as the crossed product RH ∗ [G/H], whereas the corresponding result
for group rings, that if k is a field then kG can be expressed as the group ring
kH[G/H], is decidedly false.

The importance of G0 for the zero divisor conjecture is as follows. If G is a
torsion free group and k ∗ G is a crossed product, then one can often prove that
k ∗ G can be embedded in a matrix ring Mn(D) over a division ring D for some
n ∈ P in a “nice way”. Clearly what we need is that n = 1. If I is a minimal
right ideal of Mn(D), then G0(Mn(D)) = 〈[I]〉, so we would like to prove that
G0(Mn(D)) = 〈[Mn(D)]〉. With the right setup, the inclusion of k ∗ G in Mn(D)
induces an epimorphism of G0([k ∗G]) onto G0(Mn(D)), so it will be sufficient to
prove that G0(k ∗G) = 〈[k ∗G]〉.

If G is a finitely generated free abelian group, k a right Noetherian ring, and k∗G
a crossed product, then by exploiting the fact that G can be ordered it has been
known for a long time that the natural map G0(k) → G0(k ∗G) is an epimorphism;
in particular if k is a field, then G0(k ∗ G) = 〈[k ∗ G]〉. However for a long time
better K-theoretic results (at least for applications to the zero divisor conjecture)
seemed hard to come by. Then in 1986, John Moody came up with the following
remarkable theorem (proved in [43, theorem 1]).

Theorem 4.4. Let G be a finitely generated abelian-by-finite group, let R be a right
Noetherian ring, and let R ∗G be a crossed product. Then the induced map

⊕
H∈F(G)

G0(R ∗H) → G0(R ∗G)

is surjective.

For an exposition of this result, see [9, 23] and [47, chapter 8]. Thus in the special
case R is a division ring and G is torsion free finitely generated abelian-by-finite, we
have that G0(R ∗G) = 〈[R ∗G]〉, and using earlier remarks of this section, it is not
difficult to prove thatR∗G is a domain. Also an easy induction argument shows that
Theorem 4.4 remains valid if G is replaced by an arbitrary polycyclic-by-finite group
(this is in fact how Theorem 4.4 is stated in [43, theorem 1]). Another consequence
of Theorem 4.4 is the following result, well known from when Theorem 4.4 was
established.
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Corollary 4.5. Let G be an abelian-by-finite group, let k be a division ring, and
let k ∗G be a crossed product. If k ∗H is a domain whenever H is a finite subgroup
of G, then k ∗G is an Ore domain.

Proof (sketch). We may assume that G is finitely generated and Δ+(G) = 1. Let
A � G with A free abelian and [G : A] < ∞. If S = k ∗ A\0, then we can form
the ring k ∗ GS−1, which will be an n × n matrix ring over a division ring for
some n ∈ P. Note that k ∗ H is a division ring whenever H is a finite subgroup
of G. By Theorem 4.4 G0(k ∗G) = 〈[k ∗G]〉, and by [34, lemma 2.2] the inclusion
k ∗G→ k ∗GS−1 induces an epimorphism G0(k ∗G) → G0(k ∗GS−1). Therefore
G0(k ∗GS−1) = 〈[k ∗GS−1]〉 and we deduce that n = 1, i.e. k ∗GS−1 is a division
ring. The result follows. �

Another induction argument now gives the zero divisor conjecture for crossed
products of torsion free solvable groups over right Noetherian domains; in fact it
shows that if G is a torsion free solvable group, R is a right Ore domain and R ∗G
is a crossed product, then R ∗G is also a right Ore domain. Roughly the argument
goes as follows. To prove that R ∗G is a right Ore domain, we may assume that G
is finitely generated. Then there exists H �G such that G/H is finitely generated
abelian-by-finite and H is “smaller” than G, so by induction we may assume that
R ∗ F is a right Ore domain whenever F/H is a finite subgroup of G/H; let us
say that R ∗ H is a right order in the division ring D. We now form the crossed
product D ∗ [G/H], and since D ∗ [F/H] is a domain for all finite subgroups F/H
of G/H, we deduce from Corollary 4.5 that D ∗ [G/H] is an Ore domain. It now
follows easily that R ∗G is a right Ore domain.

These arguments also apply to the case when G is an elementary amenable group.
Recall that the class of elementary amenable groups, which we shall denote by C,
is the smallest class of groups which

(i) Contains all cyclic and all finite groups,
(ii) Is closed under taking group extension,
(iii) Is closed under directed unions.

Then C contains all solvable groups, and every elementary amenable group is
amenable (see [48, 49] for much information on amenable groups). Then the argu-
ments of above establish the following result.

Theorem 4.6. Let G ∈ C and let R be a right Noetherian domain. If G is torsion
free, then R ∗G is a domain. In fact, R ∗G is a right order in a division ring.

More results along these lines can be found in [34].
Theorem 4.4 is very useful for Problem 3.1 and related problems. Whenever you

can prove a conjecture related to zero divisors for a class of groups D, then with
the aid of Theorem 4.4, it is usually easy to prove it also for the class of groups DC;
an exception to this is Theorem 4.1.

Finally results of Lazard [35] imply that if p is an odd prime and G is the kernel of
the natural epimorphism GLn(Z) → GLn(Z/pZ) (i.e. G is a congruence subgroup),
then ZpG is a domain (where Zp denotes the p-adic integers; a similar result holds
for p = 2). This is described in [23]; see also [46].

When proving the zero divisor conjecture and related problems, it seems in nearly
all cases that one needs to not only show that the group ring is domain, but that
it embeds in a division ring in some nice way. This is the case, for example, in
Theorem 4.6.
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We shall see that for the case p = 2, many of the above techniques are still
relevant for Problem 3.1, but in the case p > 2, at least at the moment, they do not
seem to be helpful and methods from Fourier analysis appear to be more useful.

5. Elementary Results and Lp
-cohomology

If G is a group with torsion, say g �= 1 = gn for some g ∈ G and n ∈ P, then
(1 + g + · · · + gn−1)(1 − g) = 0, so there are zero divisors. Thus the simplest
nontrivial case to consider is when G is infinite cyclic, say G = 〈x〉 where x has
infinite order. If L = Lp(G), C0(G) or CG, and α ∈ CG, let us say that α is a
zero divisor in L if there exists β ∈ L\0 such that αβ = 0, and that α is a nonzero
divisor in L if no such β exists.

Theorem 5.1. Let G = 〈x〉 where x has infinite order, and let ξ ∈ C where |ξ| = 1.
Then

(i) x− ξ is a zero divisor in L∞(G).
(ii) If 0 �= α ∈ CG, then α is a nonzero divisor in C0(G).

Proof. (i) (x− ξ)
∑∞

n=−∞ ξ−nxn = 0.
(ii) Write α = cxm(x − a1) . . . (x − an) where c, ai ∈ C, m ∈ Z, and c �= 0. Then
by induction on n, we may assume that n = 1, m = 0 and c = 1; in other words
we may assume that α = x − a where a ∈ C. Suppose αβ = 0 where β ∈ C0(G).
Write β =

∑∞
n=−∞ bnx

n where bn ∈ C for all n. Equating coefficients of xn+1, we
obtain bn = abn+1 for all n ∈ Z. Without loss of generality, we may assume that
|a| ≤ 1 and b1 �= 0. But then our equation on the coefficients yields |bn| ≥ |b1| for
all n ∈ P, which contradicts the hypothesis that β ∈ C0(G). �

Thus though we cannot expect Problem 3.1 to have an affirmative answer in the
case p = ∞, it seems plausible that it may have an affirmative answer in all other
cases (and also in the case when Lp(G) is replaced by C0(G)).

Let us give some motivation for the problem from Lp-cohomology. For more
detailed information we refer the reader to [7, 10, 11] and [26, §8]. Let X be a
simplicial complex on which G acts freely, let Xr denote the set of r-simplices of
X, let Cr(X) denote the free abelian group with basis Xr, and let ∂r : Cr(X) →
Cr−1(X) denote the boundary map. For simplicity, we shall assume that Xr has
only finitely many orbits for each r ∈ N. Now define

Lp(Xr) = {f : Xr → C
∣∣ ∑

σ∈Xr

|f(σ)|p <∞}.

Then Lp(Xr) is a Banach space under the norm ‖f‖ =
(∑

σ∈Xr
|f(σ)|p)1/p; in

fact it is isomorphic to Lp(G)dr where dr is the number of orbits of Xr. The
coboundary map δr : Lp(Xr) → Lp(Xr+1) which obeys the rule (δrf)σ = f(∂r+1σ)
for all σ ∈ Xr+1, is clearly a well defined bounded linear operator on Lp(Xr). Thus
ker δr is a closed subspace of Lp(Xr), but im δr need not be closed. We now define
the Lp-cohomology groups by

lp H̄r(X) =
ker δr

im δr−1

.

Since ∂r commutes with the action of G, it follows that ∂r+1 is described by a
dr×dr+1 matrix all of whose entries are in ZG, and δr is described by the transpose
of this matrix. Therefore δr is described by a matrix all of whose entries are in ZG.
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To determine lp H̄r(X), we need to know about ker δr and in particular when it is
nonzero. The simplest case is when δr is 1 × 1 matrix. Thus we have come up
against the problem stated in Problem 3.1.

In the case of L2-cohomology, we can exploit the fact that L2(G) is a Hilbert
space (see Section 8). Let Mr denote the orthogonal complement of im δr−1 in
ker δr. Then Mr is a closed subspace and also a CG-submodule of L2(Xr). It
follows that M has a well defined von Neumann dimension dimG(M) (which will
be described precisely in Section 11). Then for r ∈ N, the L2-Betti numbers are
defined by br(2)(X : G) = dimGMr. In the case G is a group whose finite subgroups
have bounded order, results from studying Problem 3.1 show for example, that if G
has a normal subgroup F such that F is a direct product of free groups and G/F
is elementary amenable, then lcm(G) br(2)(X : G) ∈ N for all r ∈ N and for all X.

6. The case p > 2 and G abelian

In view of Theorem 5.1, it seems surprising that the answer to Problem 3.1 is
negative if G is a noncyclic abelian group and p > 2. The work of this section
describes work of my research student Mike Puls.

Throughout this section d ∈ P, and G is a finitely generated free abelian group
of rank d. Let T denote the torus, which we will think of as [−π, π]/{−π ∼ π}, and
let T

d = T× · · · ×T, the d-torus. We can view T as the abelian group R/2πZ, and
then T

d is also a group. This means that we can talk about cosets in T
d; a coset of

T
d will mean a coset of the form Ht where H � T

d and t ∈ T
d, and the coset will

be proper if H �= T
d. Let {x1, . . . , xd} be a Z-basis for G. If g = xn1

1 . . . xnd

d ∈ G

(where ni ∈ Z), then we can define the Fourier transform ĝ : T
d → C by

ĝ(t1, . . . , td) = ei(n1t1+···+ndtd)

(where ti ∈ T). If α =
∑

g∈G αgg ∈ L1(G), then we set

α̂ =
∑
g∈G

αg ĝ : T
d −→ C,

and this extends the Fourier transform to L1(G). Set Z(α) = {t ∈ T
d | α̂(t) = 0}.

Then Puls [52] proved the following result.

Theorem 6.1. Suppose α ∈ L1(G) and Z(α) is contained in a finite union of
proper closed cosets. Then α is a nonzero divisor in C0(G).

Let us indicate how this theorem is proved. If E is a closed subset of T
d, then

we define I(E) = {β ∈ L1(G) | E ⊆ Z(β)}, j(E) to be the set of all β ∈ L1(G)
such that there exists an open subset O in T

d such that E ⊆ O ⊆ Z(β), and J(E)
to be the closure of j(E) in L1(G). Then j(E) ⊆ J(E) ⊆ I(E), J(E) and I(E)
are closed ideals in L1(G), and α ∈ I(Z(α)). We say that E is an S-set (or set
of spectral synthesis) if J(E) = I(E). We require the next result on the existence
of S-sets, which follows from [55, Theorem 7.5.2], the remark just preceding that
theorem, namely that C-sets are S-sets, and the remark immediately following that
theorem, namely that C-sets are invariant under translation.

Proposition 6.2. A finite union of closed cosets is an S-set.
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Define

Φ(E) = {h ∈ L∞(G) | βh = 0 for all β ∈ I(E)},
Ψ(E) = {h ∈ L∞(G) | βh = 0 for all β ∈ J(E)}.

Then Φ(E) ⊆ Ψ(E) because J(E) ⊆ I(E), and if F is a closed subset of E,
then Ψ(F ) ⊆ Ψ(E). Now for α ∈ L1(G), it follows from [55, Corollary 7.2.5a] that
J(Z(α)) ⊆ αL1(G), where denotes the closure in L1(G). Therefore if h ∈ L∞(G),
then

(6.1) αh = 0 implies h ∈ Ψ(Z(α)).

We say that E is a set of uniqueness if Ψ(E) ∩ C0(G) = 0; clearly if E is a set
of uniqueness and F is a closed subset of E, then F is also a set of uniqueness.
It follows from (6.1) that if Z(α) is contained in a set of uniqueness, then α is a
nonzero divisor in C0(G). Conversely if α is a nonzero divisor in C0(G) and Z(α) is
an S-set, then Φ(Z(α)) = Ψ(Z(α)) and we deduce that Z(α) is a set of uniqueness.
Thus we have

Lemma 6.3. Let α ∈ L1(G).

(i) If Z(α) is contained in a set of uniqueness, then α is a nonzero divisor in
C0(G).

(ii) If α is a nonzero divisor in C0(G) and Z(α) is an S-set, then Z(α) is a set
of uniqueness.

Proof of Theorem 6.1. For this proof, let us say that a hypercoset in T
d is a set of

the form Z(g − ξ) where g ∈ G\1, ξ ∈ C and |ξ| = 1. From [55, section 2.1], it is
not difficult to see that every proper closed coset of T

d is contained in a hypercoset.
Since Z(βγ) = Z(β) ∪ Z(γ) for β, γ ∈ L1(G), we see that any finite union of
hypercosets in T

d is of the form Z
(∏

i(gi−ξi)
)

where gi ∈ G\1, ξi ∈ C and |ξi| = 1.
If 1 �= g ∈ G and ξ ∈ C, then the same argument as in Theorem 5.1(ii) shows

that g − ξ is a nonzero divisor in C0(G). It follows that
∏

i(gi − ξi) is a nonzero
divisor in C0(G) whenever gi ∈ G\1 and ξi ∈ C; the relevant case here is when
|ξi| = 1 for all i. Using Proposition 6.2 and Lemma 6.3(ii), we see that any finite
union of hypercosets is a set of uniqueness. Therefore α is a nonzero divisor in
C0(G) by Lemma 6.3(i). �

Let us now describe Puls’s proof that if G ∼= Z
2, then there exists α ∈ CG\0

which is a zero divisor in Lq(G) for some q <∞ (we shall consider the case G ∼= Z
d

where d > 2 later, where it will be seen that better values of q can be obtained).
Let {x, y} be a basis for G. For i, j ∈ Z and β ∈ L∞(G), we shall write βij or βi,j

for βxiyj . Given a bounded measure μ on T
2, we can define its Fourier transform

μ̃ ∈ L∞(G) by

μ̃ =
∑

m,n∈Z

μ̃mnx
myn where μ̃mn =

∫
T2
e−i(ms+nt) dμ(s, t).

Then we can state

Proposition 6.4. Let α ∈ L1(G) and let μ be a bounded measure on T
2. If μ is

concentrated on Z(α), then αμ̃ = 0.
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Proof. We need to prove that (αμ̃)ij = 0 for all i, j ∈ Z. Replacing α with αx−iy−j ,
we see that it is sufficient to prove that (αμ̃)1 = 0. Now

(αμ)1 =
∑
m,n

αmnμ̃−m,−n =
∑
m,n

αmn

∫
T2
ei(ms+nt)dμ(s, t)

=
∫

T2

∑
m,n

αmne
imseintdμ(s, t) =

∫
Z(α)

α̂(s, t)dμ(s, t) = 0,

as required. �
Thus it is easy to construct zero divisors α in Lp(G) by choosing a nonzero μ;

all that we need to verify is that μ̃ ∈ Lp(G). To make this verification, we require
theorems from Fourier analysis. Let a, b ∈ R such that −π ≤ a < b ≤ π, and let
α ∈ L1(G). Suppose Z(α) contains {(t, θ(t)) | a ≤ t ≤ b} where θ : [a, b] → [−π, π]
is smooth (i.e. infinitely differentiable). Define a measure μ on T

2 by
∫

T2 fdμ =∫ b

a
f(t, θ(t)) dt for all measurable f . Then

μ̃mn =
∫ b

a

e−i(mt+nθ(t)) dt

and μ̃ �= 0 because μ̃00 = b − a. What we need is that
∑

m,n∈Z

∣∣μ̃mn

∣∣p < ∞ for p
large enough. This certainly will not be true in general, for example take θ = 0.
In fact if d2θ

dt2 (t) = 0 for all t ∈ (a, b), then it is not difficult to see that μ̃ /∈ C0(G).
This is not surprising in view of Theorem 6.1, which in this case says that if Z(α) is
contained in a finite union of lines with rational slope, then α is a nonzero divisor
in C0(G). Let us assume that there exists k ∈ P such that for each t ∈ [a, b], there
exists l ∈ P such that l ≤ k and dlθ

dtl (t) �= 0 (where l depends on t). We need the
following result from Fourier analysis, for which we refer to [57, §8.3].

Proposition 6.5. In the above situation, there exists A ∈ R such that
∣∣μ̃mn

∣∣ ≤
A(m2 + n2)−1/(2k) for all m,n ∈ Z.

It now follows easily that if p > 2k, then
∑

m,n∈Z

∣∣μ̃mn

∣∣p < ∞ and hence μ̃ ∈
Lp(G) for all p > 2k.

Example 6.6. Let α = 2xy − x+ y − 2 ∈ CG. Then α is a zero divisor in Lp(G)
for all p > 4.

Proof. For (s, t) ∈ T
2 (where −π ≤ s, t ≤ π), we have α̂(s, t) = 2eiseit−eis +eit−2,

thus α̂(s, t) = 0 when eit = eis+2
2eis+1 . Therefore Z(α) = {(t, θ(t)) | −π ≤ t ≤ π} where

eiθ(t) = eit+2
2eit+1 and we may write θ(t) = −i log

(
eit+2
2eit+1

)
, where we have taken the

branch of log which satisfies log 1 = 0. It is easily checked that θ is smooth and
d2θ
dt2 (t) �= 0 for all t ∈ (−π, π)\{0}, in particular for all t ∈ [π/4, 3π/4]. As above,

define a measure μ on T
2 by

∫
T2 fdμ =

∫ 3π/4

π/4
f(t, θ(t)) dt for all measurable f .

We can now apply Proposition 6.5 with a = π/4 and b = 3π/4 to deduce that
μ̃ ∈ Lp(G) for all p > 4, and Proposition 6.4 to deduce that αμ̃ = 0. Also μ̃ �= 0,
so we have shown that α is a zero divisor in Lp(G) for all p > 4. �

It is interesting to actually compute μ̃ explicitly, though in the above example
this seems somewhat messy. We could define a measure ν on T

2 by
∫

T2 fdν =∫ π

−π
f(t, θ(t)) dt for all measurable f , and then as above, ν̃ �= 0 and αν̃ = 0. Since
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d2θ
dt2 (t) = 0 when t = 0 or ±π, we cannot assert from Proposition 6.5 that ν̃ ∈ Lp(G)
for p > 4, but we do have d3θ

dt3 (t) �= 0 for t = 0 or ±π, so we can assert that ν̃ ∈ Lp(G)
for all p > 6. We now determine ν̃mn, which is∫ π

−π

e−i(mt+nθ(t)) dt =
∫ π

−π

e−imt
(
e−iθ(t)

)n

dt

=
∫ 2π

0

e−imt

(
2eit + 1
eit + 2

)n

dt.

For m < 0 and n ≥ 0 contour integration shows that ν̃mn = 0, and then using the
substitution t → −t, we see that ν̃mn = 0 for m > 0 and n ≤ 0. Also, ν00 = 2π.
Now the equality αν̃ = 0 yields 2ν̃rs − ν̃r,s+1 + ν̃r+1,s − 2ν̃r+1,s+1 = 0, so we have
a recurrence relation from which to calculate the other ν̃rs. This determines ν̃
because ν̃ =

∑
r,s ν̃rsx

rys.
Of course, this argument can be generalized to the case G = Z

d where d > 2.
To state Puls’s results in this case, we need the concept of Gaussian curvature.
We shall describe this here: for more details, see [57, §8.3]. Let S be a smooth
(d − 1)-dimensional submanifold of R

d and let x0 ∈ S. Then after a change of
coordinates (specifically a rotation), we may assume that in a sufficiently small
open neighborhood of x0, the surface is of the form {(x, θ(x)) | x ∈ U}, where U is
a bounded open subset of R

d−1 and θ : U → R is a smooth function. Then we say
that S has nonzero Gaussian curvature at x0 if the (d− 1) × (d− 1) matrix(

∂2θ

∂xi∂xj
(x0)

)

is nonsingular. Then in [52], Puls proved the following.

Theorem 6.7. Let α ∈ CZ
d where 2 ≤ d ∈ P, and suppose there exists x0 ∈ Z(α)

such that there is a neighborhood S of x0 in Z(α) which is a smooth (d − 1)-
dimensional manifold. If S has nonzero Gaussian curvature at x0, then α is a zero
divisor in Lp(G) for all p > 2d

d−1 .

He uses the above theorem to give the following set of examples of zero divisors
in Lp(G). Let G be the free abelian group of rank d and as before let {x1, . . . , xd}
be a Z-basis for G. Let

α =
2d− 1

2
− 1

2

d∑
i=1

(xi + x−1
i ).

Then α ∈ CG and α̂(t1, . . . , td) = 2d−1
2 − ∑d

i=1 cos ti. In a neighborhood of
(0, . . . , 0, π/3), we have that Z(α) is of the form {(t, θ(t)) | t ∈ U}, where U
is a bounded open neighborhood of the origin in R

d−1, t = (t1, . . . , td−1), and
θ(t) = cos−1( 2d−1

2 − ∑d−1
i=1 cos ti). A computation shows that the matrix

(
∂2θ(t)
∂ti∂tj

)
is nonsingular at t = 0, hence Z(α) has nonzero Gaussian curvature. Therefore α
is a zero divisor in Lp(G) for all p > 2d

d−1 .
Puls has also covered many other cases in [52], in which he requires the concept

of the “type” of a manifold (see [57, §8.3.2]). Let us say that M is a hyperplane in
T

d if there exists a hyperplane N in R
d such that M = N ∩ [−π, π]d. (We have been

a little sloppy here: what we really mean is that we consider T
d as [−π, π]d with

opposite faces identified, and let M ′ be the inverse image of M in [−π, π]d. Then
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we say that M is a hyperplane to mean that M ′ is the intersection of a hyperplane
in R

d with [−π, π]d. Perhaps this is not a very good definition because for example,
it allows points to be hyperplanes.) Then the results of [52] make it seem very likely
that the following conjecture is true.

Conjecture 6.8. Let G be a free abelian group of finite rank, and let α ∈ CG.
Then α is a nonzero divisor in Lp(G) for some p ∈ P (where p > 2) if and only if
Z(α) is not contained in a finite union of hyperplanes. Furthermore if α is a zero
divisor in C0(G), then α is a zero divisor in Lp(G) for some p <∞.

7. The case p > 2 and G free

This section also describes work of Mike Puls. It will show that when p > 2 and
G is a nonabelian free group, then the answer to Problem 3.1 is even more in the
negative than in the case of G a noncyclic free abelian group of the last section.

Let G denote the free group of rank two on the generators {x, y}, let En de-
note the words of length n on {x, y} in G, and let en = |En|. Thus E0 = {1},
E1 = {x, y, x−1, y−1}, E2 = {x2, y2, x−2, y−2, xy, yx, x−1y−1, y−1x−1, xy−1, y−1x,
x−1y, yx−1} etc. It is well known that en = 4 · 3n−1 for all n ∈ P. We shall let χn

denote the characteristic function of En, i.e.

χn =
∑

g∈En

g ∈ CG.

These elements of CG are often called radial functions and were studied in [12],
which is where some of the ideas for what follows were obtained.

Let

Θ = 1 − 1
3
χ2 +

1
32
χ4 + · · · + 1

(−3)n
χ2n + · · · .

Then for p > 2,

‖Θ‖p
p = 1 +

e1
3p

+
e2
32p

+ · · · + en

3np
+ · · ·

= 1 +
4
3
· 3−(p−1) +

4
3
· 3−2(p−1) + · · · + 4

3
· 3−n(p−1) + · · · .

This is a geometric series with ratio between successive terms 3−(p−1), so it is
convergent when p− 1 > 1. It follows that Θ ∈ Lp(G) for all p > 2.

We now set θ = χ1Θ and show that θ = 0. If m ∈ P, g ∈ Em, and g = g1g2
with g1 ∈ E1, then g2 ∈ Em−1 ∪ Em+1. Furthermore there is exactly one choice
for (g1, g2) if g2 ∈ Em−1, and exactly three if g2 ∈ Em+1. It follows for n ∈ N that

θg = 0 for g ∈ E2n, and θg =
1

(−3)n
+ 3 · 1

(−3)n+1
= 0 for g ∈ E2n+1. Thus we

have shown that χ1 is a zero divisor in Lp(G) for all p > 2.
Of course there are similar results for radial functions of free groups on more

than two generators, and these are established in [53].

8. Group von Neumann Algebras

We saw in Section 6 and Theorem 6.7 that for p > 2, one can construct many ele-
ments in CG which are zero divisors in Lp(G). The situation for L2(G) is different,
and there is evidence that the following conjecture is true.
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Conjecture 8.1. Let G be a torsion free group. If 0 �= α ∈ CG and 0 �= β ∈ L2(G),
then αβ �= 0.

The reason for this is that L2(G) is a Hilbert space, whereas the spaces Lp(G) are
not (unless G is finite). Indeed L2(G) becomes a Hilbert space with inner product〈∑

g∈G

αgg,
∑
h∈G

βhh
〉

=
∑
g∈G

ag b̄g,

where denotes complex conjugation. This inner product satisfies 〈ug, v〉 =
〈u, vg−1〉 for all g ∈ G, so if U is a right CG-submodule of L2(G), then so is
U⊥. In the case of right ordered groups, the argument of Theorem 4.1 can be
extended to show (see [40, thèorem II])

Theorem 8.2. Let H�G be groups such that G/H is right orderable. Suppose that
nonzero elements of CH are nonzero divisors in L2(H). Then nonzero elements of
CG are nonzero divisors in L2(G).

Thus taking H = 1 in the above theorem, we immediately see that Problem 3.1
has an affirmative answer in the case G is right orderable.

As mentioned at the end of Section 4, a key ingredient in proving the classical
zero divisor conjecture is to embed the group ring in a division ring in some nice
way, and the same is true here. To accomplish this, we need the concept of the
group von Neumann algebra of G.

The formula of (3.1) also yields a multiplication L2(G)×L2(G) → L∞(G) defined
by ∑

g∈G

αgg
∑
g∈G

βgg =
∑
g∈G

(∑
x∈G

αgx−1βx

)
g.

Now CG acts faithfully and continuously by left multiplication on L2(G), so we may
view CG ⊆ L(L2(G)). Let W (G) denote the group von Neumann algebra of G:
thus by definition, W (G) is the weak closure of CG in L(L2(G)). For θ ∈ L(L2(G)),
the following are standard facts.

(i) θ ∈ W (G) if and only if there exist θn ∈ CG such that limn→∞〈θnu, v〉 →
〈θu, v〉 for all u, v ∈ L2(G).

(ii) θ ∈W (G) if and only if (θu)g = θ(ug) for all g ∈ G.
Another way of expressing (ii) above is that θ ∈ W (G) if and only if θ is a right
CG-map. Using (ii), we see that if θ ∈ W (G) and θ1 = 0, then θg = 0 for all
g ∈ G and hence θα = 0 for all α ∈ CG. It follows that θ = 0 and so the map
W (G) → L2(G) defined by θ �→ θ1 is injective. Therefore the map θ �→ θ1 allows
us to identify W (G) with a subspace of L2(G). Thus algebraically we have

CG ⊆W (G) ⊆ L2(G).

It is not difficult to show that if θ ∈ L2(G), then θ ∈W (G) if and only if θα ∈ L2(G)
for all α ∈ L2(G). For α =

∑
g∈G αgg ∈ L2(G), define α∗ =

∑
g∈G ᾱgg

−1 ∈ L2(G).
Then for θ ∈ W (G), we have 〈θu, v〉 = 〈u, θ∗v〉 for all u, v ∈ L2(G); thus θ∗ is the
adjoint of the operator θ.

If θ =
∑

g∈G θgg ∈ W (G), then we define the trace map trG : W (G) → C by
trG θ = θ1. Then for θ, φ ∈W (G), we have trG(θ+φ) = trG θ+trG φ, trG θ

∗ = t̄rGθ
(where the bar denotes complex conjugation), trG(θφ) = trG(φθ), and trG θ =
〈θ1, 1〉. For n ∈ P, this trace map extends to Mn(W (G)) by setting trG θ =

∑n
i=1 θii

when θ ∈ Mn(W (G)) is a matrix with entries θij in W (G), and then trG θφ =
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trG φθ for φ ∈ Mn(W (G)). This will be more fully described in Section 11. An
important property of the trace map is given by Kaplansky’s theorem (see [42] and
[38, proposition 9]) which states that if e ∈ Mn(W (G)) is an idempotent and e �= 0
or 1, then trG e ∈ R and 0 < trG e < n.

At first glance, it seems surprising that W (G) is useful for proving Conjecture 8.1
because if G contains an element of infinite order, then W (G) contains uncountably
many idempotents, so it is very far from being a domain. However it has a classical
right quotient ring U(G) which we shall now describe.

Let U denote the set of all closed densely defined linear operators [33, §2.7]
considered as acting on the left of L2(G). These are maps θ : L → L2(G) where
L is a dense linear subspace of L2(G) and the graph {(u, θu) | u ∈ L} is closed in
L2(G)2. The adjoint map * extends to U and for θ ∈ U , it satisfies 〈θu, v〉 = 〈u, θ∗v〉
whenever θu and θ∗v are defined. We now let U(G) denote the operators in U
“affiliated” to W (G) [5, p. 150]; thus for θ ∈ U , we have θ ∈ U(G) if and only if
θ(ug) = (θu)g for all g ∈ G whenever θu is defined. Then U(G) = U(G)∗, U(G)
is a ∗-regular ring [4, definition 1, p. 229] containing W (G), and every element of
U(G) can be written in the form γδ−1 where γ ∈W (G) and δ is a nonzero divisor
in W (G) (see [5], especially theorem 1 and the proof of theorem 10). On the other
hand, the trace map trG does not extend to U(G). Now a ∗-regular ring R has
the property that if α ∈ R, then there exists a unique projection e ∈ R (so e is an
element satisfying e = e2 = e∗) such that αR = eR, in particular every element
of R is either invertible or a zero divisor. Therefore we have embedded W (G) into
a ring in which every element is either a zero divisor or is invertible (so U(G) is
a classical right quotient ring for W (G)), and if 0 �= β ∈ U(G), then (β∗β)n �= 0
for all n ∈ N. Furthermore it is obvious that if γ is an automorphism of G, then γ
extends in a unique way to automorphisms of W (G) and U(G). Given α ∈ L2(G),
we can define an element α̂ ∈ U(G) by setting α̂u = αu for all u ∈ CG. Then α̂ is
an unbounded operator on L2(G), densely defined because CG is a dense subspace
of L2(G) (of course α̂ does not define an element of L(L2(G)) in general, because
the product of two elements of L2(G) does not always lie in L2(G), only in L∞(G)).
It is not difficult to show that α̂ extends to a closed operator on L2(G) (see the
proof of Lemma 11.3), which we shall also call α̂. Thus α̂ is an element of U . Since
α̂(ug) = (α̂u)g for all u ∈ CG and g ∈ G, and CG is dense in L2(G), it follows (cf.
[33, remark 5.6.3]) that α̂ ∈ U(G). Thus we have a map L2(G) → U(G) defined by
α �→ α̂ which is obviously an injection. Algebraically, we now have

(8.1) CG ⊆W (G) ⊆ L2(G) ⊆ U(G).

Similar properties to those of the above paragraph hold for matrix rings over
U(G). Let n ∈ P. Then Mn(CG) acts continuously by left multiplication on L2(G)n,
and Mn(W (G)) is the weak closure of Mn(CG) in L(L2(G)n). Also Mn(U(G))
is the set of closed densely defined linear operators acting on the left of L2(G)n

which are affiliated to Mn(W (G)). For θ ∈ Mn(U(G)), the adjoint θ∗ of θ satisfies
〈θu, v〉 = 〈u, θ∗v〉 for u, v ∈ L2(G)n whenever θu and θ∗v are defined. If θ is
represented by the matrix (θij) where θij ∈ U(G), then θ∗ is represented by the
matrix (θ∗ji). Then Mn(U(G)) is a ∗-regular ring containing Mn(W (G)), and every
element of Mn(U(G)) can be written in the form αβ−1 where α ∈ Mn(W (G)) and
β is a nonzero divisor in Mn(W (G)). Furthermore every projection of Mn(U(G))
lies in Mn(W (G)) (use [5, theorem 1]). This means that if α ∈ Mn(U(G)), then
αMn(U(G)) = eMn(U(G)) for a unique projection e ∈ Mn(W (G)). Thus we can
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define rankG α = trG e; the following lemma (see [41, Lemma 2.3]) gives some easily
derived properties of rankG; part (ii) requires Kaplansky’s theorem on the trace of
idempotents mentioned earlier in this section.

Lemma 8.3. Let G be a group and let θ ∈ Mn(U(G)). Then
(i) rankG θα = rankG θ = rankG αθ for all α ∈ GLn(U(G)).
(ii) If 0 �= θ /∈ GLn(U(G)), then 0 < rankG θ < n.

Two other useful results are

Lemma 8.4. (See [39, lemma 13].) Let G be a group, let n ∈ P, and let e, f
be projections in Mn(U(G)). If f = ueu−1 for some unit u ∈ Mn(U(G)), then
f = vev−1 for some unit v ∈ Mn(W (G)).

Lemma 8.5. Let G be a group, let n ∈ P, and let e, f be projections in Mn(U(G)).
Suppose that eMn(U(G)) ∩ f Mn(U(G)) = 0 and eMn(U(G)) + f Mn(U(G)) =
hMn(U(G)) where h is a projection in Mn(U(G)). Then trG e+ trG f = trG h.

Proof. This follows from the parallelogram law [4, §13]. Alternatively one could
note that eMn(W (G)) ∩ f Mn(W (G)) = 0 and then apply [39, lemmas 11(i) and
12]. �

Suppose d, n ∈ P, H � G are groups such that [G : H] = n, and {x1, . . . , xn}
is a left transversal for H in G. Then as Hilbert spaces L2(G)d =

⊕n
i=1 xiL

2(H)d,
hence we may view elements of L(L2(G)d) as acting on

⊕n
i=1 xiL

2(H)d and we
deduce that we have a monomorphism ˆ: L(L2(G)d) → L(L2(H)dn). It is not
difficult to see that ˆ takes Md(W (G)) into Mdn(W (H)), which yields the following
result (cf. [2, (16) on p. 23])

Lemma 8.6. Let H � G be groups such that [G : H] = n < ∞, and let d ∈ P. If
θ ∈ Md(W (G)), then trH θ̂ = n trG θ.

We can now explain the usefulness of U(G). Suppose we have proved Conjec-
ture 8.1 for the torsion free group G. Then we have in particular that if 0 �= α ∈ CG
and 0 �= θ ∈ W (G), then αθ �= 0. Since U(G) is a classical right quotient ring for
W (G), it follows that α is invertible in U(G). Thus in the special case that CG
is a right order in a division ring (this will be the case when G is elementary
amenable: see Theorem 4.6), we can deduce that there is a division ring D such
that CG ⊆ D ⊆ U(G). This was exploited in [39] to obtain the following result.

Theorem 8.7. Let G be a torsion free elementary amenable group. Then there
exists a division ring D such that CG ⊆ D ⊆ U(G).

Of course in the above theorem, D can be chosen so that CG is a right order in
D, see Theorem 4.6. In view of this theorem, it seems plausible that the following
conjecture is true.

Conjecture 8.8. If G is a torsion free group, then there exists a division ring D
such that CG ⊆ D ⊆ U(G).

Note that the above conjecture implies Conjecture 8.1. Indeed if 0 �= α ∈ CG,
then the above conjecture shows that α is invertible in U(G), in particular αβ �= 0
for all β ∈ U(G)\0. Then (8.1) shows that αβ �= 0 for all β ∈ L2(G)\0. Thus
combining Theorems 8.2 and 8.7, we obtain the following.
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Theorem 8.9. Let H �G be groups where H is torsion free elementary amenable
and G/H is right ordered. If 0 �= α ∈ CG and 0 �= β ∈ L2(G), then αβ �= 0.

We conclude this section with an amusing example. Recall that the group G is
of exponential growth (see eg. [48, p. 219]) if there is a finite subset C of G such that
limn→∞ |Cn|1/n > 1 (where Cn denotes the subset of G consisting of all products
of at most n elements of C). We say G is exponentially bounded if it does not have
exponential growth.

Example 8.10. Let p be a prime, let d ∈ P, and let H be an exponentially bounded
residually finite p-group which can be generated by d elements. Write H ∼= F/K
where F is the free group of rank d, and write G = F/K ′. Then there exists a
division ring D such that CG ⊆ D ⊆ U(G) and CG is a right order in D.

Of course, any finite p-group will satisfy the hypothesis for H in the above
example (provided that H can be generated by d-elements), but then G will be
torsion free elementary amenable and we are back in the case of Theorem 8.7.
However there exist infinite periodic groups satisfying the above hypothesis for H
[21, 27]; also Grigorchuk has constructed examples of such groups. Now a finitely
generated elementary amenable periodic group must be finite [48, §3.11], hence H
and also G cannot be elementary amenable when H is infinite. On the other hand,
if H is chosen to be a periodic group, then it is easy to see that G does not contain
a subgroup isomorphic to a nonabelian free group.

Proof of Example 8.10. First we show that G is right orderable. Let {Fi/K | i ∈ I}
be the family of normal subgroups in H of index a power of p, and set L =

⋂
i∈I F

′
i .

Then F/F ′
i has a finite normal series whose factors are all isomorphic to Z [22, §4,

lemma 5], thus by the remarks just before Theorem 4.1 we see that F/F ′
i is right

ordered and hence so is F/L. Now K ′ � L � K, so L/K ′ is right ordered and we
deduce that G is right ordered (again, use the remarks on right ordered groups just
before Theorem 4.1). It follows from Theorem 4.1 that CG is a domain.

Since G is exponentially bounded, G is amenable by [48, proposition 6.8]. Now
[58] tells us that if k is a field and M is an amenable group such that kM is a
domain, then kM is an Ore domain. Thus CG is a right order in a division ring
D. Since nonzero elements in CG are nonzero divisors in L2(G) by Theorem 8.2,
it follows that the inclusion of CG in L2(G) extends to a ring monomorphism of D
into U(G), and the result follows. �

9. Universal Localization

The next step is to extend Theorem 8.7 to other groups. Since “most” (but
not all) nonelementary amenable groups contain a nonabelian free subgroup, it
is plausible to consider nonabelian free groups next. Here we come up with the
problem that although CG is a domain, it does not satisfy the Ore condition. Indeed
ifG is the free group of rank two on {x, y}, then the fact that (x−1)CG∩(y−1)CG =
0 shows that CG does not satisfy the Ore condition. If R is a subring of the ring
S, the division closure [15, exercise 7.1.4, p. 387] of R in S, which we shall denote
by D(R,S), is the smallest subring of S containing R which is closed under taking
inverses (i.e. s ∈ D(R,S) and s−1 ∈ S implies s−1 ∈ D(R,S)); perhaps a better
concept is the closely related one of “rational closure” [15, p. 382], but division
closure will suffice for our purposes. The division closure of CG in U(G) will be
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indicated by D(G). Obviously if R is an Artinian ring, then D(R,S) = R. In the
case S is a division ring, the division closure of R is simply the smallest division
subring of S containing R; thus Conjecture 8.8 could be restated as D(G) is a
division ring whenever G is torsion free. The following four elementary lemmas are
very useful.

Lemma 9.1. Let R ⊆ S be rings, let D denote the division closure of R in S, and
let n ∈ P. If D is an Artinian ring, then Mn(D) is the division closure of Mn(R)
in Mn(S).

Proof. Exercise, or see [41, lemma 4.1]. �
Lemma 9.2. Let G be a group and let α be an automorphism of G. Then αD(G) =
D(G)∗ = D(G).

Proof. Of course, here we have regarded α as an automorphism of U(G), and * as
an antiautomorphism of U(G); see Section 8. The result follows because αCG =
CG∗ = CG. �
Lemma 9.3. (cf. [41, lemma 2.1].) Let H � G be groups, and let D(H)G denote
the subring of D(G) generated by D(H) and G. Then D(H)G ∼= D(H) ∗G/H for
a suitable crossed product.

Proof. Let T be a transversal for H in G. Since h ↪→ tht−1 is an automorphism of
H, we see that tD(H)t−1 = D(H) for all t ∈ T by Lemma 9.2, and so D(H)G =∑

t∈T D(H)t. This sum is direct because the sum
∑

t∈T U(H)t is direct, and the
result is established. �
Lemma 9.4. Let H �G be groups such that G/H is finite, and suppose D(H) is
Artinian. Then D(G) is semisimple Artinian and is a crossed product D(H)∗G/H.

Proof. Let D(H)G denote the subring generated by D(H) and G. Then Lemma 9.3
shows that D(H)G ∼= D(H) ∗G/H, hence D(H)G is Artinian and we deduce that
D(H)G = D(G). Now D(G) = D(G)∗ by Lemma 9.2 and if 0 �= α ∈ D(G), then
(α∗α)n �= 0 for all n ∈ N. Therefore D(G) has no nonzero nilpotent ideals, and the
result follows. �

More generally for n ∈ P, we denote the division closure of Mn(CG) in Mn(U(G))
by Dn(G), and let Wn(G) = Dn(G)∩Mn(W (G)). Then we have (see [41, proposi-
tion 5.1])

Proposition 9.5. Let G be a group and let n ∈ P. Then
(i) If e is an idempotent in Dn(G), then there exists α ∈ GL1(Dn(G)) such that

eDn(G) = αeDn(G) and αeα−1 is a projection; in particular eDn(G) =
fDn(G) for some projection f ∈ Dn(G).

(ii) If α ∈ Dn(G), then there exists a nonzero divisor β ∈ Wn(G) such that
βα ∈Wn(G).

The following result shows that if D(G) is Artinian, then there is a bound on the
length of a descending chain of right ideals in D(G) in terms of the real numbers
trG e for e a projection in D(G).

Lemma 9.6. Let G be a group and let l ∈ P. Suppose that D(G) is Artinian and
that l trG e ∈ Z for all projections e ∈ D(G). If I0 > I1 > · · · > Ir is a strictly
descending sequence of right ideals in D(G), then r ≤ l.
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Proof. Since D(G) is semisimple Artinian by Lemma 9.4, the descending sequence
of right ideals yields nonzero right ideals J1, . . . , Jr of D(G) such that D(G) =
J1 ⊕ · · · ⊕ Jr. Write 1 = e1 + · · ·+ er where ei ∈ Ji. Then e2i = ei and eiej = 0 for
i �= j (1 ≤ i, j ≤ r), hence

U(G) = e1U(G) ⊕ · · · ⊕ erU(G).

In view of Proposition 9.5(i), there exist nonzero projections fi ∈ D(G) such that
eiD(G) = fiD(G) (1 ≤ i ≤ r). Then eiU(G) = fiU(G) and it now follows from
Lemma 8.5 that 1 = trG f1 + · · ·+trG fr, upon which an application of Kaplansky’s
theorem (see Section 8) completes the proof. �

When constructing the classical right quotient ring of a ring D which satisfies the
right Ore condition, one only inverts the nonzero divisors of D, but for more general
rings it is necessary to consider inverting matrices. For any ring homomorphism f ,
we shall let f also denote the homomorphism induced by f on all matrix rings. Let
Σ be any set of square matrices over a ring R. Then in [15, §7.2], Cohn constructs a
ring RΣ and a ring homomorphism λ : R→ RΣ such that the image of any matrix
in Σ under λ is invertible. Furthermore RΣ and λ have the following universal
property: given any ring homomorphism f : R → S such that the image of any
matrix in Σ under f is invertible, then there exists a unique ring homomorphism
f̄ : RΣ → S such that f̄λ = f . The ring RΣ always exists and is unique up to
isomorphism, though in general λ is neither injective nor surjective. It obviously
has the following useful property: if θ is an automorphism of R such that θ(Σ) = Σ,
then θ extends in a unique way to an automorphism of RΣ.

Note that if R is a subring of the ring S, D = D(R,S), and Σ is the set of
matrices with entries in R which become invertible over D, then the inclusion
R ↪→ D extends to a ring homomorphism RΣ → D. However even in the case D is
a division ring, this homomorphism need not be an isomorphism.

A notable feature of the above construction of RΣ, which is developed by Cohn
in [15, §7] and Schofield in [56], is that it extends much of the classical theory of
localization of Noetherian (noncommutative) rings to arbitrary rings. Indeed if S
is a subset of R which contains 1, is closed under multiplication, and satisfies the
Ore condition, then RS−1 ∼= RS . On the other hand, in general it is not possible
to write every element of RΣ in the form rs−1 with r, s ∈ R.

There are “Goldie rank” versions of Conjecture 8.8. If k is a field, G is polycyclic-
by-finite, and Δ+(G) = 1, then kG is a right order in a d× d matrix ring for some
d ∈ P. The Goldie rank conjecture states that d = lcm(G). This is now known to
be true, and extensions of this were considered in [34]; in particular it was proved
that if k is a field, G is an elementary amenable group with Δ+(G) = 1, and the
orders of the finite subgroups of G are bounded, then kG is a right order in an l× l
matrix ring over a division ring where l = lcm(G) [34, theorem 1.3]. The proof
of this depends heavily on Moody’s Theorem, as described in Theorem 4.4. We
describe two versions of the Goldie rank conjecture.

Conjecture 9.7. Let G be a group such that Δ+(G) = 1, and let Σ denote the
matrices with entries in CG which become invertible over D(G). Suppose the orders
of the finite subgroups of G are bounded, and l = lcm(G). Then there is a division
ring D such that D(G) ∼= Ml(D) ∼= CGΣ.

Conjecture 9.8. Let G be a group such that the orders of the finite subgroups of
G are bounded, and let l = lcm(G). If n ∈ P and α ∈ Mn(CG), then l rankG α ∈ N.
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10. C*-algebra Techniques

There is a close connection between problems related to zero divisors in L2(G)
and projections in W (G). Indeed Lemma 12.3 states that if rankG θ ∈ Z for all
θ ∈ Mn(CG) and for all n ∈ P, then Conjecture 8.8 is true, and of course rankG θ is
defined in terms of the trace of a projection in Mn(W (G)) (Section 8). Recall that
the reduced group C*-algebra C∗

r (G) of G is the strong closure (as opposed to the
weak closure for W (G)) of CG in L(L2(G)): thus CG ⊆ C∗

r (G) ⊆ W (G). There is
a conjecture going back to Kaplansky and Kadison that if G is a torsion free group,
then C∗

r (G) has no idempotents except 0 and 1 (this is equivalent to C∗
r (G) having

no projections except 0 and 1). The special case G is a nonabelian free group is of
particular interest, because at one time there was an open problem to as whether a
simple C*-algebra was generated by its projections. Powers [51, theorem 2] proved
that C∗

r (G) is simple for G a nonabelian free group, so it was then sufficient to
show that C∗

r (G) had no nontrivial projections, but this property turned out to
be more difficult to prove. However Pimsner and Voiculescu [50] established this
property, thus obtaining a simple C*-algebra (�= C) with no nontrivial projections.
Connes [16, §1] (see [20] for an exposition) gave a very elegant proof of the Pimsner-
Voiculescu result, and his method was used in [41] to establish Conjecture 8.8 in
the case G is a free group. For further information on this topic, see the survey
article [59].

As has already been remarked, in view of Lemma 12.3 we want to prove that
trG e ∈ Z for certain projections e. Now in his proof that C∗

r (G) has no nontrivial
projections, this is exactly what Connes does. Once it is established that trG e ∈
Z, then the result follows from Kaplansky’s theorem (§8). Of course Connes is
dealing with projections in C∗

r (G), while we are interested in projections which
are only given to lie in Mn(W (G)) for some n ∈ P, but the Connes argument is
still applicable. Connes uses a Fredholm module technique in which he constructs
a “perturbation” π of C∗

r (G) where G is the free group of rank two such that if
C∗

r (G) has a nontrivial projection, then there is a nontrivial projection e ∈ C∗
r (G)

such that the operator e− πe on L2(G) is of trace class (though πe /∈ C∗
r (G)), and

it follows that the trace of e−πe is an integer [20, lemma 4.1]. He then shows that
this trace is in fact trG e [20, §5], thus proving that trG e ∈ Z as required.

To apply Lemma 12.3 when G is the free group of rank two, we use the same
perturbation π. This has the property that if θ ∈ Mn(CG) for some n ∈ P, then the
resulting operators θ, π(θ) on L2(G)n agree on a subspace of finite codimension. It
follows that if e, e′ are the projections of L2(G)n onto im θ, im θ′ respectively, then
im (e− e′) has finite dimension and therefore has a well defined trace which is an
integer. Then as in the previous paragraph, this integer turns out to be trG e and
we deduce that rankG θ ∈ Z as required.

The same arguments are applied in Lemma 12.2 for the case when G is a finite
direct product of free groups of rank two. For the purposes of trying to extend
this to other classes of groups, it seems necessary to have that θ, π(θ) agree on a
subspace of finite codimension: it is not enough for θ − π(θ) to have trace class,
because this does not imply that e− e′ has trace class.

To construct the perturbation π, Connes uses the following result for free groups
(see [20, section 4], [32, corollary 1.5], [18, §3]). We say that a function φ : X → Y
between the left G-sets X and Y is an almost G-map if for all g ∈ G, the set
{x ∈ X | g(φx) �= φ(gx)} is finite.
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Theorem 10.1. Let κ ∈ N, let G be a free group of rank κ, let κG denote the free
left G-set with κ orbits, and let {∗} denote the G-set consisting of one fixed point.
Then there exists a bijective almost G-map φ : G→ κG ∪ {∗}.

In fact the above is the only property of free groups that Connes uses, and it is
also the only property of free groups used in [41] in establishing Conjecture 8.8 for G
a free group. Thus it was of considerable interest to determine which other groups
satisfied the conclusion of the above theorem. However Dicks and Kropholler [18]
showed that free groups were the only such groups.

After proving Conjecture 8.8 for free groups, the following was established in
[41] (see [41, theorem 1.5] for a generalization).

Theorem 10.2. Let n ∈ P, let F � G be groups such that F is free, G/F is
elementary amenable, and Δ+(G) = 1, and let Dn(G) denote the division closure
of Mn(CG) in Mn(U(G)). Assume that the finite subgroups of G have bounded
order, and that l = lcm(G). Then there exists a division ring D such that Dn(G) ∼=
Mln(D).

Of course the special case l = n = 1 in the above theorem yields Conjecture 8.8
for groups G which have a free subgroup F such that G/F is elementary amenable.
The subsequent sections will be devoted to a proof of the following result.

Theorem 10.3. Let F � G be groups, and let Σ denote the set of matrices with
entries in CG which become invertible over D(G). Suppose F is a direct product
of free groups, G/F is elementary amenable, and the orders of the finite subgroups
of G are bounded. Then D(G) is a semisimple Artinian ring and the identity map
on CG extends to an isomorphism CGΣ → D(G). Furthermore if e ∈ D(G) is a
projection, then lcm(G) trG e ∈ Z for all projections e ∈ D(G).

It seems very plausible that it is easy to extend the above theorem to the case
when F is a subgroup of a direct product of free groups, and it certainly would
be nice to establish this stronger result. However subgroups of direct products can
cause more difficulty than one might intuitively expect, see for example [3]. In fact
if H �G are groups such that G is torsion free, G/H is finite, and H is a subgroup
of a direct product of free groups, then it is even unknown whether CG is a domain.

One can easily read off a number of related results from Theorem 10.3, for
example

Corollary 10.4. Let F �G be groups such that F is a direct product of free groups
and G/F is elementary amenable, let n ∈ P, and let Dn(G) denote the division
closure of Mn(CG) in Mn(U(G)). Suppose Δ+(G) = 1 and the orders of the finite
subgroups of G are bounded, and set l = lcm(G). Then Dn(G) ∼= Mln(D) for some
division ring D.

For further recent information on these analytic techniques, especially in the case
G is a free group, we refer the reader to the survey article [28].

11. L2(G)-modules

We define E = N ∪ {∞}, where ∞ denotes the first infinite cardinal. Let G
be a group, and let L2(G)∞ denote the Hilbert direct sum of ∞ copies of L2(G),
so L2(G)∞ is a Hilbert space. Following [10, section 1], an L2(G)-module H is a
closed right CG-submodule of L2(G)n for some n ∈ E, an L2(G)-submodule of H is



ANALYTIC VERSIONS OF THE ZERO DIVISOR CONJECTURE 21

a closed right CG-submodule of H, an L2(G)-ideal is an L2(G)-submodule of L2(G),
and an L2(G)-homomorphism or L2(G)-map θ : H → K between L2(G)-modules is
a continuous right CG-map. If X is an L2(G)-ideal, then X⊥ is also an L2(G)-ideal,
so L2(G) = X⊕X⊥ as L2(G)-modules. The following lemma shows that there can
be no ambiguity in the meaning of two L2(G)-modules being isomorphic.

Lemma 11.1. Let H and K be L2(G)-modules, and let θ : H → K be an L2(G)-
map. If ker θ = 0 and im θ = K, then there exists an isometric L2(G)-isomorphism
φ : H → K.

Proof. See [10, p. 134] and [45, §21.1]. �
Lemma 11.2. If U is an L2(G)-ideal, then U = uL2(G) for some u ∈ U .

Proof. Let e be the projection of L2(G) onto U . Then e ∈ W (G) because U is a
right CG-module, and eL2(G) = U . Thus e1 ∈ U and we may set u = e1. �

Lemma 11.3. Let n ∈ E, let u ∈ L2(G)n, and let U = uCG. Then U is L2(G)-
isomorphic to an L2(G)-ideal.

Proof. Define an unbounded operator θ : L2(G) → U by θα = uα for all α ∈ CG.
Suppose αn ∈ CG, αn → 0 and θαn → v where v ∈ U\0. Choose a standard basis
element w = (0, 0, . . . , 0, g, 0, . . . ) ∈ L2(G)n where g ∈ G such that 〈v, w〉 �= 0.
Then

〈v, w〉 = lim
n→∞〈uαn, w〉 = lim

n→∞〈u,wα ∗
n〉 = 0,

a contradiction. Therefore θ extends to a closed operator, which we shall also call θ
(see [33, p. 155]). Note that im θ is dense in U . Using [45, §21.1, II], we may write
θ uniquely in the form φψ where ψ is a self adjoint unbounded operator on L2(G)
and φ : L2(G) → U is a partial isometry. Since θ is a right CG-map, we see from the
uniqueness of the factorization of θ that φ (and ψ) is also a right CG-map. Thus φ
induces an L2(G)-isomorphism from an L2(G)-ideal onto U , as required. �

We shall say that an L2(G)-module H is finitely generated if there exist n ∈ P

and u1, . . . , un ∈ H such that u1CG+ · · ·+unCG is dense in H. Obviously if H and
K are finitely generated, then so is H ⊕ K. The next lemma gives an alternative
description of this definition.

Lemma 11.4. Let H be an L2(G)-module. Then H is finitely generated if and only
if H is isomorphic to an L2(G)-submodule of L2(G)n for some n ∈ P, and in this
case there exist L2(G)-ideals I1, . . . , In such that H ∼= I1 ⊕ · · · ⊕ In.

Proof. First suppose that H is isomorphic to an L2(G)-submodule of L2(G)n where
n ∈ P. Write L2(G)n = U ⊕ V where U ∼= L2(G), V ∼= L2(G)n−1, and U⊥V . Let
W be the orthogonal complement to U ∩ H in H, and let π be the projection of
L2(G)n onto V . Then the restriction of π to W is an L2(G)-monomorphism, so by
Lemma 11.1 W is isomorphic to an L2(G)-submodule of V . Using induction, we
may assume that W is finitely generated and isomorphic to a finite direct sum of
L2(G)-ideals. But H = U ∩H⊕W and U ∩H is finitely generated by Lemma 11.2,
so H is finitely generated and isomorphic to a finite direct sum of L2(G)-ideals.

Now suppose H is finitely generated, say u1CG+ · · ·+ unCG is dense in H. Let
U = u1CG, let V = U⊥, and for i = 2, . . . , n, write ui = u′i + vi where u′i ∈ U and
vi ∈ V . Then H = U ⊕ V , v2CG+ · · · + vnCG is dense in V , and U is isomorphic
to an L2(G)-ideal by Lemma 11.3. Using induction on n, we may assume that V



22 P. A. LINNELL

is isomorphic to an L2(G)-submodule of L2(G)n−1 for some n ∈ P, and the result
follows. �

Lemma 11.5. Let U , V and W be L2(G)-modules. If U ⊕W is finitely generated
and U ⊕W ∼= V ⊕W , then U ∼= V .

Proof. Since U ⊕W is finitely generated, Lemma 11.4 shows we may assume that
U ⊕W is an L2(G)-submodule of L2(G)n where n ∈ P. Using U ⊕W ∼= V ⊕W ,
we may assume that U ⊕W = V ⊕W1 where W ∼= W1. If X is the orthogonal
complement of U ⊕W in L2(G)n, then

U ⊕ (W ⊕X) = L2(G)n = V ⊕ (W1 ⊕X)

and we need only consider the case X = 0.
Thus we have U ⊕W = L2(G)n = V ⊕W1 where W ∼= W1. Let e and f denote

the projections of L2(G)n onto W and W1 respectively, and let θ : W → W1 be
an isometric L2(G)-isomorphism. Then e, f ∈ Mn(W (G)) because W and W1 are
L2(G)-submodules. Since

U ⊕ L2(G)n = U ⊕ V ⊕W1
∼= V ⊕ U ⊕W = V ⊕ L2(G)n,

there is an isometric L2(G)-isomorphism φ : U⊕L2(G)n → V ⊕L2(G)n. If ψ = θ⊕φ,
then

ψ : L2(G)2n → L2(G)2n

is a unitary operator which is also a right CG-map, so ψ can be considered as an
element of M2n(W (G)). Set

E = diag(e, 0n) and F = diag(f, 0n).

Then E and F are projections in M2n(W (G)) and ψEψ−1 = F , so E and F are
equivalent [4, definition 5, §1]. By [4, proposition 8, §1],

diag(e, 1n) and diag(f, 1n)

are also equivalent projections. Now Mn(W (G)) is a finite von Neumann algebra
[4, definition 1, §15], [38, proposition 9], and satisfies “GC” [4, corollary 1, §14], so
we may apply [4, proposition 4, §17] twice to deduce that

1 − diag(e, 1n) and 1 − diag(f, 1n)

are equivalent projections, and hence unitarily equivalent projections. Therefore

(1 − e)L2(G)n ∼= (1 − f)L2(G)n

and the result follows. �

Lemma 11.6. Let H = L2(G)∞, let U be a finitely generated L2(G)-submodule of
H, and let V = U⊥. Then V ∼= H.

Proof. Using Lemma 11.4 and induction, we may assume that U is isomorphic to
an L2(G)-ideal. Write H = L1 ⊕ L2 ⊕ · · · where Li

∼= L2(G) for all i ∈ P, let
Mn =

⊕n
i=1 Li, let Xn denote the orthogonal complement of V ∩Mn in Mn, let

Tn denote the orthogonal complement of V ∩Mn in V ∩Mn+1 (n ∈ P), and let π
denote the projection of H onto U . Since Xn ∩ (V ∩Mn) = 0 and Xn ⊆ Mn, we
see that Xn ∩ V = 0, hence the restriction of π to Xn is an L2(G)-monomorphism
and we deduce from Lemma 11.1 that Xn is isomorphic to an L2(G)-submodule of
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U . Therefore we may write Xn ⊕Yn
∼= L2(G) for some L2(G)-ideal Yn (n ∈ P). We

now have

V ∩Mn ⊕ Tn ⊕Xn+1 = Mn+1 = V ∩Mn ⊕Xn ⊕ Ln+1

∼= V ∩Mn ⊕Xn ⊕Xn+1 ⊕ Yn+1,

thus by Lemma 11.5 we obtain Tn
∼= Xn ⊕ Yn+1, so we may write Tn = X ′

n ⊕ Y ′
n+1

where Xn
∼= X ′

n and Yn
∼= Y ′

n (n ∈ P). For n ∈ P, set Fn = V ∩Mn ⊕X ′
n. Then

Fn ⊆ Fn+1, so we may define En+1 to be the orthogonal complement of Fn in Fn+1

(n ∈ P); we shall set E1 = F1. Since Fn
∼= V ∩Mn ⊕ Xn = Mn, application of

Lemma 11.5 yields En
∼= L2(G) for all n ∈ P. Now

V ∩Mn ⊆ E1 ⊕ · · · ⊕En ⊆ V ∩Mn+1

for all n ∈ P, hence
⊕∞

i=1Ei = V and the result follows. �

An L2(G)-basis {e1, e2, . . . } of the L2(G)-module H means that there exists an
isometric L2(G)-isomorphism θ : H → L2(G)n for some n ∈ E such that θ(ei) =
(0, . . . , 0, 1, 0, . . . ), where the 1 is in the ith position. If {f1, f2, . . . } is another
L2(G)-basis of H and α is the L2(G)-automorphism of H defined by αei = fi, then
αα∗ = α∗α = 1. Also we say that an L2(G)-map θ has finite rank if im θ is finitely
generated.

Suppose now H = L2(G)∞ and that θ : H → H is a finite rank L2(G)-map. Let
K = ker θ. Then the restriction of θ to K⊥ is an L2(G)-monomorphism, so K⊥

is finitely generated by Lemma 11.4. Using Lemmas 11.4 and 11.6, there exists
n ∈ P and an L2(G)-basis {e1, e2, . . . } of H such that im θ + K⊥ ⊆ U where
U = e1CG+ · · · + enCG. We may represent θ by a matrix (θij) where i, j ∈ P and
θij ∈W (G) for all i, j (so θei =

∑∞
j=1 ejθji). Then we define trG θ =

∑∞
i=1 trG θii,

which is well defined because θii = 0 for all i > n. Clearly if θU is the restriction
of θ to U , then trG θ = trG θU (where trG θU is defined as in Section 8).

Let {f1, f2, . . . } be another L2(G)-basis for H. We want to show that if (φij)
is the matrix of θ with respect to this basis, then

∑∞
i=1 trG φii is an absolutely

convergent series with sum trG θ. Write fi =
∑∞

j=1 ejαji where αij ∈ W (G), and∑∞
k=1 αikα

∗
kj is an absolutely convergent series with sum δij for all i, j ∈ P. Then

trG φii = 〈θfi, fi〉 =
n∑

j,k,l=1

〈ejθjkαki, elαli〉

=
n∑

j,k,l=1

〈ejθjkαkiα
∗
il, el〉

=
n∑

j,k=1

trG(θjkαkiα
∗
ij).

Now
∑∞

i=1 αkiα
∗
ij is absolutely convergent with sum δkj , hence

∑∞
i=1 θjkαkiα

∗
ij is

absolutely convergent with sum θjkδkj , consequently
∑∞

i=1 trG(θjkαkiα
∗
ij) is ab-

solutely convergent with sum trG(θjkδkj). Therefore
∑∞

i=1 trG φii is absolutely
convergent with sum

∑n
j,k=1 trG(θjkδkj) = trG θ, as required.

Suppose now that θ, φ : H → H are finite rank L2(G)-maps. Let

M = (ker θ)⊥ + (kerφ)⊥ + im θ + imφ.
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Then M is finitely generated, so there exists n ∈ P and an L2(G)-submodule
L ∼= L2(G)n of H containing M . Let π denote the projection of H onto L, and if
α : H → H is an L2(G)-map, then αL will denote the restriction of α to L. Then
θ + φ, θφ and φθ have finite L2(G)-rank, and

trG(θ + φ) = trG(θ + φ)L = trG θL + trG φL = trG θ + trG φ,

trG θφ = trG(θφ)L = trG θLφL = trG φLθL = trG(φθ)L = trG φθ.

Also if α is an L2(G)-automorphism of H, then απ and θα−1 are finite rank L2(G)-
maps and πθ = θ = θπ, hence by the above

trG αθα
−1 = trG(απ)(θα−1) = trG(θα−1)(απ) = trG θ.

Suppose M is a finitely generated L2(G)-submodule of L2(G)m where m ∈ E.
Then dimGM is defined to be trG e where e is the projection of L2(G)m onto
M (dimG is precisely dG of [10, p. 134]). In view of Kaplansky’s theorem (see
Section 8), dimGM ≥ 0 and dimGM = 0 if and only if M = 0. Let N be an
L2(G)-submodule of L2(G)n where n ∈ E and N ∼= M . Then

M⊥ ⊕ L2(G)n ∼= N⊥ ⊕ L2(G)m,

hence there is a unitary L2(G)-map α of L2(G)m ⊕ L2(G)n which takes M to N .
Therefore if f is the projection of L2(G)n onto N , then 0 ⊕ f = α(e ⊕ 0)α−1 and
it follows that trG f = trG e. Thus dimGN = dimGM , in other words dimGM
depends only on the isomorphism type of M . If n ∈ P and φ ∈ Mn(W (G)), we may
view φ as an L2(G)-map L2(G)n → L2(G)n, and then dimG imφ = rankG φ. We
need the following technical result.

Lemma 11.7. Let H = L2(G)∞, let θ : H → H be an L2(G)-homomorphism,
and let {e1, e2, . . . } be an L2(G)-basis for H. For r, s ∈ E, r ≤ s, let Hr,s =
erCG+ · · · + esCG (s �= ∞), let Hr,∞ = erCG+ er+1CG+ · · ·, and let Ur,s =
θHr,s. Suppose for all i ∈ P we can write θei as a finite sum of elements

∑r
j=1 ejαj

where αj ∈ CG for all j (where r depends on i). If rankG φ ∈ Z for all φ ∈ Mr(CG)
and for all r ∈ P, then dimG U1,m ∩ Un,∞ ∈ Z for all m,n ∈ P.

Proof. Suppose a, b, c, d ∈ P with a ≤ b and b, c ≤ d. Using the hypothesis that θei

can be written as a finite sum of elements of the form ejαj where αj ∈ CG, there
exists r ∈ P, r ≥ d such that U1,d ⊆ H1,r. Define an L2(G)-map φ : H1,r → H1,r

by φei = θei if a ≤ i ≤ b or c ≤ i ≤ d, and φei = 0 otherwise. Then with respect to
the L2(G)-basis {e1, . . . , er} of H1,r the matrix of φ is in Mr(CG), so rankG φ ∈ Z.
But imφ = θ(Ha,b + Hc,d) and it follows that dimG Ua,b + Uc,d ∈ Z.

Let s ∈ P with s ≥ m,n. Using Lemma 11.1 we can obtain standard isomorphism
theorems, in particular

(U1,m + Un,s) ⊕ (U1,m ∩ Un,s) ∼= U1,m ⊕ Un,s.

Therefore dimG U1,m + Un,s + dimG U1,m ∩ Un,s = dimG U1,m + dimG Un,s and we
deduce from the previous paragraph that dimG U1,m ∩ Un,s ∈ Z. Thus as s in-
creases, dimG U1,m∩Un,s forms an increasing sequence of integers bounded above by
dimG U1,m, hence there exists t ∈ P such that dimG U1,m ∩Un,s = dimG U1,m ∩Un,t

for all s ≥ t. Therefore U1,m ∩ Un,s = U1,m ∩ Un,t for all s ≥ t, and it fol-
lows that U1,m ∩ Un,∞ = U1,m ∩ Un,t. We conclude that dimG U1,m ∩ Un,∞ =
dimG U1,m ∩ Un,t ∈ Z as required. �
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12. The Special Case of a Direct Product of Free Groups

Here we generalize the theory of [41, section 3]. If H is a Hilbert space and G is
a group of operators acting on the right of H, then we define

LG(H) = {θ ∈ L(H) | θ(ug) = (θu)g for all u ∈ H and g ∈ G}.
Note that von Neumann’s double commutant theorem [1, theorem 1.2.1] (or see (ii)
after Theorem 8.2) tells us that

LG(L2(G)) = {θ ∈ L(L2(G)) | θ(ug) = (θu)g for all g ∈ G} = W (G).

Suppose now that H and A are groups, G = H ×A, n ∈ P, θ ∈ LA(L2(G)), φ ∈
Mn

(LA(L2(G))
)
, and φ is represented by the matrix (φij) where φij ∈ LA(L2(G))

for all i, j. We make θ act on L2(G) ⊕ L2(G) ⊕ L2(A) by θ(u, v, x) = (θu, θv, 0),
and φ act on L2(G)n ⊕ L2(G)n ⊕ L2(A)n by φ(u, v, x) = (φu, φv, 0) (u, v ∈ L2(G)
or L2(G)n, x ∈ L2(A) or L2(A)n). Note that the actions of θ and φ on L2(G) ⊕
L2(G) ⊕ L2(A) and L2(G)n ⊕ L2(G)n ⊕ L2(A)n are right CA-maps.

Now let H be the free group on two generators, and let A act on the right of
A by right multiplication as usual; i.e. ab = ab for all a ∈ A and b ∈ A. We also
make H act trivially on A: thus ha = a for all a ∈ A and h ∈ H (though h1H = h).
Theorem 10.1 shows that there is a bijection π : H → H ∪H ∪ {1A} (where 1A is
the identity of A) such that

π1H = 1A,(12.1)

{k ∈ H | h(πk) �= π(hk)} is finite for all h ∈ H.(12.2)

We extend π to a right A-map

(12.3) π : G→ G ∪G ∪A
by setting π(ha) = (πh)a for all h ∈ H and a ∈ A. This in turn defines a unitary
operator α : L2(G) → L2(G) ⊕ L2(G) ⊕ L2(A), and hence also a unitary operator
(equal to the direct sum of n copies of α)

(12.4) β : L2(G)n → L2(G)n ⊕ L2(G)n ⊕ L2(A)n.

We note that α and β are right CA-maps. Suppose φ ∈ Mn

(
W (G)

)
and φ−β−1φβ

has finite L2(A)-rank. Then we have

Lemma 12.1. trG φ = trA(φ− β−1φβ).

Proof. (cf. [20, section 5].) Let (φij) denote the matrix of φ. Since φij − α−1φijα
has finite L2(A)-rank for all i, j, trG φ =

∑n
i=1 trG φii and trA(φ − β−1φβ) =∑n

i=1 trA(φii − α−1φiiα), it will be sufficient to show that trG θ = trA(θ − α−1θα)
for all θ ∈ W (G) such that θ − α−1θα has finite L2(A)-rank. If θ =

∑
g∈G θgg

where θg ∈ C for all g ∈ G, then trG θ = θ1 and 〈θg, g〉 = θ1 for all g ∈ G. Using
(12.1), we see that 〈θπh, πh〉 = θ1 for all h ∈ H\1 and 〈θπ1, π1〉 = 0, hence

〈(θ − α−1θα)h, h〉 = 0 if h ∈ H\1,
〈(θ − α−1θα)1, 1〉 = θ1.

Since H is an L2(A)-basis for L2(G), we can calculate trA θ with respect to this
basis and the result follows. �
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Let G be a group, let n ∈ P, let θ ∈ Mn(CG), and let X ⊆ G. If θ =
∑

g∈G θgg

where θg ∈ Mn(C), then supp θ is defined to be {g ∈ G | θg �= 0}, a finite subset of
G. Also L2(X) will indicate the closed subspace of L2(G) with Hilbert basis X.

Lemma 12.2. Let H be the free group of rank two, let A be a group, let G = H×A,
let n ∈ P, and let θ ∈ Mn(CG). If rankA φ ∈ Z for all φ ∈ Mr(CA) and for all
r ∈ P, then rankG θ ∈ Z.

Proof. Let π : G→ G∪G∪A be the bijection given by (12.3), and let β : L2(G)n →
L2(G)n ⊕ L2(G)n ⊕ L2(A)n be the unitary operator given by (12.4). Let

K = {k ∈ H | g(πk) = π(gk) for all g ∈ supp θ},
let J = H\K, let L1 = θL2(G)n, let L2 = β−1θβL2(G)n, and let λ denote the
projection of L2(G)n onto L1. Then |J | <∞ by (12.2), and β−1λβ is the projection
of L2(G)n onto L2. Since rankG θ = trG λ, we want to prove that trG λ ∈ Z.

Let M = θL2(KA)n, and let μ denote the projection of L2(G)n onto M . Note
that M = β−1θβL2(KA)n because β−1θβu = θu for all u ∈ L2(KA)n. Let N1

and N2 denote the orthogonal complements of M in L1 and L2 respectively, and
let η1 and η2 denote the projections of L2(G)n onto N1 and N2 respectively. Let
P1 = θL2(JA)n, let P2 = β−1θβL2(JA)n, and for i = 1, 2, let Qi denote the
orthogonal complement of Pi∩M in Pi. Note that M ∩Qi = 0 and M+Qi is dense
in Li (i = 1, 2). Thus if πi is the projection of Li onto Ni, then the restriction of
πi to Qi is an L2(A)-monomorphism with dense image, so Ni

∼= Qi by Lemma 11.1
(i = 1, 2). Therefore

(12.5) Ni ⊕ (Pi ∩M) ∼= Pi.

Using Lemma 11.4, we see that Ni is finitely generated, hence η1 − η2 has finite
L2(A)-rank. Also λ = μ + η1 and β−1λβ = μ + η2, hence λ − β−1λβ = η1 − η2.
Therefore trG λ = trA(λ−β−1λβ) by Lemma 12.1, and since trA(η1−η2) = trA η1−
trA η2, it will suffice to prove that trA η1 and trA η2 ∈ Z. Now trA ηi = dimANi so
in view of (12.5), we require that dimA Pi ∩M and dimA Pi ∈ Z.

We apply Lemma 11.7: note that with respect to the standard L2(A)-basis Hn

of L2(G)n, the matrices of θ and β−1θβ have the required form for this lemma. But
P1 = θL2(JA)n, P2 = β−1θβL2(JA)n, and M = θL2(KA)n = β−1θβL2(KA)n,
and the result follows. �

The proof of the following lemma is identical to the proof of [41, lemma 3.7].

Lemma 12.3. Let G be a group. If rankG θ ∈ Z for all θ ∈ Mn(CG) and for all
n ∈ P, then D(G) is a division ring.

Proof. We shall use the theory of [15, section 7.1]. Let R denote the rational closure
[15, p. 382] of CG in U(G), and let α ∈ D(G)\0. By [15, exercise 7.1.4] D(G) ⊆ R,
so we can apply Cramer’s rule [15, proposition 7.1.3] to deduce that α is stably
associated over R to a matrix in Mm(CG) for some m ∈ P. Therefore there exists
n ≥ m such that diag(α, 1n−1) is associated over R to a matrix θ ∈ Mn(CG), which
means that there exist X,Y ∈ GLn(U(G)) such that X diag(α, 1n−1)Y = θ.

Suppose α is not invertible in U(G). Using Lemma 8.3, we see that 0 <
rankG α < 1 and thus n− 1 < rankG θ < n. This contradicts Lemma 12.2, hence α
is invertible in U(G). Since D(G) is closed under taking inverses, D(G) must be a
division ring. �
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Lemma 12.4. Let n ∈ P, and let G = H1 × · · · ×Hn where Hi is isomorphic to
the free group of rank two for all i. Then D(G) is a division ring.

Proof. By induction on n and Lemma 12.2, rankG θ ∈ Z for all θ ∈ Mn(CG) and
for all n ∈ P. Now use Lemma 12.3. �

Lemma 12.5. Let H�G be groups such that G/H is free, let Φ denote the matrices
over CH which become invertible over D(H), and let Σ denote the matrices over
CG which become invertible over D(G). Suppose D(G) is a division ring. If the
identity map on CH extends to an isomorphism φ : CHΦ → D(H), then the identity
map on CG extends to an isomorphism σ : CGΣ → D(G).

Proof. By Lemma 9.3, we may view
∑

g∈GD(H)g as D(H) ∗ [G/H]. Suppose
H ⊆ N�K ⊆ G and K/N ∼= Z with generator Nt where t ∈ K. Then if di ∈ D(N)
and

∑
i dit

i = 0, it follows that di = 0 for all i, which means in the terminology of
[31, §2] that D(G) is a free division ring of fractions for D(H) ∗ [G/H]. Therefore
D(G) is the universal field of fractions for D(H) ∗ [G/H] by the theorem of [31]
and the proof of [37, proposition 6]. Since D(H) ∗ [G/H] is a free ideal ring [14,
theorem 3.2], the results of [15, §7.5] show that D(G) = D(H) ∗ [G/H]Ψ for a
suitable set of matrices Ψ with entries in D(H) ∗ [G/H]. The proof is completed
by applying [56, proof of theorem 4.6] and [15, exercise 7.2.8]. �

Lemma 12.6. Let G � F be groups such that F is a direct product of finitely
generated free groups, and let Σ denote the set of matrices over CG which become
invertible over D(G). Then D(G) is a division ring, and the identity map on CG
extends to an isomorphism CGΣ → D(G).

Proof. We may write F = F1 × · · · × Fn where n ∈ P and the Fi are finitely
generated free groups, and since any finitely generated free group is isomorphic to
a subgroup of the free group of rank 2, we may assume that each Fi is free of rank
2. Then D(F ) is a division ring by Lemma 12.4, hence D(G) is a division ring.
Write Hi = F1 × · · · × Fi for 0 ≤ i ≤ n (so H0 = 1). Then (G ∩Hi)/(G ∩Hi−1) is
isomorphic to a free group for all i, so we can now use Lemma 12.5 and induction
on n to complete the proof. �

13. Proof of Theorem 10.3

To simplify the notation in the following lemma, we assume that 1, 2, . . . ∈ I.

Lemma 13.1. Let {Hi | i ∈ I} be a family of nonabelian free groups, let G =
H1×H2×· · · , and let θ be an automorphism of G. Then θH1 = Hi for some i ∈ I.

Proof. Suppose g = (g1, g2, . . . ) ∈ G where gi ∈ Hi for all i. Then

CG(g) = CH1(g1) × CH2(g2) × · · ·
and CHi

(gi) ∼= Z if gi �= 1, and CHi
(gi) = Hi if gi = 1. It follows that Z(CG(g)) ∼=

Z
r, where Z(CG(g)) denotes the center of CG(g) and r = |{i | gi �= 1}|.
Let x, y ∈ H1\1. Then by the above we have θx ∈ Hi and θy ∈ Hj for some

i, j ∈ I. If i �= j, then 〈x, y〉 ∼= Z × Z which is not possible. Therefore i = j and
the result follows. �

Lemma 13.2. Let H �G be groups such that H is a direct product of nonabelian
free groups and G/H is finite. Let X be a finite subset of G. Then there exists
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a finitely generated subgroup G0 of G such that X ⊆ G0 and G0 ∩ H is a direct
product of nonabelian free groups.

Proof. By enlarging X if necessary, we may assume that HX = G. Let H be
the direct product of the nonabelian free groups Hi. Using Lemma 13.1 we see
that G permutes the Hi by conjugation, so we may write H = ×iKi where Ki =
Ki1×· · ·×Kimi

with the Kij nonabelian free groups (so each Kij is an Hk for some
k), and for each i the set {Ki1, . . . ,Kimi

} is permuted transitively by conjugation
by G. For each i, let Ni denote the normalizer of Ki1 in G, and then choose right
transversals Si ⊆ X for H in Ni, and Ti ⊆ X for Ni in G; thus |Ti| = mi and
we may write Ti = {ti1, . . . , timi

} where t−1
ij Ki1tij = Kij . Set H0 = H ∩ 〈X〉 and

note that since it is a subgroup of finite index in a finitely generated group, it is
also finitely generated, so we may write H0 ⊆ K1 × · · · ×Kn for some n ∈ P, and
then there are finite subsets Yij ⊆ Kij (1 ≤ i ≤ n and 1 ≤ j ≤ mi) such that
H0 ⊆ 〈⋃i,j Yij〉. Then we may choose finitely generated nonabelian free subgroups
K̃i1 of Ki1 such that

Yij ⊆ t−1
ij K̃i1tij for j = 1, . . . ,mi.

Set Li1 = 〈s−1K̃i1s | s ∈ Si〉 and

Li = t−1
i1 Li1ti1 × t−1

i2 Li1ti2 × · · · × t−1
imi

Li1timi
.

Then Li1 and hence also Li is a finitely generated subgroup. Also if i, j ∈ P with
i ≤ n, j ≤ mi and x ∈ X, then we may write tijx = hstik for some h ∈ H0, s ∈ Si

and k ∈ P, and then x−1t−1
ij Li1tijx = t−1

ik Li1tik and we deduce that X normalizes
Li. Therefore if L = L1 × · · · × Ln, then L is a finitely generated subgroup and
X normalizes L. Moreover Li1 is a free group because it is a subgroup of the free
group Ki1, and it is nonabelian because it contains the nonabelian subgroup K̃i1,
hence L is a direct product of nonabelian free groups. Thus we may set G0 = L〈X〉
for the required subgroup. �

For the purposes of the next two lemmas, given a group G and n ∈ P, we shall
define SnG to be the intersection of normal subgroups of index at most n in G.
Note that SnG is a characteristic subgroup of G and that SnG ⊇ Sn+1G for all
n ∈ P. Furthermore if G is finitely generated, then G/SnG is finite.

Lemma 13.3. Let F �G be groups such that F is finitely generated free and G/F
is finite. Suppose for all n ∈ P, there exists Hn � G such that HnF = G and
Hn ∩ F = SnF . Then there exists H � G such that HF = G and H ∩ F = 1.

Proof. Since SnF is a normal subgroup of finite index in G, there are only finitely
many subgroups of G which contain SnF , hence an application of the König graph
theorem shows we may assume that Hn ⊇ Hn+1 for all n ∈ P. It follows that if
Ĝ denotes the profinite completion of G, then Ĝ has a subgroup K isomorphic to
G/F .

We shall now use the notation and results of [60]. Since G has a free subgroup
of finite index, we see from [17, theorem IV.3.2] that G is isomorphic to the fun-
damental group of a graph of groups π1(G,Γ) with respect to some tree T , where
Γ is a finite graph of groups, and the vertex groups G(v) are finite for all vertices
v of Γ. Then we can form the fundamental group Π1(G,Γ, T ) in the category of
profinite groups, and by construction, Π1(G,Γ, T ) ∼= Ĝ [60, p. 418]. Of course the
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vertex groups G(v) are the same as the vertex groups Ĝ(v). By [60, theorem 3.10]
and the fact that K is a finite subgroup, we see that K ⊆ gĜ(v)g−1 for some vertex
v of Γ and some g ∈ Ĝ. Thus G has a subgroup isomorphic to G/F and the result
follows. �
Lemma 13.4. Let l ∈ P, and let H�G be groups such that G is finitely generated,
G/H is finite, and H is a direct product of nonabelian free groups. Assume that
whenever K �G such that K ⊆ H and G/K is abelian-by-finite, then G/K has a
subgroup of order l. Then G has a subgroup of order l.

Proof. Write H = H1 × · · · ×Ht where the Hi are nonabelian free groups, and set
H(n) = SnH1 × · · · × SnHt for n ∈ P. Note that if K �G and G/K is abelian-by-
finite, then H ′

(n) ⊆ K for some n ∈ P and that H/H ′
(n) is torsion free.

First we reduce to the case |G/H| = l. We know by hypothesis that G/H ′
(n) has

a subgroup Ln/H
′
(n) of order l for all n ∈ P. Since H/H ′

(n) is torsion free, we see
that Ln ∩H = H ′

(n) and therefore |LnH/H| = l. Now G/H has only finitely many
subgroups of order l, hence there exists a subgroup G0/H of order l in G/H with
Ln ⊆ G0 for infinitely many n. Thus replacing G with G0, we may assume that
|G/H| = l.

We now use induction on t, the case t = 1 being a consequence of Lemma 13.3.
Suppose we can write H = F1×F2 where F1, F2 �G and each Fi is a direct product
of a proper subset of {H1, . . . , Ht}. Then by induction on t there exists G1 � G
such that F1 ⊆ G1 and |G1/F1| = l. The natural injection G1 ↪→ G induces an
isomorphism G1 ↪→ G/F2, so again using induction we see that G1, and hence also
G, has a subgroup of order l. Therefore we may assume that no such decomposition
H = F1 × F2 as above exists. It now follows from Lemma 13.1 that G permutes
the Hi transitively by conjugation. Let Dn be the normalizer of H1 in Ln, and let
Z = H2 × · · · × Ht. Then DnH is the normalizer of both H1 and Z in G for all
n ∈ P, so we may set D = DnH for all n. Since DnH = D and Dn ∩H = H(n) for
all n ∈ P, we have from the case t = 1 that D/Z has a subgroup of order |D/H|.
Thus D/Z is isomorphic to a semidirect product of H1 and D/H, so we may apply
[30, theorem 3] to obtain a subgroup of G isomorphic to G/H, which is what is
required. �
Lemma 13.5. Let G =

⋃
i∈I Gi be groups such that given i, j ∈ I, there exists

l ∈ I such that Gi, Gj ⊆ Gl, let Σ denote the matrices with entries in CG which
become invertible over D(G), and let Σi denote the matrices with entries in CGi

which become invertible over D(Gi). Assume that the orders of the finite subgroups
of G are bounded, and that D(Gi) is an Artinian ring for all i ∈ I. Suppose
lcm(Gi) trGi

e ∈ Z whenever e is a projection in D(Gi), for all i ∈ I. Then
(i) D(G) =

⋃
i∈I D(Gi) and lcm(G) trG e ∈ Z for all projections e ∈ D(G).

(ii) D(G) is a semisimple Artinian ring.
(iii) Suppose the identity map on CG extends to an isomorphism λi : CGiΣi

→
D(Gi) for all i ∈ I. Then the identity map on CG extends to an isomor-
phism λ : CGΣ → D(G).

Proof. (i) This is obvious.
(ii) If I0 > I1 > · · · > Ir is a strictly descending sequence of right ideals in D(G),
then

I0 ∩D(Gi) > I1 ∩D(Gi) > I2 ∩D(Gi) > · · · > Ir ∩D(Gi)
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is a strictly descending sequence of right ideals in D(Gi) for some i ∈ I, hence
r ≤ lcm(G) by (i) and Lemma 9.6. This shows that D(G) is Artinian, and the
result now follows from Lemma 9.4.
(iii) Since every matrix in Σi becomes invertible over CGΣ, we see that there are
maps μi : CGiΣi

→ CGΣ which extend the inclusion map CGi → CG. Now λi

is an isomorphism for all i ∈ I, hence there are maps νi : D(Gi) → CGΣ defined
by νi = μiλ

−1
i , which extend the inclusion map CGi → CG. If Gi ⊆ Gj and

ψij : D(Gi) → D(Gj) is the inclusion map, then νjψij = νi and it follows that the
νi fit together to give a map ν :

⋃
i∈I D(Gi) → CGΣ such that νψi = νi, where

ψi : D(Gi) →
⋃

i∈I D(Gi) is the natural inclusion. But
⋃

i∈I D(Gi) = D(G) by (i),
and we deduce that ν : D(G) → CGΣ is a map which extends the identity on CG.
By the universal property of CGΣ, there is a map λ : CGΣ → D(G) which also
extends the identity on CG. Then νλ is the identity on CGΣ and λν is the identity
on D(G), and we deduce that λ is an isomorphism, as required. �

We need the following three technical lemmas.

Lemma 13.6. (cf. [41, lemma 4.4].) Let Q be a semisimple Artinian ring, let
G = 〈x〉 be an infinite cyclic group, let Q ∗ G be a crossed product, and let S be
the set of nonzero divisors of Q ∗G. Let R be a ring containing Q ∗G, and let D
be the division closure of Q ∗G in R. Suppose every element of Q ∗G of the form
1 + q1x + · · · + qtx

t with qi ∈ Q and t ∈ P is invertible in R. Then Q ∗ G is a
semiprime Noetherian ring and D is an Artinian ring. Furthermore every element
of S is invertible in D, and the identity map on Q ∗G extends to an isomorphism
Q ∗GS → D.

Lemma 13.7. Let H � G be groups, let D(H)G denote the subring generated
by D(H) and G in D(G), and let Σ denote the matrices with entries in CH which
become invertible over D(H). If the identity map on CH extends to an isomorphism
CHΣ → D(H), then the identity map on CG extends to an isomorphism CGΣ →
D(H)G.

Proof. This follows from Lemma 9.3 and [41, 4.5] �

Lemma 13.8. (See [41, lemma 4.7].) Let D be a ∗-ring, let R be a set of subrings
of D, let n ∈ P, and let e ∈ Mn(D) be an idempotent. Assume that whenever
R ∈ R and P is a finitely generated projective R-module, there exist projections
fi ∈ R such that P ∼= ⊕

fiR. If the natural induction map⊕
R∈R

K0(R) → K0(D)

is onto, then there exist r, s ∈ P, R1, . . . , Rs ∈ R, and projections fi ∈ Ri (1 ≤ i ≤
s) such that

diag(e, 1r, 0s) = u diag(f1, . . . , fs, 0n+r)u−1,

where u ∈ GLn+r+s(D).

The essence of the next two lemmas is to show that if Theorem 10.3 holds for
the group G0 and G/G0 is finitely generated abelian-by-finite, then it also holds
for G. This is to prepare for an induction argument to follow.

Lemma 13.9. Let H � G be groups such that G/H is free abelian of finite rank,
let D(H)G denote the subring of D(G) generated by D(H) and G, and let S denote



ANALYTIC VERSIONS OF THE ZERO DIVISOR CONJECTURE 31

the nonzero divisors in D(H)G. Suppose D(H) is an Artinian ring. Then D(H)G
is a semiprime Noetherian ring and D(G) is an Artinian ring. Furthermore every
element of S is invertible in D(G), and the identity map on D(H)G extends to an
isomorphism from D(H)GS to D(G).

Proof. By induction on the rank of G/H, we immediately reduce to the case G/H
is infinite cyclic, say G = 〈Hx〉 where x ∈ G. Since D(H) is semisimple by
Lemma 9.4 and D(H)G ∼= D(H)∗G/H by Lemma 9.3, we are in a position to apply
Lemma 13.6. If α = 1+q1x+ · · ·+qtx

t ∈ D(H)G where t ∈ P and qi ∈ D(H), then
by Proposition 9.5(ii) there is a nonzero divisor β in W (H) such that βqi ∈W (H)
for all i. Using [40, theorem 4], we see that βαγ �= 0 for all γ ∈ W (G)\0, and we
deduce that α is invertible in U(G). The result now follows from Lemma 13.6. �

Lemma 13.10. Let N �H �G be groups such that N �G, H/N is free abelian of
finite rank, and G/H is finite. Let D(N)G denote the subring of D(G) generated
by D(N) and G, and let S denote the nonzero divisors of D(N)G. Suppose D(N)
is an Artinian ring. Then

(i) D(N)G is a semiprime Noetherian ring and D(G) is a semisimple Artinian
ring. Furthermore every element of S is invertible in D(G), and the identity
map on D(N)G extends to an isomorphism from D(N)GS to D(G).

(ii) Let Φ denote the matrices of CN which become invertible over D(N), and
let Σ denote the matrices of CG which become invertible over D(G). If the
identity map on CN extends to an isomorphism CNΦ → D(N), then the
identity map on CG extends to an isomorphism CGΣ → D(G).

(iii) Suppose m,n ∈ P and the orders of the finite subgroups of G are bounded.
If m lcm(F ) trF e ∈ Z whenever F/N ∈ F(G/N) and e is a projection in
D(F ), then m lcm(G) trG e ∈ Z for all projections e in Mn(D(G)).

Proof. (i) This follows from Lemmas 9.4 and 13.9.
(ii) Lemma 13.7 shows that the identity map on CG extends to an isomorphism
D(N)G→ CGΦ. We now see from (i) and the proof of [56, theorem 4.6] that D(G)
is CGΨ for a suitable set of matrices Ψ with entries in CG. An application of [15,
exercise 7.2.8] completes the proof.
(iii) Using (i), we see that D(N)G is Noetherian and that D(G) ∼= D(N)GS−1, so
it follows from [34, lemma 2.2] that the natural inclusion D(N)G→ D(G) induces
an epimorphism G0(D(N)G) → G0(D(G)). Now D(F ) ∼= D(N) ∗ F/N whenever
F/N ∈ F(G/N) by Lemma 9.4, and D(N)G ∼= D(N) ∗ G/N by Lemma 9.3, so
we can apply Moody’s induction theorem (Lemma 4.4) to deduce that the natural
map ⊕

F/N∈F(G/N)

G0(D(F )) −→ G0(D(G))

is also onto. Since D(G) and D(F ) are semisimple Artinian by (i), we have natural
isomorphisms K0(D(G)) ∼= G0(D(G)) and K0(D(F )) ∼= G0(D(F )) for all F such
that F/N ∈ F(G/N), and we conclude that the natural induction map⊕

F/N∈F(G/N)

K0(D(F )) −→ K0(D(G))

is onto. When F/N ∈ F(G/N), we see from Lemma 9.4, that D(F ) is semisimple
Artinian, hence every indecomposable D(F )-module is of the form eD(F ) for some
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idempotent e ∈ D(F ) and in view of Proposition 9.5(i), we may assume that e is a
projection. We are now in a position to apply Lemma 13.8, so we obtain r, s ∈ P,
F1/N, . . . , Fs/N ∈ F(G/N), and projections fi ∈ D(Fi) such that

diag(e, 1r, 0s) = u diag(f1, . . . , fs, 0n+r)u−1

where u ∈ GLn+r+s(D(G)). Applying Lemma 8.4, we may assume that u ∈
GLn+r+s(W (G)), hence

trG e+ r = trG f1 + · · · + trG fs

and the result follows. �

The following result could easily be proved directly, but is also an immediate
consequence of the above Lemma 13.10(iii) (use the case G = N and note that the
orders of the finite subgroups of G all divide l).

Corollary 13.11. Let G be a group such that D(G) is Artinian, and let l, n ∈ P.
If l trG e ∈ Z for all projections e ∈ D(G), then l trG e ∈ Z for all projections
e ∈ Mn(D(G)).

Lemma 13.12. Let H�G be groups such that |G/H| <∞ and H is a direct product
of nonabelian free groups, let l = lcm(G), and let Σ denote the set of matrices with
entries in CG which become invertible over D(G). Then

(i) D(G) is a semisimple Artinian ring.
(ii) The identity map on CG extends to an isomorphism CGΣ → D(G).
(iii) If e ∈ D(G) is a projection, then l trG e ∈ Z.

Proof. Let {Xi | i ∈ I} denote the family of finite subsets of G. For each i ∈ I,
there is by Lemma 13.2 a finitely generated subgroup Gi containing Xi such that
Gi ∩H is a direct product of nonabelian free groups. Let Σi denote the matrices
over CGi which become invertible over D(Gi).

If (i), (ii) and (iii) are all true for all i ∈ I when G is replaced by Gi and Σ by
Σi, then the result follows from Lemma 13.5 so we may assume that G is finitely
generated.

Lemma 13.4 now shows that there existsK�G such thatK ⊆ H, G/K is abelian-
by-finite, and lcm(G/K) = l. Using Lemma 12.6, we see that D(K) is a division
ring and that the identity map on CK extends to an isomorphism CKΦ → D(K),
where Φ denotes the matrices with entries in CK which become invertible over
D(K). Therefore the only projections of D(K) are 0 and 1, so trK e ∈ Z for all
projections e ∈ D(K).

Let F/K ∈ F(G/K), let [F : K] = f , let {x1, . . . , xf} be a transversal for K
in F , let e ∈ D(F ) be a projection, and let :̂ W (F ) → Mf (W (K)) denote the
monomorphism of Lemma 8.6. In view of the previous paragraph, Corollary 13.11
tells us that trK h ∈ Z for all projections h ∈ Mf (D(K)). Since e ∈W (F ), we may
write e =

∑
εixi where εi ∈ W (K) for all i. Using Lemma 9.3, we deduce that

εi ∈ D(K) for all i, and it is now not difficult to see that ê ∈ Mf (D(K)). Therefore
trK ê ∈ Z by Corollary 13.11, and we conclude from Lemma 8.6 that f trF e ∈ Z.
But f |l and the result follows from Lemma 13.10. �

Proof of Theorem 10.3. Replacing F with F ′, we may assume that F is a direct
product of nonabelian free groups. We now use a transfinite induction argument,
and since this is standard when dealing with elementary amenable groups, we will
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only sketch the details. If Y is a class of groups, then H ∈ LY means that every
finite subset of the group H is contained in a Y-subgroup, and B denotes the
class of finitely generated abelian-by-finite groups. For each ordinal α, define Xα

inductively as follows:

X0 = all finite groups,

Xα = (LXα−1)B if α is a successor ordinal,

Xα =
⋃

β<α

Xβ if α is a limit ordinal.

Then
⋃

α≥0 Xα is the class of elementary amenable groups [34, lemma 3.1(i)]. Let
α be the least ordinal such that G/F ∈ Xα. If α = 0, the result follows from
Lemma 13.12. The use of transfinite induction now means that we have two cases
to consider.
Case (i) The result is true with H in place of G whenever H/F is a finitely
generated subgroup of G/F . Here we use Lemma 13.5.
Case (ii) There exists H � G such that F ⊆ H and G/H is finitely generated
abelian-by-finite, and the result is true with E in place of G whenever E/H is a
finite subgroup of G/H. Here we use Lemma 13.10. �

Proof of Corollary 10.4. By Theorem 10.3, we know that D(G) is semisimple Ar-
tinian so ifD(G) is not simple Artinian, then there is a central idempotent e ∈ D(G)
such that 0 �= e �= 1. Using Proposition 9.5(i), we deduce that e ∈ W (G). Since
geg−1 = e for all g ∈ G, we see that {gxg−1 | g ∈ G} is finite whenever x ∈ G and
ex �= 0, hence e ∈ D(Δ(G)) where Δ(G) denotes the finite conjugate center of G
[47, §5]. But Δ+(G) = 1, hence Δ(G) is torsion free abelian by [47, lemma 5.1(ii)]
and it now follows from Theorem 10.3 that trG e ∈ Z. Therefore e = 0 or 1 by
Kaplansky’s theorem (§8), a contradiction, thus D(G) is simple Artinian and we
may write D(G) = Mm(D) for some m ∈ P and some division ring D.

It remains to prove that m = l. Using Lemma 9.6 and Theorem 10.3, we see
that m ≤ l. Now let F ∈ F(G) and set f = 1

|F |
∑

g∈F g, a projection in CF .
Write 1 = e1 + · · ·+ er + · · ·+ em where the ei are primitive idempotents of D(G),
1 ≤ r ≤ m, and f = e1+ · · ·+er. By Lemma 9.5(i), there are projections fi ∈ D(G)
such that fiD(G) = eiD(G) (1 ≤ i ≤ m), and then application of Lemma 8.5 shows
that trG f1 + · · · + trG fm = 1. Also for each i, there exists a unit ui ∈ D(G) such
that uifiu

−1
i = f1, and by Lemma 8.4 we may assume that ui ∈ W (G) for all

i. Therefore trG fi = trG f1 for all i and we deduce that trG fi = 1/m for all i.
Another application of Lemma 8.5 shows that trG f = trG f1 + · · · + trG fr and we
conclude that 1/|F | = r/m. Therefore |F | divides m for all F ∈ F(G), hence l|m
and we have proven the result in the case n = 1. The case for general n follows
from Lemma 9.1 and Corollary 13.11. �
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