

Vorlesungen aus dem Fachbereich Mathematik der Universitat GH Essen

Heft 21

COHOMOLOGY OF FINITE GROUPS
by

Peter A. Linnell

This volume is the outcome of lectures I gave at the Institute for Experimental Mathematics, Essen in the winter semester 1991/92. It is intended to give an introduction to the cohomology of finite groups. Unfortunately lack of time forced the omission of many important topics; for example spectral sequences and cyclic homology.

I'am very grateful to Reinhard Knörr for numerous valuable comments and sugggestions, and to John Fitzgerald for helping to prepare these notes and correcting some errors. I would also like to thank Gerhard Michler for organizing my visit to Essen, and Miss Ebinger for typing these notes. Finally I would like to thank the Alexander von Humboldt-Stiftung and the Deutsche Forschungsgemeinschaft for financial support.

Cohomology of Finite Groups

CONTENTS

1. Introduction1
Definitions and Notation 1
Mayer-Vietoris sequence 7
Inflation and Restriction Maps 9
Transfer Map 10
Bockstein Map 14
2. KÜNNETH Formula 15
Remarks on Tor 16
Computation of $\mathrm{H}^{\mathrm{n}}(\mathrm{G} \times \mathrm{H}, \mathrm{k})$ 17
Universal Coefficient Theorem 18
3. CUP PRODUCTS 23
Cohomology of the Cyclic Group 26
Cohomology of an Elementary Abelian p-group 29
4. The Evens Norm Map 31
Differential Graded Algebras 32
Mackey Decomposition 44
5. Steenrod Operations 57
6. Further Reading 63

Conventions Throughout, G denotes a finite group, p a prime, k will be $I l$ or a field. All modules will be finitely generated. Usually, mappings are on the right (if on the left they will be bracketed) and modules are right modules.
$\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{P}=\left\{1,22_{2} \ldots\right\}$.

1. Introduction.

1.1. Definitions and Notation A sequence of $k G$-modules
$\mathrm{A}: \ldots . . \longrightarrow \mathrm{A}_{2} \xrightarrow{\partial_{2}} \mathrm{~A}_{1} \xrightarrow{\partial_{1}} \mathrm{~A}_{0} \xrightarrow{\partial_{0}} 0$
is a chain complex when $\partial_{\mathrm{n}+1} \partial_{\mathrm{n}}=0 \forall \mathrm{n} \in \mathbb{\mathbb { N }}$
$\mathrm{B}: 0 \xrightarrow{\delta_{0}} \mathrm{~B}_{0} \xrightarrow{\delta_{1}} \mathrm{~B}_{1} \xrightarrow{\delta_{2}} \mathrm{~B}_{2} \xrightarrow{\text {, }}$
is a cochain complex when $\delta_{n} \delta_{n+1}=0 . \forall \mathrm{n} \in \mathbb{N}$. The ∂_{n} are termed boundary maps, the δ_{n} cobourdary maps. Say A is projective (respectively free) if each A_{i} is projective (respectively free)
The $n^{\text {th }}$ homology group of A is $k e r \partial_{n} / \operatorname{im} \partial_{n+1}$ and is denoted by $H_{n}(A)$.
The $n^{\text {th }}$ cohomology group of B is ker $\delta_{n+1} / \operatorname{im} \delta_{n}$, denoted $H^{n}(B)$.

Let M be a kG -module. A resolution (P, ϵ) of M (as a kG -module) is an exact sequence of $k G$-modules

$$
\begin{equation*}
(P, \epsilon): \ldots \longrightarrow \dot{P}_{2} \xrightarrow{\partial_{2}} \mathrm{P}_{1} \xrightarrow{\partial_{1}} \mathrm{P}_{0} \xrightarrow{\epsilon} \mathrm{M} \longrightarrow 0 . \tag{1}
\end{equation*}
$$

Write P for the chain complex

$$
\begin{equation*}
\ldots \longrightarrow \mathrm{P}_{2} \xrightarrow{\partial_{2}} \mathrm{P}_{1} \xrightarrow{\partial_{1}} \dot{\mathrm{P}}_{0} \longrightarrow 0 \tag{2}
\end{equation*}
$$

(Thus $H_{n}(P)=0$ for $n>0, H_{0}(P)=M$. Also we still write P for (2) even if (1) is only a chain complex.)

If N is a kG -module, write $\mathrm{Hom}_{\mathrm{kG}}(\mathrm{P}, \mathrm{N})$ for the cochain complex (of k -modules)
$\cdot 0 \longrightarrow \operatorname{Hom}_{k G}\left(\mathrm{P}_{0}, \mathrm{~N}\right) \xrightarrow{\partial_{1}^{*}} \operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{P}_{1}, \mathrm{~N}\right) \xrightarrow{\partial_{2}^{*}} \operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{P}_{2}, \mathrm{~N}\right) \longrightarrow \ldots$
where $q\left(\partial_{n}^{*}(f)\right)=\left(q \partial_{n}\right) f, q \in P_{n}, f \in \operatorname{Hom}_{k G}\left(P_{n-1}, N\right)$.

Lemma 1.2 Let M, N be $\mathbf{k G}$-modules and $\theta_{-1}: \mathrm{M} \longrightarrow \mathrm{N}$ be a kG -homomorphism. Let $\left(P, \alpha_{0}\right): \ldots \longrightarrow P_{2} \xrightarrow{\alpha_{2}} P_{1} \xrightarrow{\alpha_{1}} P_{0} \xrightarrow{\alpha_{0}} M \longrightarrow 0$ be a chain complex of kG-modules with P projective, and
$\left(\mathrm{Q}, \beta_{0}\right): \ldots \longrightarrow \mathrm{Q}_{2} \xrightarrow{\beta_{2}} \mathrm{Q}_{1} \xrightarrow{\beta_{1}} \mathrm{Q}_{0} \xrightarrow{\beta_{0}} \mathrm{~N} \longrightarrow 0$ be a resolution of N as a kG-module.
(i) There exist kG-homomorphisms $\theta_{i}: P_{i} \longrightarrow Q_{i}$ such that $\alpha_{i} \theta_{i-1}=\theta_{i} \beta_{i}$ $\forall i \in \mathbb{N} .\left(\right.$ Say $\theta: P \longrightarrow Q$ is a chain map where $\left.\theta=\underset{\mathrm{i} \in \mathbb{N}}{\oplus} \theta_{\mathrm{i}}.\right)$
(ii) If $\varphi_{i}: \mathbf{P}_{i} \longrightarrow \mathbb{Q}_{i}$ are kG -homomorphisms such that $\alpha_{i} \varphi_{\mathrm{i}-1}=\varphi_{\mathrm{i}} \beta_{\mathrm{i}} \quad(\mathrm{i} \in \mathbb{N})$ and $\varphi_{-1}=\theta_{-1}$ then there exist $k G$-homomorphisms $\quad h_{i}: P_{i} \longrightarrow Q_{i+1}$,

$$
\mathrm{h}_{-1}=0 \text {, such that }
$$

$$
\theta_{\mathrm{i}}-\varphi_{\mathrm{i}}=\alpha_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}-1}+\mathrm{h}_{\mathbf{i}} \beta_{\mathrm{i}+1} \quad \forall i \in \mathbb{N}
$$

(Say θ and φ are chain homotopic.)

Lemma 1.2 can be thought of as a generalisation of Schanuel's Lemma. An important application of Lemma 1.2 occurs when (\mathbf{P}, α_{0}) and (Q, β_{0}) are projective resolutions of M. This yields

Lemma 1.3 Let M, N be kG -modules. Let

$$
\begin{aligned}
& \left(P, \alpha_{0}\right): \ldots \longrightarrow P_{2} \xrightarrow{\alpha_{2}} P_{1} \xrightarrow{\alpha_{1}} P_{0} \xrightarrow{\alpha_{0}} \mathrm{M} \longrightarrow 0 \\
& \left(\mathrm{Q}, \beta_{0}\right): \ldots \longrightarrow \mathrm{Q}_{2} \xrightarrow{\beta_{2}} \mathrm{Q}_{1} \xrightarrow{\beta_{1}} \mathrm{Q}_{0} \xrightarrow{\beta_{0}} \mathrm{M} \longrightarrow 0
\end{aligned}
$$

be projective resolutions of M (as a kG -module). Then there exist kG -homomorphisms
$\theta_{\mathrm{i}}: \mathrm{P}_{\mathrm{i}} \longrightarrow \mathrm{Q}_{\mathrm{i}}, \varphi_{\mathrm{i}}: \mathrm{Q}_{\mathrm{i}} \longrightarrow \mathrm{P}_{\mathrm{i}}, \mathrm{i} \in \mathbb{N}$, such that $\theta_{\mathrm{i}} \varphi_{\mathrm{i}}$ and $\varphi_{\mathrm{i}} \theta_{\mathrm{i}}$ induce the identity map on the $i^{\text {th }}$ cohomology group of the cochain complexes $\operatorname{Hom}_{\mathrm{kG}}(\mathrm{P}, \mathrm{N})$ and $\operatorname{Hom}_{\mathrm{k} \boldsymbol{G}}(\mathrm{Q}, \mathrm{N})$ respectively.

Lemma 1.3 allows us to make the following definition.

Definition 1.4 Let M , N be kG -modules. Let

$$
\left(\mathrm{P}_{;}, \alpha_{0}\right):: x \xrightarrow{\longrightarrow} \mathrm{P}_{2} \xrightarrow{\alpha_{2}} \mathrm{P}_{1} \xrightarrow{\alpha_{1}} \mathrm{P}_{0} \xrightarrow{\alpha_{0}} \mathrm{M} \longrightarrow 0
$$

be a projective resolution of M. For $n \in \mathbb{N}$, Ext $\mathrm{kG}_{\mathrm{M}}^{\mathrm{M}}(\mathrm{M} ; \mathrm{N})$ is the $\mathrm{n}^{\text {th }}$ cohomology group of the cochain complex Hom $\mathrm{ke}_{\mathrm{k}}(\mathrm{P}, \mathrm{N})$.

Remarks 1.5 (i) $\operatorname{Ext}_{\mathrm{k} G}^{0}(\mathrm{M}, \mathrm{N}) \cong \operatorname{Hom}_{\mathrm{kG}}(\mathrm{M}, \mathrm{N})$.
(ii) By Lemma 1.3, Ext ${ }_{k \in}^{\prime \prime}(M, N)$ is well defined i.e. it is independent of the choice of projective rêsolution for M.
(ii) Using Lemma 1.2 we see that $E x t_{\mathrm{kG}}^{\mathrm{n}}(\mathrm{M},-)$ is a covariant functor and $\operatorname{Ext}_{\mathrm{kG}}^{\mathrm{i}}(-, N)$ is a contravariant functor i.e. if $\theta: \mathrm{U} \longrightarrow \mathrm{V}$ is a K G -homomorphism, there exist natural homomorphisms

$$
\begin{aligned}
& \theta_{*}: \operatorname{Ext}_{k G}^{\mathrm{n}}(\mathrm{M}, \mathrm{U}) \longrightarrow \mathrm{Ext}_{\mathrm{kG}}^{\mathrm{i}}(\mathrm{M}, \mathrm{~V}) \\
& \text { anid } \quad \theta^{*}: \operatorname{Ext}_{\hat{k} \dot{G}}^{\mathrm{n}}(V, M) \longrightarrow \operatorname{Ext}_{\mathrm{k} G}^{\mathrm{n}}(\mathrm{U}, \mathrm{M}) .
\end{aligned}
$$

(iv) If M is a projective kG -module then (P, α_{0}) in Definition 1.4 is split exact i.e. there exist kG-homomorphisms $\beta_{1}: \mathrm{P}_{\mathrm{i}-1} \longrightarrow \mathrm{P}_{\mathrm{i}}(\mathrm{i} \in \mathbb{P})$ and $\beta_{0}: \mathrm{M} \longrightarrow \mathrm{P}_{0}$ such that: $\beta_{\mathrm{i}} \alpha_{\mathrm{i}}=\mathrm{id}$. It follows that the sequence

$$
0 \longrightarrow \operatorname{Hom}_{\mathrm{kG}}(\mathrm{M}, \mathrm{~N}) \xrightarrow{\alpha_{0}^{*}} \mathrm{Hiom}_{\mathrm{k} G}(\mathrm{P} 0, \mathrm{~N}) \xrightarrow{\alpha_{i}^{*}} \ldots
$$

is also split exact. Hence if M is projective $\operatorname{Ext}_{\mathrm{k} G}^{\mathrm{n}}(\mathrm{M}, \mathrm{N})=0 \quad \forall \mathrm{n} \in \mathbb{P}$.

Exērcise 1.6 Use 1.5 to show

	$\operatorname{Ext}_{\mathbf{k G}}^{\mathrm{n}}(\mathrm{M}, \mathrm{U} \oplus \mathrm{V}) \cong \operatorname{Ext}_{\mathbf{k G}}^{\mathrm{n}}(\mathrm{M}, \mathrm{U}) \oplus \operatorname{Ext}_{\mathbf{k G}}^{\mathrm{n}}(\mathrm{M}, \mathrm{V})$
and \quad	$\operatorname{Ext}_{\mathrm{nc}}^{\mathrm{n}}(\mathrm{U} \oplus \mathrm{V}, \mathrm{M}) \cong \operatorname{Ext}_{\mathrm{kg}}^{\mathrm{n}}(\mathrm{U}, \mathrm{M}) \oplus \operatorname{Ext}_{\mathbf{k G}}^{\mathrm{n}}(\mathrm{V}, \mathrm{M})$

$\mathrm{U}, \mathrm{V}, \mathrm{M}$ kG-modules.

Definition 1.7 Let M, N be $k G$-modules. M^{G} is the k-module $\operatorname{Hom}_{k G}(k, M)$
$\mathrm{M} \otimes_{\mathrm{k}} \mathrm{N}$ is the kG -module with $(\mathrm{m} \otimes \mathrm{n}) \mathrm{g}=\mathrm{mg} \otimes \mathrm{ng}$.
$\operatorname{Hom}_{\mathrm{k}}(\mathrm{M}, \mathrm{N})$ is the $\mathrm{kG}-$ module with $\mathrm{m}(\theta \mathrm{g})=\mathrm{mg}^{-1} \theta \mathrm{~g}\left(\theta \in \operatorname{Hom}_{\mathrm{k}}(\mathrm{M}, \mathrm{N})\right)$.
M^{*} is the kG -module $\operatorname{Hom}_{\mathrm{k}}(\mathrm{M}, \mathrm{k})$.
If $\alpha \in \operatorname{Hom}_{\mathrm{k} G}(\mathrm{M}, \mathrm{N})$, define $\alpha^{*} \in \operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{N}^{*}, \mathrm{M}^{*}\right)$ by $\mathrm{m}\left(\alpha^{*}(v)\right)=(\mathrm{m} \alpha) v, v \in \mathrm{~N}^{*}$.
Say M is a $k G$-lattice when M is free as a k-module.

So $M^{G}=\{m \in M \mid m g=m \forall g \in G\}, \operatorname{Hom}_{k}(M, N)^{G} \cong \operatorname{Hom}_{k G}(M, N)$ and for $\theta \in M^{*}$, $\mathrm{m}(\theta \mathrm{g})=\left(\mathrm{m} \mathrm{g}^{-1}\right) \theta$. Also if H is a group and L is a kH -module then $\mathrm{M} \otimes_{\mathrm{k}} \mathrm{L}$ is the $\mathrm{k}[\mathrm{G} \times \mathrm{H}]$-module with $(\mathrm{m} \otimes l(\mathrm{~g}, \mathrm{~h})=\mathrm{mg} \otimes l \mathrm{~h}$.

Lemma 1.8 Let $\mathrm{L}, \mathrm{M}, \mathrm{N}$ be kG -modules. Then there exist natural kG -isomorphisms
(i) $\quad M^{*} \theta_{k} N \cong \operatorname{Hom}_{k}(M, N)$ if M is a $k G$-lattice
(ii) $\quad \operatorname{Hom}_{k}\left(L \otimes_{k} M, N\right) \cong \operatorname{Hom}_{k}\left(L, \operatorname{Hom}_{k}(M, N)\right)$.
(iii) $\mathrm{M} \cong \mathrm{M}^{* *}$ if M is a kG -lattice.
(iv) $\mathrm{kG} \cong \mathrm{kG}^{*}$.

Proof We give the isomorphisms in each case.
(i) For $f \in M^{*}, m \in M, n \in N$ define $\overline{f \otimes n} \in \operatorname{Hom}_{k}(M, N)$ by $m(\overline{f \otimes n})$ $=n(m f)$. Then $f \otimes n \longmapsto \bar{f} \otimes n$ induces a $k G$-isomorphism from $M^{*} \otimes_{k} N$ onto $\operatorname{Hom}_{k}(\mathrm{M}, \mathrm{N})$.
(ii) For. $\theta \in \operatorname{Hom}_{k}\left(\mathrm{~L} \otimes_{k} \mathrm{M}, \mathrm{N}\right), l \in \mathrm{~L}, \mathrm{~m} \in \mathrm{M}$ define $\bar{\theta} \in \operatorname{Hom}_{\mathrm{k}}\left(\mathrm{L}, \operatorname{Hom}_{\mathrm{k}}(\mathrm{M}, \mathrm{N})\right)$ by $\mathrm{m}(l \bar{\theta})=(l \otimes \mathrm{~m}) \theta$.
For $\varphi \in \operatorname{Hom}_{\mathbf{k}}\left(\mathrm{L}, \operatorname{Hom}_{\mathbf{k}}(\mathrm{M}, \mathrm{N})\right)$ define $\hat{\varphi} \in \operatorname{Hom}_{\mathrm{k}}\left(\mathrm{L} \otimes_{\mathbf{k}} \mathrm{M}, \mathrm{N}\right)$ by $(l \otimes \mathrm{~m}) \hat{\varphi}=$ $\mathrm{m}(l \varphi)$.
Then - and " are kG -homomorphisms, inverse to each other.
(iii) For $\mathrm{m} \in \mathrm{M}$ define $\overline{\mathrm{m}} \in \mathrm{M}^{* *}$ by $\mu \overline{\mathrm{m}}=\mathrm{m} \mu, \mu \in \mathrm{M}^{*}$. Then $\mathrm{m} \longmapsto \overline{\mathrm{m}}$ induces a kG -isomorphism from M onto $\mathrm{M}^{* *}$.
(iv) If $\alpha=\underset{\mathbf{g} \in \mathrm{G}}{\mathbf{\sum}} \alpha_{\mathrm{g}} \mathrm{g} \in \mathrm{kG}, \alpha_{\mathrm{g}} \in \mathrm{k}$, define tr $\alpha=\alpha_{1}$. Now define $\hat{\alpha} \in \mathrm{kG}^{*}$ by $\hat{\mathrm{g} \alpha}=$ $\operatorname{tr} \mathrm{g}^{-1} \alpha, \mathrm{~g} \in \mathrm{G}$. Then $\alpha \longmapsto \hat{\alpha}$ induces a $k G$-isomorphism of kG onto kG^{*}.

Corollary 1.9 Let P be a projective kG -module

(i) \mathbf{P}^{*} is a projective kG -module (not true if G is infinite).
(ii) If $0 \longrightarrow \mathrm{P} \longrightarrow \mathrm{M} \longrightarrow \mathrm{N} \longrightarrow 0$ is an exact sequence of kG -lattices then it splits i.e. P is injective in the category of kG -lattices.
(iii) If $0 \longrightarrow \mathrm{~L} \longrightarrow \mathrm{M} \longrightarrow \mathrm{N} \longrightarrow 0$ is an exact sequence of kG -lattices then $0 \longrightarrow \operatorname{Hom}_{k G}(N, P) \longrightarrow \operatorname{Hom}_{k G}(M, P) \longrightarrow \operatorname{Hom}_{k G}(L, P) \longrightarrow 0$ is exact i.e. $\operatorname{Hom}_{\mathrm{kG}}(-, \mathrm{P})$ is exact on the category of kG -lattices.

Proof (i) Follows from Lemma 1.8 (iv).
(ii) The exact sequence yields an exact sequence of kG-lattices
$0 \longrightarrow \mathrm{~N}^{*} \longrightarrow \mathrm{M}^{*} \longrightarrow \mathrm{P}^{*} \longrightarrow 0$.
This splits by (i). Hence
$0 \longrightarrow \mathrm{P}^{* *} \longrightarrow \mathrm{M}^{* *} \longrightarrow \mathrm{~N}^{* *} \longrightarrow 0$ splits. Now apply Lemma 1.8 (iii).
(iii) Follows from (ii).

Corollary 1.10 Let P be a projective $k G-m o d u l e$ and L be a $k G$-lattice. Then $\operatorname{Ext}_{k G}^{n}(L, P)=0 \quad \forall n \in \mathbb{P}$.

Proof Let $Q: \ldots \longrightarrow Q_{2} \longrightarrow Q_{1} \longrightarrow Q_{0} \longrightarrow L \longrightarrow 0$ be a projective resolution of L. By Corollary 1.9 (iii) $0 \longrightarrow \operatorname{Hom}_{k G}(L, P) \longrightarrow \operatorname{Hom}_{k G}\left(Q_{0}, P\right) \longrightarrow \operatorname{Hom}_{k G}\left(Q_{1}, P\right) \longrightarrow \ldots$ is exact.

Lemma 1.11 Let L be a $k G$-lattice and P a projective $k G$-module. Then $L \otimes_{k} P$ is projective.
Proof Let M be a kG-module. By Lemma 1.8 (ii) and the remarks after Definition 1.7 there is a natural isomorphism

$$
\operatorname{Hom}_{k G}\left(P \otimes_{k} L, M\right) \cong \operatorname{Hom}_{k G}\left(P, \operatorname{Hom}_{k}(L, \dot{M})\right)
$$

Since L is a lattice, $\operatorname{Hom}_{k}(L,-)$ is exact. Since P is a projective $k G$-module $\operatorname{Hom}_{k G}(P,-)$ is exact. It follows that $\operatorname{Hom}_{k G}\left(P \otimes_{k} L,-\right)$ is exact i.e. $P \otimes_{k} L$ is a projective kG-module.

Lemma 1.12. (Mayer-Vietoris sequence) Let $0 \longrightarrow \mathrm{~A} \xrightarrow{\theta} \mathrm{~B} \xrightarrow{\varphi} \mathrm{C} \longrightarrow 0$ be an exact sequence of chain complexes i.e. a commutative diagram with exact rows

Then there exists a long exact sequence (natural)

Sketch Proof $\left(\theta_{\mathrm{n}}\right)_{*}$ and $\left(\varphi_{\mathrm{n}}\right)_{*}$ are induced by θ_{n} and φ_{n} respectively. To define ∂_{n}, suppose $\mathrm{a} \in \mathrm{H}_{\mathrm{n}}(\mathrm{C})=\operatorname{ker} \gamma_{\mathrm{n}} / \operatorname{im} \gamma_{\mathrm{n}+1}$. Choose $\mathrm{b} \in \operatorname{ker} \gamma_{\mathrm{n}} \subseteq \mathrm{C}_{\mathrm{n}}$ representing a, so b $\gamma_{\mathrm{n}}=0$. Choose $\mathrm{c} \in \mathrm{B}_{\mathrm{n}}$ such that $\mathrm{c} \varphi_{\mathrm{n}}=\mathrm{b}\left(\varphi_{\mathrm{n}}\right.$ is onto). Then $\mathrm{c} \beta_{\mathrm{n}} \varphi_{\mathrm{n}-1}=\mathrm{c} \varphi_{\mathrm{n}} \gamma_{\mathrm{n}}$ $=b \gamma_{n}=0$. Therefore $c \beta_{n}=d \theta_{n-1}$ for some $d \in A_{n-1}$. Now check that $a \longmapsto d$ induces a well-defined homomorphism $\hat{\partial}_{n}: H_{n}(C) \longrightarrow H_{n-1}(A)$ and that the resulting sequence is exact.

Mayer-Vietoris sequence for cochain complexes.

Let $\mathrm{O} \longrightarrow \mathrm{A} \longrightarrow \mathrm{B} \longrightarrow \mathrm{C} \longrightarrow 0$ be an exact sequence of cochain complexes i.e. a commutative diagram with exact rows

Then there exists a long exact sequence (natural)

$$
0 \longrightarrow H^{0}(\mathrm{~A}) \xrightarrow{\left(\theta_{0}\right)_{*}} \mathrm{H}^{0}(\mathrm{~B}) \xrightarrow{\left(\varphi_{0}\right)_{*}} \mathrm{H}^{0}(\mathrm{C}) \xrightarrow{\partial_{1}} \mathrm{H}^{\mathrm{t}}(\mathrm{~A}) \xrightarrow{\left(\theta_{1}\right)_{*}} \mathrm{H}^{1}(\mathrm{~B}) \longrightarrow
$$

Corollary 1.13 Let $0 \longrightarrow \mathrm{~L} \longrightarrow \mathrm{M} \longrightarrow \mathrm{N} \longrightarrow 0$ be an exact sequence of kG -modules. Let \mathbf{U} be a kG -module. Then there exist (natural) exact sequences
(i) $\quad 0 \longrightarrow \operatorname{Ext}_{\mathrm{kG}}^{0}(\mathrm{U}, \mathrm{L}) \longrightarrow \operatorname{Ext}_{\mathrm{kG}}(\mathrm{U}, \mathrm{M}) \longrightarrow \operatorname{Ext}_{\mathbf{k G}}(\mathrm{U}, \mathrm{N}) \longrightarrow \operatorname{Ext}_{\mathrm{kG}}^{1}(\mathrm{U}, \mathrm{L}) \longrightarrow \ldots$
(ii) $\quad 0 \longrightarrow \operatorname{Ext}_{\mathbf{k G}}^{0}(\mathrm{~N}, \mathrm{U}) \longrightarrow \operatorname{Ext}_{\mathbf{k} G}^{0}(\mathrm{M}, \mathrm{U}) \longrightarrow \operatorname{Ext}_{\mathbf{k} G}^{0}(\mathrm{I}, \mathrm{U}) \longrightarrow \operatorname{Ext}_{\mathbf{k} G}^{1}(\mathrm{~N}, \mathrm{U}) \longrightarrow \ldots$

$$
\ldots \longrightarrow \operatorname{Ext}_{\mathrm{kG}}^{\mathrm{n}}(\mathrm{~N}, \mathrm{U}) \longrightarrow \operatorname{Ext}_{\mathrm{kG}_{G}}^{\mathrm{n}}(\mathrm{M}, \mathrm{U}) \longrightarrow \operatorname{Ext}_{\mathrm{kG}}^{\mathrm{n}}(\mathrm{~L}, \mathrm{U}) \longrightarrow \ldots
$$

Proof (i) Let (P, ϵ) be a projective resolution of U. Then we have an exact sequence of cochain complexes $0 \longrightarrow \operatorname{Hom}_{k G}(P, L) \xrightarrow{\longrightarrow} \operatorname{Hom}_{k G}(P, M) \longrightarrow \operatorname{Hom}_{k G}(P, N) \longrightarrow 0$.
Now apply Lemma 1.12.
(ii) Let $(\mathrm{P}, \epsilon),(\mathrm{R}, v)$ be projective resolutions for L, N respectively. By the Horseshoe Lemma there is a projective resolution (Q, μ) of M and a commutative diagram with exact rows and columns

Since $0 \longrightarrow P_{n} \longrightarrow Q_{n} \longrightarrow R_{n} \longrightarrow 0$ is split exact for all $n \in \mathbb{N}$ it follows that $0 \longrightarrow \operatorname{Hom}_{k G}(\mathrm{R}, \mathrm{U}) \longrightarrow \mathrm{Hom}_{\mathrm{kG}}(\mathrm{Q}, \mathrm{U}) \longrightarrow \operatorname{Hom}_{\mathrm{kG}}(\mathrm{P}, \mathrm{U}) \longrightarrow 0$ is an exact sequence of cochain complexes. Now apply Lemma 1.12.

Inflation and Restriction maps

Let $\alpha: H \longrightarrow G$ be a homomorphism of groups and let M, N be $k G$-modules. Then M, N are also kH -modules by defining $\mathrm{mh}=\mathrm{m}(\mathrm{h} \alpha)$ for $\mathrm{m} \in \mathrm{M}$ or N and $\mathrm{h} \in \mathrm{H}$. Let (P, ϵ) be a projective resolution of M with kH -modules. Let (Q, v) be a projective resolution of M with kG -modules. Viewing (Q, v) as a resolution with $\mathrm{kH}-\mathrm{mo}$ dules (now not necessarily projective), Lemma 1.2 (i) shows that there exists a kH -chain $\operatorname{map} \theta: P \longrightarrow Q$ extending the identity map on M . This gives a chain map

$$
\theta^{*}: \operatorname{Hom}_{\mathrm{kG}}(\mathrm{Q}, \mathrm{~N}) \longrightarrow \operatorname{Hom}_{\mathrm{kH}}(\mathrm{P}, \mathrm{~N})
$$

defined by $\theta^{*}(\mathrm{f})=\theta$ f for $\mathrm{f} \in \operatorname{Hom}_{\mathrm{k} G}(\mathrm{Q}, \mathrm{N})$.
This induces a natural homomorphism of k -modules

$$
\alpha_{\mathrm{n}}^{*}: \operatorname{Ext}_{\mathrm{k} \in}^{\mathrm{n}}(\mathrm{M}, \mathrm{~N}) \longrightarrow \operatorname{Ext}_{\mathrm{kH}}^{\mathrm{n}}(\mathrm{M}, \mathrm{~N}) \quad \forall \mathrm{n} \in \mathbb{N} .
$$

By Lemma 1.2 (ii), α_{n}^{*} does not depend on 0 .

Special Cases (i) α is inclusion i.e. $H \leq G$. Then α^{*} is the restriction map from G to H, denoted res ${ }_{G, H}$
(ii) α is an epimorphism. Then α^{*} is the inflation map from G to H, denoted $\inf _{G, H}$.

Transfer map Let $H \leq G$, let M, N be $k G-m o d u l e s$ and let (P, ϵ) be a projective resolution of M. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a right transversal for H in G, so $G=H x_{1} \cup$ $\mathrm{Hx}_{2} \cup \ldots \cup \mathrm{Hx}_{\mathrm{n}}$. We have a natural map of cochain complexes $\operatorname{Hom}_{\mathrm{kH}}(\mathrm{P}, \mathrm{N}) \longrightarrow$ $\operatorname{Hom}_{k G}(P, N)$ defined by $\theta \longmapsto \sum_{i=1}^{n} x_{i}^{-1} \theta x_{i}$, which is independent of the choice of transversal. This induces a natural homomorphism of k-modules

$$
\operatorname{Ext}_{\mathrm{kH}}^{\mathrm{n}}(\mathrm{M}, \mathrm{~N}) \xrightarrow{\longrightarrow} \operatorname{Ext}_{\mathrm{kG}}^{\mathrm{n}}(\mathrm{M}, \mathrm{~N})
$$

denoted $\mathrm{tr}_{H \mathrm{G}}$, the transfer map from H to G .

Lemma 1.14 Let $H \leq G$, let $\ell=[G: H]$, let M, N be $k G$-modules, let $n \in \mathbb{N}$ and let $\alpha \in \operatorname{Ext}_{\mathrm{kG}}^{\mathrm{n}}(\mathrm{M}, \mathrm{N})$. Then $\operatorname{tr}_{\mathrm{H}, \mathrm{G}}\left(\mathrm{res}_{\mathrm{H}, \mathrm{G}} \alpha\right)=\ell \alpha$.

Proof Let (P, ϵ) be a projective resolution of M and let $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\ell}\right\}$ be a right transversal for H in G. If α is represented by $\theta \in \operatorname{Hom}_{k G}\left(P_{n}, N\right)$ then $\operatorname{tr}_{H, G}$ res $_{G, H}$ is induced by

$$
\begin{gathered}
\operatorname{Hom}_{\mathrm{kg}}\left(\mathrm{P}_{\mathrm{n}^{\prime}} \mathrm{N}\right) \longrightarrow \operatorname{Hom}_{\mathrm{kH}}\left(\mathrm{P}_{\mathrm{n}^{\prime}} \mathrm{N}\right) \longrightarrow \operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{~N}\right) \\
\theta \longmapsto \theta \longmapsto \sum_{\mathrm{i}=1}^{\ell} \mathrm{x}_{\mathrm{i}}^{-1} \theta \mathrm{x}_{\mathrm{i}}=\ell \theta
\end{gathered}
$$

since θ commutes with the x_{i} 's .

Corollary 1.15 Suppose k is \mathbb{Z} or a finite field, M is a $k G-l a t t i c e ~ a n d ~ N ~ i s ~ a ~$ kG -module. Then $\mathrm{Ext}_{\mathrm{kG}}^{\mathrm{n}}(\mathrm{M}, \mathrm{N})$ is a finite group with exponent dividing $|\mathrm{G}|$ for all $\boldsymbol{n} \in \mathbb{P}$.

Proof Since $\operatorname{Ext}_{\mathbf{k} 1}^{\mathrm{n}}(\mathrm{M}, \mathrm{N})=0$ for all $\mathrm{n} \in \mathbb{P}$, Lemma 1.14 shows that $|\mathrm{G}| \operatorname{Ext}_{\mathrm{kG}}^{\mathrm{n}}(\mathrm{M}, \mathrm{N})=0$. Also it is clear from the definition of Ext in terms of resolutions that $\operatorname{Ext}_{\mathrm{kG}}^{\mathrm{n}}(\mathrm{M}, \mathrm{N})$ is finitely generated as a k -module. The result follows.

Exercise Suppose k is \mathbb{Z} or a finite field and M, N are $k G$-modules. Show that $\operatorname{Ext}_{k G}^{\mathrm{n}}(\mathrm{M}, \mathrm{N})$ is a finite group for all $\mathrm{n} \in \mathbb{P}$ and that its exponent divides $|\mathrm{G}|$ for all $\mathrm{n} \geq 2$.

Lemma 1.16 Let $H \leq G$, let M be a $k H$-module and let N be a $k G$-module. Then there exist natural isomorphisms
(i) $\quad \operatorname{Hom}_{\mathrm{kfI}}(\mathrm{N}, \mathrm{M}) \cong \operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{N}, \mathrm{M} \otimes_{\mathrm{kH}} \mathrm{kG}\right)$
(ii) $\quad \operatorname{Hom}_{\mathrm{kH}}(\mathrm{M}, \mathrm{N}) \cong \operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{M} \stackrel{\rightharpoonup}{k H}^{\mathrm{kG}} \mathrm{K}, \mathrm{N}\right)$.

Lemma 1.17 Let $\mathrm{H} \leq \mathrm{G}$, let M be a $\mathrm{kH}-$ module, let N be a kG -module and let $\mathrm{n} \in \mathbb{N}$. Then there exist natural isomorphisms
(i) $\operatorname{Ext}_{k{ }_{k H}^{n}}^{\mathrm{n}}(\mathrm{N}, \mathrm{M}) \cong \operatorname{Ext}_{\mathrm{kG}}^{\mathrm{n}}\left(\mathrm{N}, \mathrm{M} \otimes_{\mathrm{kH}} \mathrm{kG}\right)$
(ii) $\operatorname{Ext}_{\mathrm{kH}}^{\mathrm{n}}(\mathrm{M}, \mathrm{N}) \cong \operatorname{Ext}_{\mathrm{k} G}^{\mathrm{n}}\left(\mathrm{M} \otimes_{\mathrm{k} \cdot \mathrm{H}} \mathrm{kG}, \mathrm{N}\right)$.

Proof (i) Let (P, ϵ) be a projective resolution of N as a kG-module. Then

$$
\begin{aligned}
\operatorname{Ext}_{\mathrm{kG}}^{\mathrm{n}}\left(\mathrm{~N}, \mathrm{M} \otimes_{\mathrm{kH}} \mathrm{kG}\right) & =\mathrm{H}^{\mathrm{n}}\left(\operatorname{Hom}_{\mathbf{k G}}\left(\mathrm{P}, \mathrm{M} \otimes_{\mathbf{k H}} \mathrm{kG}\right)\right) \\
& \cong \mathrm{H}^{\mathrm{n}}\left(\operatorname{Hom}_{\mathrm{kH}}(\mathrm{P}, \mathrm{M})\right) \text { by Lemma } 1.16(\mathrm{i}) \\
& =\operatorname{Ext}_{\mathrm{kh}}^{\mathrm{n}}(\mathrm{~N}, \mathrm{M}) .
\end{aligned}
$$

(ii) Exercise (similar to (i)).

Lemma 1.18 Let K be a field containing k, let M, N be $k G$-modules and let $n \in \mathbb{N}$. Then

$$
\operatorname{Ext}_{k G}^{n}(M, N) \otimes_{k} K \cong \operatorname{Ext}_{k G}^{n}\left(M \otimes_{k} K, N \otimes_{k} K\right)
$$

Proof Let (P, ϵ) be a projective resolution of M . The result follows from the natural isomorphism

$$
\operatorname{Hom}_{k G}(P, N) \otimes_{k} K \longrightarrow \operatorname{Hom}_{k G}\left(P \otimes_{k} K, N \otimes_{k} K\right)
$$

defined by sending $\theta \otimes u\left(\theta \in \operatorname{Hom}_{k G}(P, N), u \in K\right)$ to the map $q \otimes v \underset{\sim}{\partial} q \theta \otimes v u$ $(q \in P, v \in K)$.

Definition Let M be a $l \mathbb{G}$-module and $\mathrm{n} \in \mathbb{N}$. Then

$$
\mathbf{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{M}):=\operatorname{Ext}_{\mathbb{U} G}^{\mathrm{n}}(\mathbb{Z}, \mathrm{M})
$$

Remarks 1.19 (i) $H^{0}(G, M)=M^{G}$.
(ii) $H^{n}(G, M)$ is a finite group with exponent dividing the order of $G \forall n \in \mathbb{P}$ (use Corollary 1.15).
(iii) If K is a field containing k then $H^{n}\left(G, M \otimes_{k} K\right) \stackrel{N}{\underline{n}} H^{n}(G, M) \otimes_{k} K \quad \forall n \in \mathbb{N}$ (use Lemma 1.18).
(iv) If M is a $k G$-module then M is also a $\not Z G$-module (at least if we drop the requirement that all modules are finitely generated) and we have $H^{n}(G, M) \cong$ $\operatorname{Ext}_{\mathbf{k G}}^{\mathrm{n}}(\mathrm{k}, \mathrm{M}) \quad \forall \mathrm{n} \in \mathbb{N}$ (exercise).
(v) Let M be a $k G$-lattice, let N be a $k G-m o d u l e$ and let $n \in \mathbb{N}$. Then there is a natural isomorphism

$$
\operatorname{Ext}_{k G}^{\mathrm{n}}(M, N) \cong H^{\mathrm{n}}\left(G, M_{k}^{*} \otimes_{k} N\right)
$$

$$
-13-
$$

To prove this, use $\operatorname{Hom}_{k G}\left(P \otimes_{k} M, N\right) \cong \operatorname{Hom}_{k G}\left(P, M^{*} \otimes_{k} N\right)$ which follows from Lemma 1.8 (ii), and Lemma 1.11 which tells us that P projective implies $P \otimes_{k} M$ is projective.

Proposition 1.20 Let M be a $\nexists \mathrm{G}$-module with trivial G -action i.e. $\mathrm{M}=\mathrm{M}^{\mathrm{G}}$. Then $\mathrm{H}^{1}(\mathrm{G}, \mathrm{M}) \cong \operatorname{Hom}(\mathrm{G}, \mathrm{M})$ naturally.

Remarks $\operatorname{Hom}(G, M)=\operatorname{Hom}\left(G / G^{\prime}, M\right)$. Thus
$\mathrm{H}^{1}(\mathrm{G}, \mathbb{I} / \mathrm{p} \mathbb{I})=\mathrm{G} / \mathrm{G}^{\prime} \mathrm{G}^{\mathrm{P}}, \mathrm{H}^{1}(\mathrm{G}, \mathbb{I})=0$.
If $G=G^{\prime}, H^{1}(G, M)=0$ (if $M=M^{G}$).

Proof Let g be the augmentation ideal of $\Pi \mathbb{G}$, the ideal with \mathbb{I}-basis

$$
\{g-1 \mid 1 \neq \mathrm{g} \in \mathrm{G}\}
$$

Then we have an exact sequence $0 \longrightarrow g \longrightarrow \mathbb{Z G} \longrightarrow \mathbb{Z} \longrightarrow 0$
hence by Corollary 1.13 (ii) an exact sequence
$0 \longrightarrow \operatorname{Ext}_{\ddot{Z} G^{0}}^{(I, M)} \longrightarrow \operatorname{Ext}_{\ddot{Z} G}^{0}(\mathbb{I} G, M) \longrightarrow \operatorname{Ext}_{\mathbb{Z} G}^{0}(\mathfrak{g}, M) \longrightarrow \operatorname{Ext}_{\mathbb{Z} G}^{1}(\mathbb{I}, M) \longrightarrow$

$$
\operatorname{Ext}_{\mathbb{Z} G}^{\frac{1}{G}}(\mathbb{Z} G, M)
$$

Therefore we have an exact sequence

$$
\operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z G}, \mathrm{M}) \xrightarrow{\theta} \operatorname{Hom}_{\mathbb{Z} G}(g, M) \longrightarrow \mathrm{H}^{1}(\mathrm{G}, \mathrm{M}) \longrightarrow 0
$$

Note that $\operatorname{im} \theta=0$ (because $M \mathscr{Z}=0$). The result follows because $G / G^{\prime} \cong \mathfrak{g} / g^{2}$ (as II-modules) via $\mathrm{G}^{\prime} \mathrm{g} \longmapsto \mathrm{g}^{2}+\mathrm{g}-1$.

Lemma 1.21 Let A be a chain complex of k-modules and L be a k-lattice. Then

$$
H_{n}\left(A \otimes_{k} L\right) \cong H_{n}(A) \otimes_{k} L
$$

Proof Exercise. If α_{n} are the boundary maps of A then $A \otimes_{k} L$ denotes the chain complex $\left(A \otimes_{k} L\right)_{n}=A_{n} \otimes_{k} L$ with boundary maps $\alpha_{n} \otimes 1$.

Bockstein map Let $k=\mathbb{I} / \mathrm{p} \mathbb{I}$. We have a short exact sequence

$$
0 \longrightarrow \mathrm{k} \xrightarrow{\theta} \mathbb{H} / \mathrm{p}^{2} \mathbb{I} \xrightarrow{\varphi} \mathrm{k} \longrightarrow 0
$$

Therefore by Corollary 1.13 (i) there is a long exact sequence
$\ldots \longrightarrow H^{\mathrm{n}}(\mathrm{G}, \mathrm{k}) \xrightarrow{\theta_{\mathrm{n}}} \mathrm{H}^{\mathrm{n}}\left(\mathrm{G}, \mathbb{I} / \mathrm{p}^{2}\right.$ II) $\xrightarrow{\varphi_{\mathrm{n}}} \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{k}) \xrightarrow{\rho_{\mathrm{n}}} \mathrm{H}^{\mathrm{n}+1}(\mathrm{G}, \mathrm{k}) \longrightarrow \ldots$
β_{n} is the Bockstein map.
Use Remark 1.19 (iii) to define $\beta_{\mathbf{n}}$ for an arbitrary field of characteristic p.
1.22 Description of β_{n} Let

$$
\ldots \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \ldots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow I I \longrightarrow 0
$$

be a projective resolution of \mathbb{I}. Let $u \in \Pi^{n}(G, k)$. Then u is represented by $f \in \operatorname{Hom}_{\mathbb{Z} G}\left(P_{n}, k\right)$ Lift f to $\hat{f} \in \operatorname{Hom}_{\mathbb{Z} G}\left(\mathrm{P}_{\mathrm{n}}, \mathbb{I} / \mathrm{p}^{2} \mathbb{I}\right)$. Then
$\partial_{\mathrm{n}+1} \hat{\mathrm{f}}: \mathrm{P}_{\mathrm{n}+1} \longrightarrow \mathbb{I} / \mathrm{p}^{2} \mathbb{I}$ has image contained in $\mathrm{p} \mathbb{I} / \mathrm{p}^{2} \mathbb{I}=\mathrm{k}$ (because $\partial_{\mathrm{n}+1} \mathrm{f}=0$).
Then $\partial_{n+1} \hat{\mathrm{f}} \in \operatorname{Hom}_{\mathbb{Z} G}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{k}\right)$ represents $\beta_{\mathrm{n}}(\mathrm{u})$.

Lemma 1.23 (i) $\beta_{n+1} \beta_{n}=0$ (because $\partial_{n+2} \partial_{n+1}=0$).
(ii) $\beta_{0}=0$ (exercise).
2. Künneth Formula This will be especially important when cup products are introduced.

Definition Let

$$
\begin{aligned}
& \mathrm{A}: \ldots \longrightarrow \mathrm{A}_{2} \xrightarrow{\alpha_{2}} \mathrm{~A}_{1} \xrightarrow{\alpha_{1}} \mathrm{~A}_{0} \xrightarrow{\alpha_{0}} 0 \\
& \mathrm{~B}: \ldots \longrightarrow \mathrm{B}_{2} \xrightarrow{\beta_{2}} \mathrm{~B}_{1} \xrightarrow{\beta_{1}} \mathrm{~B}_{0} \xrightarrow{\beta_{0}} 0
\end{aligned}
$$

be chain complexes of $k G$-modules. Then $A \otimes_{k} B$ is the chain complex of $k G$-modules with

$$
\left(A \otimes_{k} B\right)_{n}=\underset{r+s=n}{\oplus} A_{r} \otimes_{k} B_{s}
$$

and boundary map ∂_{n} defined by

$$
(a \otimes b) \partial_{n}=a \alpha_{r} \otimes b+(-1)^{T} a \otimes b \beta_{s} \text { for } a \in A_{r}, b \in B_{s}
$$

The $(-1)^{\text {r }}$ ensures $\partial_{\mathrm{n}+1} \partial_{\mathrm{n}}=0$.
Similarly if H is a group, A is a chain complex of $k G$-modules and B is a chain complex of $\mathbf{k H}$-modules then $\mathrm{A} \otimes_{\mathbf{k}} \mathrm{B}$ is a chain complex of $\mathrm{k}[\mathrm{G} \times \mathrm{H}]$-modules.
Similarly if
$A: 0 \longrightarrow A_{0} \xrightarrow{\alpha_{1}} A_{1} \xrightarrow{\alpha_{2}} A_{2} \longrightarrow \ldots$
and

$$
\mathrm{B}: 0 \longrightarrow \mathrm{~B}_{0} \xrightarrow{\beta_{1}} \mathrm{~B}_{1} \xrightarrow{\beta_{2}} \mathrm{~B}_{2} \longrightarrow \ldots
$$

are cochain complexes then $A \otimes_{k} B$ is a cochain complex with
$(a \otimes b) \delta_{n}=a \alpha_{r+1} \otimes b+(-1)^{r} a \otimes b \beta_{s+1}$ for $a \in A_{r}, b \in B_{s}$

Theorem 2.1 (Künneth Formula) Let A be a chain complex of k-lattices, let B be a complex of k-modules and let $n \in \mathbb{N}$. Define

$$
\pi: \underset{r+s=n}{\oplus} H_{r}(A) \otimes_{k} H_{s}(B) \longrightarrow H_{n}\left(A \otimes_{k} B\right)
$$

as follows. If $u \in H_{r}(A)$ and $v \in H_{s}(B)$ are represented by $a \in A_{r}$ and $b \in B_{s}$ respectively then $(u \otimes v) \pi$ is represented by $a \otimes b \in\left(A \otimes_{k} B\right)_{n}$. Then there is a natural short exact sequence of \mathbf{k}-modules

$$
0 \longrightarrow \underset{r+s=n}{\oplus} H_{r}(A) \otimes_{k} H_{s}(B) \xrightarrow{\pi} H_{n}\left(A \otimes_{k} B\right) \longrightarrow \underset{r+s=n-1}{\oplus} \operatorname{Tor}_{1}^{k}\left(H_{r}(A), H_{s}(B)\right) \longrightarrow 0
$$

which splits, but not naturally.
2.2 Remarks on Tor Let R be a ring, let $0 \longrightarrow L \longrightarrow F \longrightarrow M \longrightarrow 0$ be an exact sequence of R-modules where F is a free R-module, and let N be an R-module.
(i) There is an exact sequence
$0 \longrightarrow \operatorname{Tor}_{1}^{R}(M, N) \longrightarrow \mathrm{L} \otimes_{R} N \longrightarrow \mathrm{~F} \otimes_{R} \mathrm{~N} \longrightarrow \mathrm{M} \otimes_{R} \mathrm{~N} \longrightarrow 0$.
(ii) $\quad \operatorname{Tor}_{1}^{R}(M, N) \cong \operatorname{Tor}_{1}^{R}(N, M)$.
(iii) $\operatorname{Tor}_{1}^{\mathrm{R}}(\mathrm{M}, \mathrm{P})=0$ if P is projective.
(iv) $\quad \operatorname{Tor}_{1}^{\mathrm{R}}\left(\mathbb{I} / \mathrm{p}^{\mathrm{r}} I \mathbb{I}, \Pi / \mathrm{p}^{\mathrm{s}} \pi\right) \cong \pi / \mathrm{p}^{\min (\mathrm{r}, \mathrm{s})} \mathbb{I}$. Thus for Π-modules A, B with $|\mathrm{A}|,|\mathrm{B}|<\infty$, $\operatorname{Tor}_{1}^{I I}(A, B) \cong A \otimes B$ and also $\operatorname{Ext}_{\underset{Z}{1}}^{1}(A, B) \cong A \otimes B$.
(v) A homomorphism $\mathrm{M} \longrightarrow \mathrm{N}$ induces homomorphisms $\operatorname{Tor}_{1}^{R}(L, M) \longrightarrow \operatorname{Tor}_{1}^{R}(L, N)$ and $\operatorname{Tor}_{1}^{R}(M, L) \longrightarrow \operatorname{Tor}_{1}^{R}(N, L)$.
2.3 Remarks on Theorem 2.1 (i) If k is a field, then

$$
H_{n}\left(A \otimes_{k} B\right) \stackrel{N}{\cong} \underset{r+s=n}{\oplus} H_{r}(A) \otimes_{k} H_{s}(B)
$$

(ii)Let M and N be $k G$-modules with projective resolutions (P, ϵ) and (Q, v) respectively. Then $\left(\mathrm{P} \otimes_{k} \mathrm{Q}, \epsilon \otimes v\right)$ is a projective resolution of the kG -module $\mathrm{M} \otimes_{k} N$. (That $\mathrm{P} \otimes_{k} \mathrm{Q}$ is projective follows from Lemma 1.11; that $P \otimes_{k} Q$ is a resolution follows from the Künneth formula). This result is used in the construction of cup products.
(iii) Consider the special case $B_{r}=0$ for all $r>0$. Write $M=B_{0}$ and let $n \in \mathbb{N}$. Then we have a natural exact sequence which splits (but not naturally)

$$
0 \longrightarrow H_{n}(A) \otimes_{k} M \longrightarrow H_{n}\left(A \otimes_{k} M\right) \longrightarrow \operatorname{Tor}_{1}^{k}\left(H_{n-1}(A), M\right) \longrightarrow 0
$$

(Remember that M can be arbitrary, but A needs to be a chain complex of k-lattices.) This is often referred to as the "Universal Coefficient Theorem".
(iv) Künneth Formula for cochain complexes Let A be a cochain complex of k -lattices, let

$$
-17-
$$

B be a cochain complex of k-modules and let $n \in \mathbb{N}$. Then there is a natural short exact sequence of k-modules which splits (but not naturally)
$0 \longrightarrow \underset{r+s=n}{\oplus} H^{r}(A) \otimes_{k} H^{s}(B) \longrightarrow H^{n}\left(A \otimes_{k} B\right) \longrightarrow \underset{r+s=n+1}{\oplus} \operatorname{Tor}_{1}^{k}\left(H^{r}(A), H^{s}(B)\right) \longrightarrow 0$.
2.4 Computation of $H^{n}(G \times H, k)$ Let H be a group and let (P, ϵ) and (Q, v) be projective resolutions of k with $k G$ and $k H$-modules respectively. Then ($P \otimes_{k} Q, \epsilon \otimes v$) is a projective resolution of $k \otimes_{k} k$ with $k[G \times H]$-modules by the Künneth formula and $k \otimes_{k} k$ is naturally isomorphic to k via the map $k_{1} \otimes \mathbf{k}_{2} \xrightarrow{\mu} \mathbf{k}_{1} \mathrm{k}_{2}$. Let $\pi=(\epsilon \otimes v) \mu$ so that $\left(P \otimes{ }_{k} Q\right.$, $\pi)$ is a projective resolution of k with $k[G \times H]$-modules. Since $\operatorname{Hom}_{k G}(P, k)$ is a cochain complex of kG -lattíces the Künneth formula yields a natural exact sequence of k -modules which splits
$0 \longrightarrow \underset{\mathrm{r}+\mathrm{s}=\mathrm{n}}{\oplus} \mathrm{H}^{\mathrm{r}}\left(\operatorname{Hom}_{\mathrm{kG}}(\mathrm{P}, \mathrm{k})\right) \otimes_{\mathrm{k}} \mathrm{H}^{\mathrm{s}}\left(\operatorname{Hom}_{\mathrm{kH}}(\mathrm{Q}, \mathrm{k})\right) \longrightarrow$

$$
\begin{gathered}
\quad \mathrm{H}^{\mathrm{n}}\left(\operatorname{Hom}_{\mathrm{kG}}(\mathrm{P}, \mathrm{k}) \otimes_{\mathrm{k}} \operatorname{Hom}_{\mathrm{kH}}(\mathrm{Q}, \mathrm{k})\right) \longrightarrow \\
\underset{\mathrm{r}+\mathrm{s}=\mathrm{n}+1}{\oplus} \operatorname{Tor}_{1}^{\mathrm{k}}\left(\mathrm{H}^{\mathrm{r}}\left(\operatorname{Hom}_{\mathrm{kG}}(\mathrm{P}, \mathrm{k})\right), \mathrm{H}^{\mathrm{s}}\left(\operatorname{Hom}_{\mathrm{kH}}(\mathrm{Q}, \mathrm{k})\right)\right) \longrightarrow 0
\end{gathered}
$$

Now we have a natural isomorphism of cochain complexes

$$
\theta: \because \operatorname{Hom}_{k G}(P, k) \otimes_{k} \operatorname{Hom}_{k r u}(Q, k) \longrightarrow \operatorname{Hom}_{k[G \times H]}\left(P \otimes_{k} Q, k\right)
$$

defined by sending $f \otimes g$ to the map $u \otimes v \longmapsto u f v g\left(f \in \operatorname{Hom}_{k G}\left(P_{r}, k\right), g \in \operatorname{Hom}_{k H}\left(Q_{s}, k\right)\right.$, $\left.u \in \mathbf{P}_{\mathbf{r}}, v \in Q_{s}\right)$. No sign is needed here even though it is in the definition of the tensor product of complexes.
Now $H^{r}\left(\operatorname{Hom}_{k G}(P, k)\right)=H^{r}(G, k)$ etc, hence the above exact sequence yields a natural exact sequence of k-modules which splits

$$
0 \rightarrow \underset{\mathrm{r}+\mathrm{s}=\mathrm{n}}{\oplus} \mathrm{H}^{\mathrm{r}}(\mathrm{G}, \mathrm{k}) \otimes_{\mathrm{k}} \mathrm{H}^{\mathrm{s}}(\mathrm{H}, \mathrm{k}) \rightarrow \mathrm{H}^{\mathrm{n}}(\mathrm{G} \times \mathrm{H}, \mathrm{k}) \rightarrow \underset{\mathrm{r}+\mathrm{s}=\mathrm{n}+1}{\oplus} \operatorname{Tor}_{1}^{\mathrm{k}}\left(\mathrm{H}^{\mathrm{r}}(\mathrm{G}, \mathrm{k}), \mathrm{H}^{\mathrm{s}}(\mathrm{H}, \mathrm{k})\right) \rightarrow 0
$$

Thus once $H^{n}(G, k)$ has been calculated for G cyclic it can be calculated when G is any abe-
lian group. If k is a field then $H^{n}(G \times H, k) \underset{r+s=n}{\cong} H^{r}(G, k) \otimes_{k} H^{s}(H, k)$.
Later we will show that if $n \in \mathbb{P}$ and $G=\mathbb{Z} / n \mathbb{Z}$ then $H_{0}(G, \mathbb{Z})=\mathbb{Z}, H^{r}(G, \mathbb{Z})=0$ if x is odd and $H^{r}(G, \mathbb{I})=\mathbb{Z} / n \mathbb{I}$ if r is even and $\neq 0$.
Example: $H^{4}\left(\mathbb{I}_{6} \times \mathbb{Z}_{3}, \mathbb{Z}\right)$. We have a split exact sequence

$$
0 \rightarrow \underset{\mathrm{r}+\mathrm{s}=4}{\oplus} \mathrm{H}^{\mathrm{r}}\left(\mathbb{Z}_{6}, \mathbb{I}\right) \otimes \mathrm{H}^{\mathrm{s}}\left(\mathbb{Z}_{3}, \mathbb{Z}\right) \rightarrow \mathrm{H}^{4}\left(\mathbb{Z}_{6} \times \mathbb{Z}_{3}, \mathbb{Z}\right) \rightarrow \underset{\mathrm{r}+\mathrm{s}=5}{\oplus} \operatorname{Tor}_{1} \mathbb{Z}_{1}\left(\mathrm{H}^{\mathrm{r}}\left(\mathbb{Z}_{6}, \mathbb{Z}\right), \mathrm{H}^{\mathrm{s}}\left(\mathbb{Z}_{3}, \mathbb{Z}\right)\right) \longrightarrow 0
$$

Therefore $H^{4}\left(\mathbb{Z}_{6} \times \mathbb{Z}_{3}, \mathbb{Z}\right) \cong \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{I}_{6}$.

Exercise $H^{4}\left(\mathbb{Z}_{6} \times \mathbb{I}_{3} \times \mathbb{I}_{3}, \mathbb{Z}\right) \cong \mathbb{Z}_{3}^{6} \oplus \mathbb{Z}_{B}$.
2.5 Universal Coefficient Theorem Here we relate $H^{11}(G, \mathbb{Z})$ and $H^{n}(G, k)$. Let ($P ; \epsilon$) be a projective resolution of \mathbb{l} with $\mathbb{l} \mathrm{G}$-modules. Then we have a split exact sequence
$0 \rightarrow \mathrm{H}^{\mathrm{n}}\left(\operatorname{Hom}_{\mathbb{Z} G}(\mathrm{P}, \mathbb{Z})\right) \otimes \mathrm{k} \rightarrow \mathrm{H}^{\mathrm{n}}\left(\operatorname{Hom}_{\mathbb{Z}} \mathrm{P}^{(\mathrm{P}, \mathbb{Z}) \otimes \mathrm{k}) \rightarrow \operatorname{Tor}_{1}^{\mathbb{Z}}\left(\mathrm{H}^{\mathrm{n}+1}\left(\operatorname{Hom}_{\mathbb{Z} G}(\mathrm{P}, \mathbb{I})\right), \mathrm{k}\right) \rightarrow 0}\right.$
for all $n \in \mathbb{N}$, because $\operatorname{Hom}_{\mathbb{Z} G}(P, \mathbb{Z})$ is a \mathbb{Z}-lattice (see 2.3 (iii)). But $\operatorname{Hom}_{\not Z G}(\mathrm{P}, \mathbb{Z}) \otimes \mathrm{k}$ is
naturally isomorphic to $\operatorname{Hom}_{k G}(P \otimes k, k)$ and $(P \otimes k, \epsilon \otimes 1)$ is a projective resolution of k with kG -modules. Thus $\mathrm{H}^{\mathrm{n}}\left(\operatorname{Hom}_{\mathbb{Z} G}(\mathrm{P}, \mathbb{Z}) \otimes \mathrm{k}\right) \cong \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{k})$ (cf. 1.19) and we have a split exact sequence

$$
0 \longrightarrow H^{\mathrm{n}}(\mathrm{G}, \pi) \otimes \mathrm{k} \longrightarrow \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{k}) \longrightarrow \operatorname{Tor}_{1} \Pi_{1}\left(\mathrm{H}^{\mathrm{n}+1}(\mathrm{G}, \pi), \mathrm{k}\right) \longrightarrow 0
$$

Exercises (i) Show $H^{2}(G, \mathbb{Z}) \cong G / G^{\prime}$.
(ii) Let M be a $\mathbb{Z G}$-lattice and let $n \in \mathbb{N}$. Show $H^{n}(G, M \otimes k) \cong H^{n}(G, M) \otimes k \oplus \operatorname{Tor}_{1}^{I}\left(H^{n+1}(G, M), k\right)$.

Proof of Theorem 2.1 Let α_{r} and β_{s} denote the boundary maps of A and B respectively. We begin by considering a special case. Suppose A is a chain complex X with trivial boundary (so $X_{r} \cong H_{r}(X)$ for all $\left.r \in \mathbb{N}\right)$. Then $X \otimes_{k} B$ is the chain complex with $\left(X \otimes_{k} B\right)_{n}=$
$\underset{\mathrm{r}+\mathrm{s}=\mathrm{n}}{\oplus} \mathrm{X}_{\mathrm{r}} \otimes_{\mathrm{k}} \mathrm{B}_{\mathrm{s}}$ and boundary $\underset{\mathrm{r}+\mathrm{s}=\mathrm{n}}{\oplus}(-1)^{\mathrm{r}} \dot{i}_{\mathrm{r}} \otimes \beta_{\mathrm{s}}$, where i_{r} is the identity map on X_{r}. Thus $H_{n}\left(X \otimes_{k} B\right) \xlongequal[r+s=n]{\oplus} H_{s}\left(X_{r} \otimes_{k} B\right)$ and since $H_{s}\left(X_{r} \otimes_{k} B\right) \cong X_{r} \otimes_{k} H_{s}(B)$ by Lemma 1.21 we deduce that $\pi \underset{r+s=n}{\oplus} H_{r}(X) \otimes_{k} H_{s}(B) \longrightarrow H_{n}\left(X \otimes_{k} B\right)$ is an isomorphism. In general write

$$
C_{n}=\operatorname{ker} \alpha_{n}: A_{n} \longrightarrow A_{n-1}
$$

$$
D_{n}=\operatorname{im} \alpha_{n}: A_{n} \rightarrow A_{n-1}
$$

Note that C_{n} and D_{n} are projective k-modules. Regard C and D as chain complexes with trivial boundary. Then $0 \longrightarrow \mathrm{C} \longrightarrow \mathrm{A} \longrightarrow \mathrm{D} \longrightarrow 0$ is an exact sequence of chain complexes and hence so is $0 \longrightarrow C \otimes_{k} B \longrightarrow A \otimes_{k} B \longrightarrow D \otimes_{k} B \longrightarrow 0$ because D is projective (use 2.2). Now apply Lemma 1.12 to obtain an exact sequence

$$
\ldots \longrightarrow H_{n+1}\left(D \otimes_{k} B\right) \xrightarrow{\theta_{n+1}} H_{n}\left(C \otimes_{k} B\right) \longrightarrow H_{n}\left(A \otimes_{k} B\right) \xrightarrow{\varphi_{n}} H_{n}\left(D \otimes_{k} B\right) \longrightarrow \ldots
$$

We also have an exact sequence $0 \longrightarrow D_{r+1} \longrightarrow C_{r} \longrightarrow H_{r}(A) \longrightarrow 0$ for all $r \in \mathbb{N}$ and hence an exact sequence

$$
0 \longrightarrow \operatorname{Tor}_{1}^{k}\left(H_{r}(A), H_{s}(B)\right) \longrightarrow D_{r+1} \otimes_{k} H_{s}(B) \longrightarrow C_{r} \otimes_{k} H_{s}(B) \longrightarrow H_{r}(A) \otimes_{k} H_{s}(B) \longrightarrow 0
$$

by 2.2 (i). Therefore we have a commutative diagram with exact rows

$$
\begin{gathered}
0 \rightarrow \underset{r+s=n}{\oplus} \operatorname{Tor}_{i}^{k}\left(H_{r}(A), H_{s}(B)\right) \rightarrow \underset{r+s=n}{\oplus} D_{r+1} \otimes_{k} H_{s}(B) \rightarrow \underset{r+s=n}{\oplus} \operatorname{Cl}_{r} \otimes_{k} H_{s}(B) \rightarrow \underset{r+s=n}{\oplus} \operatorname{l}_{r}(A) \otimes_{k} H_{s}(B) \rightarrow 0 \\
H_{n+1}\left(A \otimes_{k} B\right) \xrightarrow{\varphi_{n+1}} H_{n+1}\left(D \otimes_{k} B\right) \xrightarrow{\theta_{n+1}} H_{n}\left(C \otimes_{k} B\right) \longrightarrow H_{n}\left(A \otimes_{k} B\right) \xrightarrow{\varphi_{n}} \ldots
\end{gathered}
$$

where δ and γ are isomorphisms by the special case when A has trivial boundary. A routine diagram chase shows that $\operatorname{ker} \pi=0, \operatorname{im} \pi=\operatorname{ker} \varphi_{n}$ and $\operatorname{ker} \theta_{n+1} \stackrel{N}{\sim} \underset{r+s=n}{ } \operatorname{Tor}_{1}^{k}\left(H_{r}(A), H_{s}(B)\right)$. But we have an exact sequence $0 \longrightarrow \operatorname{ker} \varphi_{n} \longrightarrow H_{n}\left(A \otimes_{k} B\right) \longrightarrow$ ker $\theta_{n} \longrightarrow 0$, and the required natural exact sequence follows easily.
It remains to show that the sequence splits. First consider the case when B (as well as A) is
a lattice. Write $\mathrm{E}_{\mathrm{n}}=\operatorname{ker} \beta_{\mathrm{n}}: \mathrm{B}_{\mathrm{n}} \longrightarrow \mathrm{B}_{\mathrm{n}-1}$. Since submodules of k -lattices are projective we may write $A_{n}=C_{n} \oplus C_{n}^{\prime}$ and $B_{n}=E_{n} \oplus E_{n}^{\prime}$ for some k-sublatices C_{n}^{\prime} and E_{n}^{\prime}, but not naturally. It follows that the natural epimorphisms $C_{n} \longrightarrow H_{n}(A)$ and $E_{n} \longrightarrow H_{n}(B)$ can be extended to epimorphisms $\gamma_{n}: A_{n} \longrightarrow H_{n}(A)$ and $\delta_{n}: B_{n} \longrightarrow H_{n}(B)$ respectively, and hence to an epimorphism $(\gamma \otimes \delta)_{n}:\left(A \otimes_{k} B\right)_{n} \longrightarrow \underset{r+s=n}{\oplus} H_{r}(A) \otimes_{k} H_{s}(B)$.
If $a \in A_{r}$ and $b \in B_{s}$ then $\left(a \alpha_{r} \otimes b+(-1)^{r} a \otimes b \beta_{s}\right)(\gamma \otimes \delta)_{r+s-1}=0$, because $a \alpha_{r} \gamma_{r-1}=0$ $=\mathrm{b} \beta_{\mathrm{s}} \delta_{\mathrm{s}-1}$. Therefore $(\gamma \otimes \delta)_{\mathrm{n}}$ induces a homomorphism

$$
(\gamma \otimes \delta)_{*}: H_{n}\left(A \otimes_{k} B\right) \longrightarrow \underset{r+s=n}{\oplus} \mathrm{H}_{\mathrm{r}}(\mathrm{~A}) \otimes_{k} \mathrm{H}_{\mathrm{s}}(\mathrm{~B})
$$

It is clear that $\pi(\gamma \otimes \delta)_{*}$ is the identity on $\underset{\mathrm{r}+\mathrm{s}=\mathrm{n}}{\oplus} \mathrm{H}_{\mathrm{r}}(\mathrm{A}) \otimes_{\mathrm{k}} \mathrm{H}_{\mathrm{s}}(\mathrm{B})$, i.e. the sequence splits.
When B is not a lattice we need the following result.

Lemma 2.6 Let B be a complex of k-modules. Then there exists a complex C of free k-modules and a chain map $\theta: C \longrightarrow B$ such that the induced map $\theta_{*}: H(C) \longrightarrow H(B)$ is an isomorphism.
(Problem: can θ always be taken to be onto?)

We prove this by establishing Lemmas 2.7 and 2.8 .

Lemma 2.7 Let B be a complex of k-modules. Then there exists a complex C of free k -modules such that $\mathrm{H}_{\mathrm{n}}(\mathrm{C}) \cong \mathrm{H}_{\mathrm{n}}(\mathrm{B})$ for all $\mathrm{n} \in \mathbb{N}$.

Lemma 2.8 Let B be a complex of \mathbf{k}-modules, let C be a complex of free k -modules and let $\theta_{\mathrm{n}}: \mathrm{H}_{\mathrm{n}}(\mathrm{C}) \longrightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{B})$ be a homomorphism for each $\mathrm{n} \in \mathbb{N}$. Then there exists a chain map $\varphi: \mathrm{C} \longrightarrow \mathrm{B}$ such that $\varphi_{\mathrm{n} *}=\theta_{\mathrm{n}}$ for all $\mathrm{n} \in \mathbb{N}$.

Proof The proof of Lemma 2.7 is very easy so we leave it as an exercise. We prove Lemma 2.8 by induction on n . Let β_{r} and γ_{r} denote the boundary maps of B and C respectively. For $n \in \mathbb{N}$, having constructed $\varphi_{r}: C_{r} \longrightarrow B_{r}$ such that $\varphi_{r *}=\theta_{r}, \varphi_{r} \beta_{r}=\gamma_{r} \varphi_{r-1}$, $\left(\operatorname{ker} \gamma_{\mathrm{r}}\right) \varphi_{\mathrm{r}} \subseteq \operatorname{ker} \beta_{\mathrm{r}},\left(\operatorname{im} \gamma_{\mathrm{r}+1}\right) \varphi_{\mathrm{r}} \subseteq \operatorname{im} \beta_{\mathrm{r}+1}$ for $\mathrm{r}<\mathrm{n}$, we construct $\varphi_{\mathrm{n}}: \mathrm{C}_{\mathrm{n}} \longrightarrow \mathrm{B}_{\mathrm{n}}$ having the same properties (where $\varphi_{-1}=0$).

$$
\begin{gathered}
\ldots \xrightarrow{\gamma_{n+1}} C_{n} \xrightarrow{\gamma_{n}} C_{n-1} \xrightarrow{\gamma_{n-1}} C_{n-2} \longrightarrow \ldots \\
\xrightarrow{\beta_{n+1}} \mathrm{~B}_{\mathrm{n}} \xrightarrow{\beta_{\mathrm{n}}} \mathrm{~B}_{\mathrm{n}-1} \xrightarrow{\rho_{\mathrm{n}-1}} \mathrm{~B}_{\mathrm{n}-2} \longrightarrow \ldots
\end{gathered}
$$

Now θ_{n} is a homomorphism $\theta_{n}:$ ker $\gamma_{n} / \operatorname{im} \gamma_{n+1} \longrightarrow \operatorname{ker} \beta_{n} / \operatorname{im} \beta_{n+1}$. Since ker γ_{n} is a free k -module, θ_{n} lifts to a homomorphism $\psi:$ ker $\gamma_{\mathrm{n}} \longrightarrow$ ker β_{n}. Also im γ_{n} is a free k-module, so we may write $C_{n}=k e r \gamma_{n} \oplus D$ for some $k-$ sublatice D of C_{n}. Since $\gamma_{n} \varphi_{n-1}$ maps D into $\operatorname{im} \beta_{n}$ there is a homomorphism $\delta: D \longrightarrow B_{n}$ such that $d \delta \beta_{n}=d \gamma_{n} \varphi_{n-1}$ for all $d \in D$. We may now set $\theta_{n}=\psi \oplus \delta:$ ker $\gamma_{n} \oplus D=C_{n} \longrightarrow B_{n}$ and the induction step is complete.

We now show that the sequence of Theorem 2.1 splits when B is an arbitrary chain complex. By Lemma 2.6 we may choose a complex C of free k-modules and a chain map $0: \mathrm{C} \longrightarrow \mathrm{B}$ such that the induced map θ_{*} is an isomorphism. We now have a commutative diagram with exact rows in which the top row splits and the two outside vertical maps are isomorphisms.

$$
\begin{aligned}
& 0 \longrightarrow \underset{r+s=n}{\oplus} H_{r}(A) \otimes_{k} H_{s}(C) \longrightarrow H_{n}\left(A \otimes_{k} C\right) \longrightarrow \underset{r+s=n-1}{\oplus} \operatorname{Tor}_{1}^{k}\left(H_{r}(A), H_{s}(C)\right) \longrightarrow 0 \\
& \downarrow 1_{*} \otimes \theta_{*} \quad\left|(1 \otimes \theta)_{*} \quad\right|\left(1_{*}, \theta_{*}\right) \\
& 0 \longrightarrow \underset{r+s=n}{\oplus} H_{r}(A) \otimes_{k} H_{s}(B) \longrightarrow H_{n}\left(A \otimes_{k} B\right) \longrightarrow \underset{r+s=n-1}{\oplus} \operatorname{Tor}_{1}^{k}\left(H_{r}(A), H_{s}(B)\right) \longrightarrow 0
\end{aligned}
$$

The Five Lemma shows that the middle yertical map is an isomorphism and a routine diagram chase now shows that the bottom row splits, as required.

Exercise Let A be a chain complex of k-lattices and let B, C be chain complexes of k-modules. Suppose $\theta: B \longrightarrow C$ is a chain map such that the induced map $\theta_{*}: H_{n}(B) \longrightarrow$ $H_{n}(C)$ is an isomorphism for all $n \in \mathbb{N}$. Prove that $(1 \otimes \theta)_{*}: H_{n}\left(A \otimes_{k} B\right) \longrightarrow H_{n}\left(A \otimes_{k} C\right)$ is an isomorphism for all $n \in \mathbb{N}$.

3. Cup Products

Notation If M is a $k G$-module, write $H^{*}(G, M)=\underset{r \in \mathbb{N}}{0} H^{r}(G, M)$.
Aim To make $H^{*}(G, k)$ into a graded anticommutative k-algebra and $H^{*}(G, M)$ into a graded $H^{*}(G, k)$-module. This means that if $u \in H^{r}(G, M), x \in H^{s}(G, k), y \in H^{t}(G, k)$ then $u x \in H^{r+s}(G, M)$ and $x y=(-1)^{\text {st }} y x \in H^{s+t}(G, k)$. (Thus if p and s are odd and k is a field of characteristic p then $x^{2}=0$.)

Let $(P, \epsilon): \ldots \longrightarrow P_{1} \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\epsilon} k \longrightarrow 0$ be a projective resolution of k with $k G-m o-$ dules. Then $\left(P \otimes_{k} P, \epsilon \otimes \epsilon\right)$ is a projective resolution of $k \otimes_{k} k$ with $k G$-modules (Remark
2.3 (ii)). Also we have a natural isomorphism of kG -modules $\mu: \mathrm{k} \otimes \mathrm{k} \longrightarrow \mathrm{k}$ where (a $\otimes \mathrm{b}) \mu$ $=\mathrm{ab}$ for $\mathrm{a}, \mathrm{b} \in \mathrm{k}$. Thus if $\pi=(\epsilon \otimes \epsilon) \mu$ then $\left(\mathrm{P} \otimes_{\mathrm{k}} \mathrm{P}, \pi\right)$ is a projective resolution of k with kG-modules. By Lemma. 1.2 there exists a chain map
3.1

$$
\theta: \mathrm{P} \longrightarrow \mathrm{P} \otimes_{\mathbf{k}} \mathrm{P}
$$

extending the identity map on k .

Suppose $u \in H^{r}(G, M)$, $x \in H^{s}(G, k)$. Choose $f \in \operatorname{Hom}_{k G}\left(P_{\mathbf{r}^{2}}, M\right)$ and $g \in \operatorname{Hom}_{k G}\left(P_{\mathbf{s}^{\prime}}, k\right)$ representing u and x respectively. Then $f \otimes g \in \operatorname{Hom}_{k G}\left(P_{r} \otimes_{k} P_{s}, M\right)$, where $(a \otimes b)\left(f^{l} \otimes g\right)=$ $(\mathrm{af})(\mathrm{bg})$ for $a \in \mathrm{P}_{\mathrm{r}}, \mathrm{b} \in \mathrm{P}_{\mathrm{s}}$. Therefore $\theta^{*}(\mathrm{f} \otimes \mathrm{g})=\theta(\mathrm{f} \otimes \mathrm{g}) \in \operatorname{Hom}_{\mathrm{k} G}\left(\mathrm{P}_{\mathrm{r}+\mathrm{s}}, \mathrm{M}\right)$. Since $\partial_{\mathrm{r}}^{*} \mathrm{f}=0=\partial_{\mathrm{s}}^{*} \mathrm{~g}$, we have $\partial_{\mathrm{r}} \mathrm{f}=0=\partial_{\mathrm{s}} \mathrm{g}$ and hence $\partial_{\mathrm{r}+\mathrm{s}}^{*}\left(\theta^{*}(\mathrm{f} \otimes \mathrm{g})\right)=\partial_{\mathrm{r}+\mathrm{s}} \theta(\mathrm{f} \otimes \mathrm{g})=\theta\left(\partial_{\mathrm{r}} \mathrm{f} \otimes \mathrm{g}+\right.$ $\left.(-1)^{r} f \otimes \partial_{s} g\right)=0$.
Therefore $\theta^{*}(f \otimes g)$ represents an element of $H^{r+s}(G, M):$ it is denoted ux, the cup-product of u and x. Lemma 1.2 (ii) shows that $u x$ does not depend on θ. We shall use the notation \dot{v}_{i} to denote the $i^{\text {th }}$ component of an element v in $H^{*}(G, M)$; thus $v=\Sigma v_{i}$ where $\mathbf{v}_{i} \in H^{i}(G, M)$. If u and x are arbitrary elements of $H^{*}(G, M)$ and $H^{*}(G, k)$ we can now define $u x \in H^{*}(G, M)$ by

Remark We could also define the cup product by letting (P, ϵ) be a projective resolution of II with $\mathbb{I} \mathrm{G}$-modules and $\theta: \mathrm{P} \longrightarrow \mathrm{P} \otimes_{\mathbb{I}} \mathrm{P}$ be a chain map extending the identity on \mathbb{I}. This would give the same result: cf. Remark 1.19 (iv).

Lemma $3.2 H^{*}(G, k)$ is a graded anticommutative ring with a 1 and $H^{*}(G, M)$ is a graded $H^{*}(G, k)$-module. If (P, ϵ) is a projective resolution for k then $1 \in H^{*}(G, k)$ is represented by $\epsilon \in \operatorname{Hom}_{k G}\left(\mathrm{P}_{0}, k\right)$.

Proof All is clear except for the anticommutativity: we must prove that if $x \in \mathbb{H}^{r}(G, k)$ and $y \in H^{s}(G, k)$ then $x y=(-1)^{\text {rs }} y x$
Let (P, ϵ) be a projective resolution of k, let $f \in \operatorname{Hom}_{k G}\left(P_{r}, k\right)$ represent x and let $g \in \operatorname{Hom}_{k G}\left(P_{s}, k\right)$ represent y. Let $\theta: P \longrightarrow P \otimes_{k} P$ be a chain map extending the identity map on k (see 3.1). Then by definition $\theta(f \otimes g), \theta(g \otimes f) \in \operatorname{Hom}_{k G}\left(P_{r+s}, k\right)$ represent $x y, y x \in H^{r+s}(G, k)$ respectively. By Lemma 1.2 (ii)

$$
\theta^{*}: \mathrm{H}^{\mathrm{r}+\mathrm{s}}\left(\operatorname{Hom}_{k G}\left(\mathrm{P} \otimes_{k} \mathrm{P}, \mathrm{k}\right)\right) \longrightarrow \mathrm{H}^{\mathrm{r}+\mathrm{s}}\left(\operatorname{Hom}_{k G}(\mathrm{P}, \mathrm{k})\right)
$$

is an isomorphism, so we want to show that $f \otimes g$ and $(-1)^{r s} g \otimes f$ represent the same element in $H^{\mathrm{r}+\mathrm{s}}\left(\operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{P} \otimes_{k} \mathrm{P}, \mathrm{k}\right)\right)$.

Define a chain map $\tau: P \otimes_{k} P \longrightarrow P \otimes_{k} P$ by

$$
(a \otimes b) \tau=(-1)^{\mathrm{rs}}(b \otimes a) \text { for } a \in P_{r}, b \in P_{s}
$$

Then the induced map $T^{*}: H^{r+s}\left(\operatorname{Hom}_{k G}\left(P \otimes_{k} P, k\right)\right) \longrightarrow H^{r+s}\left(\operatorname{Hom}_{k G}\left(P \otimes_{k} P, k\right)\right)$ is the identity by Lemma 1.2 (ii) and the result follows.

Definition 3.3 Let. A, B be anticommutative graded k-algebras, say $A=\underset{n=0}{\infty} A_{n}$, $B \equiv \underset{\sim}{\oplus} \underset{n=0}{\infty} B_{n}$. Then $a \in A$ is homogeneous means $a \in A_{n}$ for some $n \in \mathbb{N}$ and then we write $\operatorname{deg} \mathrm{a}=\mathrm{n}($ if $\mathrm{a} \neq 0)$. We make $\mathrm{A} \otimes_{\mathrm{k}} \mathrm{B}$ into an anticommutative graded k -algebra by defining
$\left(A \otimes_{k} B\right)_{n}=\underset{r+s=n}{\oplus} A_{r} \otimes_{k} B_{s}$, and for homogeneous elements $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$,

$$
\left(a_{1} \otimes b_{1}\right)\left(a_{2} \otimes b_{2}\right)=(-1)^{\operatorname{deg} b_{1} \operatorname{deg} a_{2}} a_{1} a_{2} \otimes b_{1} b_{2}
$$

Theorem 3.4 Let H be a group. Then there is a natural monomorphism of anticommutative k-algebras $\pi: H^{*}(G \times H, k) \longrightarrow H^{*}(G, k) \otimes_{k} H^{*}(H, k)$. If k is a field, then π is an epimorphism.

Proof This is just 2.4; all that needs to be checked is that π respects multiplication as well as addition.

Lemma 3.5 Let L, M, N be $k G$-modules, let H be a group, let $u \in H^{*}(G, M)$ and $y \in H^{*}(G, k)$.
(i) If $\theta: \mathrm{H} \longrightarrow \mathrm{G}$ is a homomorphism then $\theta^{*}(\mathrm{u}) \theta^{*}(\mathrm{y})=\theta^{*}(\mathrm{uy})$.
(ii) If $\varphi: M \longrightarrow N$ is a $k G$-homomorphism then $\varphi_{*}(\mathrm{u}) \mathrm{y}=\varphi_{*}(\mathrm{uy})$.
(iii) If $0 \longrightarrow \mathrm{~L} \longrightarrow \mathrm{M} \longrightarrow \mathrm{N} \longrightarrow 0$ is exact and $\delta: H^{*}(G, N) \longrightarrow H^{*}(G, L)$ is the connecting homomorphism (cf. 1.13 (i)) then $\delta(v y)=(\delta v) y$ for $v \in H^{*}(G, N)$.
(iv) If $H \leq G$ then $\operatorname{tr}_{H, G}\left(\operatorname{res}_{G, H}(u) z\right)=u \operatorname{tr}_{H, G} z$ for $z \in H^{*}(H, k)$.
(v) If k is a field, char $k=p$, and $x \in H^{r}(G, k)$, then $\beta(x y)=(\beta x) y+(-1)^{r} x(\beta y)$.

Proof We prove (v), leaving the other parts as exercises. We may assume that $\mathrm{k}=\mathbb{I} / \mathrm{pll}$ by Remark 1.19 (iii), and y is homogeneous of degree s for some $s \in \mathbb{N}$.
Let $(\mathrm{P}, \epsilon): \ldots \longrightarrow \mathrm{P}_{1} \xrightarrow{\partial_{1}} \mathrm{P}_{0} \xrightarrow{\epsilon} \mathbb{I} \longrightarrow 0$ be a projective resolution of \mathbb{I} with $\mathbb{Z G - m o -}$ dules, let $f \in \operatorname{Hom}_{\nexists G}\left(P_{r}, k\right)$ and $g \in \operatorname{Hom}_{\mathbb{Z} G}\left(P_{s}, k\right)$ represent x and y respectively, and let $\theta: \mathrm{P} \longrightarrow \mathrm{P} \otimes_{I} \mathrm{P}$ be a chain map extending the identity map on $I I$ (cf. 3.1). Then xy is represented by $\theta(\mathrm{f} \otimes \mathrm{g}) \in \operatorname{Hom}_{\Pi \mathrm{G}}\left(\mathrm{P}_{\mathrm{r}+\mathrm{s}}, \mathrm{k}\right)$.
Lift f and g to \hat{f} and \hat{g}, elements of $\operatorname{Hom}_{\mathbb{Z} G}\left(\mathrm{P}_{\mathrm{r}^{\prime}} \mathbb{Z} / \mathrm{p}^{2} \mathbb{I}\right)$ and $\operatorname{Hom}_{\mathbb{Z}}\left(\mathrm{P}_{\mathrm{s}^{\prime}}, \mathbb{I} / \mathrm{p}^{2} \mathbb{Z}\right)$ respectively. Then $\theta(\hat{\mathrm{f}} \otimes \hat{\mathrm{g}}) \in \operatorname{Hom}_{\mathbb{Z}}\left(\mathrm{P}_{\mathrm{r}+\mathrm{s}}, \not \mathbb{Z} / \mathrm{p}^{2} I\right)$ lifts $\theta(\mathrm{f} \otimes \mathrm{g})$ and so $\beta(\mathrm{xy})$ is represented by
$\partial_{\mathrm{r}+\mathrm{s}+1} \theta(\hat{\mathrm{f}} \otimes \hat{\mathrm{g}}) \in \operatorname{Hom}_{\mathbb{Z} \mathrm{G}}\left(\mathrm{P}_{\mathrm{r}+\mathrm{s}+1}, \bar{I} / \mathrm{p}^{2} \mathbb{I}\right)$ (see 1.22). But this is

$$
\theta \partial_{\mathrm{r}+\mathrm{s}+1}(\hat{\mathrm{f}} \otimes \hat{\mathrm{~g}})=\theta\left(\left.\partial\right|_{\mathrm{f}+1} \hat{\mathrm{f}} \otimes \mathrm{~g}\right)+(-1)^{\mathrm{r}} \theta\left(\hat{\mathrm{f}} \otimes \partial_{\mathrm{s}+1} \hat{\mathrm{~g}}\right)
$$

Since $\partial_{\mathrm{r}+1} \hat{\mathrm{f}}$ represents $\beta \mathrm{x}$ and $\partial_{\mathrm{s}+1} \hat{\mathrm{~g}}$ fepresents $\beta \mathrm{y}$ the result follows.

3.6 Cohomology of the Cyclic Group

Let $G=<g\rangle$ be a cyclic group and let \mathfrak{g} be the augmentation ideal of $k G$, so g is a free k -module with basis $\{\mathrm{g}-1 \mid \mathrm{g} \in \mathrm{G} \backslash 1\}$. Define kG -homomorphisms $\epsilon: \mathrm{kG} \longrightarrow \mathrm{k}$ and
$v: \mathrm{kG} \longrightarrow \mathfrak{g}$ by $1 \epsilon=1$ and $1 v=\mathfrak{g}-1$. Then we have the exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \mathfrak{g} \longrightarrow \mathrm{kG} \longrightarrow \mathrm{k} \longrightarrow 0 \\
& 0 \longrightarrow \mathrm{k} \longrightarrow \mathrm{kG} \longrightarrow \mathrm{~g} \longrightarrow 0
\end{aligned}
$$

Since $H^{n}(G, k G)=0$ for all $n \in \mathbb{P}$ by Corollary 1.10 , the long exact sequences for cohomology (Corollary 1.13 (i)) show that the connecting homomorphisms give isomorphisms
$\gamma: H^{n}(G, k) \xrightarrow{\stackrel{N}{\Longrightarrow}} H^{n+1}(G, g)$ and $\delta: H^{n}(G, g) \xrightarrow{N} H^{n+1}(G, k)$ for all $n \in \mathbb{P}$. (i)
Thus $H^{n+2}(G, k) \cong H^{n}(G, k)$ for $n \in \mathbb{P}$. Let us consider two special cases.
Case 1 k is a field of characteristic p and $\mathrm{p}||\mathrm{G}|$ (if p does not divide $| \mathrm{G} \mid$ then $H^{n}(G, k)=0$ for all $n \in \mathbb{P}$ - exercise). The exact sequence $0 \longrightarrow g \longrightarrow k G \longrightarrow k \longrightarrow 0$ yields an exact sequence

$$
0 \longrightarrow \mathrm{H}^{0}(\mathrm{G}, \mathfrak{g}) \longrightarrow \mathrm{H}^{0}(\mathrm{G}, \mathrm{kG}) \longrightarrow \mathrm{H}^{0}(\mathrm{G}, \mathrm{k}) \xrightarrow{\gamma} \mathrm{H}^{1}(\mathrm{G}, \mathfrak{g}) \longrightarrow 0
$$

Since $H^{0}(G, g) \cong H^{0}(G, k G) \cong H^{0}(G, k) \cong k$ it follows that

$$
\gamma: \mathrm{H}^{0}(\mathrm{G}, \mathrm{k}) \stackrel{\cong}{\cong} \mathrm{H}^{1}(\mathrm{G}, \mathfrak{g})
$$

is an isomorphism and $H^{1}(G, g) \cong k$. Also $H^{1}(G, k) \cong \operatorname{Hom}(G, k) \cong k$ by Proposition 1.20. It now follows from (i) that $H^{n}(G, k) \cong k$ for all $n \in \mathbb{N}$. Thus we have the additive structure of $\mathrm{H}^{*}(\mathrm{G}, \mathrm{k})$ and we now calculate the multiplicative structure.
By (i) and (ii) $\delta \gamma: H^{n}(G, k) \longrightarrow H^{n+2}(G, k)$ is an isomorphism for all $n \in \mathbb{N}$. Also if $\mathrm{x} \in \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{k})$ and $\mathrm{y} \in \mathrm{H}^{\mathrm{m}}(\mathrm{G}, \mathrm{k}), \mathrm{m} \in \mathbb{N}$, then $\delta \gamma(\mathrm{xy})=(\delta \gamma \mathrm{x}) \mathrm{y}$ by Lemma 3.5 (iii). Now $1 y=y$ where $1 \in H^{0}(G, k)$ is the identity. It follows that if n is even and $x \neq 0$ then $\mathrm{y} \longmapsto \mathrm{xy}$ is a bijective map from $\mathrm{H}^{\mathrm{m}}(\mathrm{G}, \mathrm{k})$ to $\mathrm{H}^{\mathrm{m}+\mathrm{n}}(\mathrm{G}, \mathrm{k})$. This shows that

$$
\underset{\sim}{\oplus} H^{\mathrm{n}}(G, k) \cong \mathrm{k}[u]
$$

$-27-$

a polynomial ring where u can be taken to be any nonzero element of $H^{2}(G, k)$. If p is odd and $v \in H^{1}(G, k)$ then $v^{2}=0$ because $H^{*}(G, k)$ is anticommutative and

$$
\begin{equation*}
H^{*}(G, k) \cong k[u, v] /\left(v^{2}, u v-v u\right) \tag{iii}
\end{equation*}
$$

where $\operatorname{deg} u=2, v \neq 0, \operatorname{deg} v=1$.
On the other hand if $p=2$ we need a further subdivision of cases. First suppose $|G|=2$. Then $\mathrm{k} \cong \mathfrak{g}$ as kG -modules, hence from (i) and (ii) we have an isomorphism $\gamma: \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{k}) \longrightarrow$ $H^{n+1}(G, k)$ for all $n \in \mathbb{N}$. It follows that $H^{*}(G, k) \cong k[v]$, a polynomial ring where v can be taken to be any nonzero element of $\mathrm{H}^{1}(\mathrm{G}, \mathrm{k})$.
In general let $H=\langle h\rangle$ be the subgroup of order 2 in G. Identifying $H^{0}(H, \mathfrak{g})$ and $H^{0}(G, g)$ with the fixed points of g under the action of H and G respectively, $1+h \in$ $H^{0}(H, g)$ and $\operatorname{tr}_{H, G}(1+h)=\sum_{g \in G} g \in H^{0}(G, g) \cong k$, so $\operatorname{tr}_{H, G}: H^{0}(H, g) \longrightarrow H^{0}(G, \mathfrak{g})$ is onto. Moreover the exact sequence $0 \longrightarrow \mathrm{k} \longrightarrow \mathrm{kG} \longrightarrow \mathrm{g} \longrightarrow 0$ yields (by Corollary 1.13 (i)) a commutative diagram with exact rows

and we deduce that $\operatorname{tr}_{H, G}: H^{1}(H, k) \longrightarrow H^{1}(G, k)$ is an isomorphism. Let $\ell=[G: H]$. Using ${ }^{\operatorname{tr}}{ }_{H, G}{ }^{\text {res }}{ }_{G, H}=\ell$ (Lemma 1.14) we see that $\operatorname{tr}_{H, G}: H^{2}(H, k) \longrightarrow H^{2}(G, k)$ is an isomorphism if 2 does not divide ℓ and $\operatorname{res}_{G, H}: H^{1}(\mathrm{G}, \mathrm{k}) \longrightarrow \mathrm{H}^{1}(\mathrm{H}, \mathrm{k})$ is zero if $2 \mid \ell$. Now let $0 \neq u \in H^{1}(G, k)$ and $z \in H^{1}(H, k)$ such that $\operatorname{tr}_{H, G}(z)=u$. Then

$$
\begin{aligned}
\mathrm{u}^{2} & \left.=\mathrm{u} \operatorname{tr}_{\mathrm{H}, \mathrm{G}}(\mathrm{z})=\operatorname{tr}_{\mathrm{H}, \mathrm{G}} \text { (res }_{\mathrm{G}, \mathrm{H}} \mathrm{u}\right)_{\mathrm{z}} \quad \text { by Lemma } 3.5 \text { (iv) } \\
& =0 \text { if and only if } 2 \mid \ell .
\end{aligned}
$$

We conclude that
$H^{*}(G, k) \cong k[v]$ if 4 does not divide $|G|$ (a polynomial ring where $v \in H^{1}(G, k)$,
$H^{*}(G, k) \cong k[u, v] /\left(v^{2}, u v-v u\right)$ if $4\left||G|\right.$ (where $v \in H^{1}(G, k)$ and $u \in H^{2}(G, k)$).

Next we calculate the Bockstein map $\beta_{n}: H^{n}(G, k) \longrightarrow H^{n+1}(G, k)$.
As above,

$$
\begin{align*}
& \mathrm{H}^{\mathrm{i}}\left(\mathrm{G}, \mathbb{I} / \mathrm{p}^{2} \mathbb{I}\right) \cong \mathbb{Z} / \mathrm{p}^{2} \mathbb{I} \text { for all } \mathrm{i} \in \mathbb{N} \text { if } \mathrm{p}^{2}| | \mathrm{G} \mid \\
& \mathrm{H}^{\mathrm{i}}\left(\mathrm{G}, \mathbb{Z} / \mathrm{p}^{2} \mathbb{I}\right) \cong \mathbb{Z} / \mathrm{p} \mathbb{Z} \text { for all } \mathrm{i} \in \mathbb{P} \text { if } \mathrm{p}^{2} \text { does not divide }|\mathrm{G}| \tag{iv}
\end{align*}
$$

The exact sequence $0 \longrightarrow \mathbb{Z} / \mathrm{p} \mathbb{I} \longrightarrow \mathbb{I} / \mathrm{p}^{2} \mathbb{I} \longrightarrow \mathbb{I} / \mathrm{p} \mathbb{I} \longrightarrow 0$ yields (see Corollary 1.13 (i) and 1.22) an exact sequence

$$
0 \longrightarrow \mathrm{H}^{0}(\mathrm{G}, \mathbb{Z} / \mathrm{p} \mathbb{I}) \longrightarrow \mathrm{H}^{0}\left(\mathrm{G}, \mathbb{I} / \mathrm{p}^{2} \mathbb{I}\right) \longrightarrow \mathrm{H}^{0}(\mathrm{G}, \mathbb{Z} / \mathrm{p} \mathbb{I}) \xrightarrow{\beta_{0}} \mathrm{H}^{1}(\mathrm{G}, \mathbb{Z} / \mathrm{p} \mathbb{I}) \longrightarrow \ldots
$$

Using (iv) we deduce

$$
\begin{gathered}
\beta_{\mathrm{i}}=0 \text { for all } \mathbf{i} \in \mathbb{N} \text { if } \mathrm{p}^{2}| | G \mid \\
\beta_{2 \mathrm{i}}=0, \beta_{2 i+1} \text { is an isomorphism for all } \mathrm{i} \in \mathbb{N} \text { if } p^{2} \text { does not divide }|G|
\end{gathered}
$$

Thus if p^{2} does not divide $|\mathrm{G}|$ we can rewrite (iii) as (podd, $\mathrm{p}||\mathrm{G}|$)

$$
\mathrm{H}^{*}(\mathrm{G}, \mathrm{k}) \cong \mathrm{k}[\mathrm{v}, \beta \mathrm{v}] /\left(\mathrm{v}^{2}, \mathrm{v} \beta \mathrm{v}-(\beta \mathrm{v}) \mathrm{v}\right)
$$

where v is any nonzero element of $H^{1}(G, k)$.

Case $2 \mathrm{k}=\mathbb{I}$. Let $\ell=|\mathrm{G}|$. By Proposition 1.20 and Exercise $2.5(\mathrm{i}), \mathrm{H}^{1}(\mathrm{G}, \mathbb{Z})=0$ and $\mathrm{H}^{2}(\mathrm{G}, \mathbb{Z}) \cong \mathrm{G} / \mathrm{G}^{\prime}$ and it now follows from (i) that

$$
\mathrm{H}^{0}(\mathrm{G}, \mathbb{I}) \cong \mathbb{Z}, \mathrm{H}^{2 \mathrm{n}}(\mathrm{G}, \mathbb{I}) \cong \mathbb{Z} / \ell \mathbb{I} ; \mathrm{H}^{2 \mathrm{n}-1}(\mathrm{G}, \mathbb{I})=0(\mathrm{n} \in \mathbb{P})
$$

Also $\gamma: H^{0}(G, \mathbb{Z}) \longrightarrow H^{1}(G, \mathfrak{g})$ is onto because $H^{1}(G, \not Z G)=0$. By a similar argument to Case 1 we now see that if $m, n \in \mathbb{P}$ and x is a generator of $H^{2 m}(G, l l)$ then $y \longmapsto x y$ is a bijective map from $H^{\mathrm{n}}(\mathrm{G}, \mathbb{Z})$ to $\mathrm{H}^{2 \mathrm{~m}+\mathrm{n}}(\mathrm{G}, \mathbb{Z})$. Therefore

$$
\mathrm{H}^{*}(\mathrm{G}, \pi) \cong \mathbb{I}[\mathrm{u}] /(\ell \mathrm{u})
$$

where u is any generator of $H^{2}(G, \mathbb{I})$.
Notation Let $E_{k}\left[u_{1}, \ldots, u_{d}\right]$ denote the exterior algebra on d generators, an anticommutative graded k-algebra which as a k-module is free of rank 2^{d}. Thus $E_{k}[u] \cong k[u] /\left(u^{2}\right)=k \oplus k u$ where u has degree 1 and $u^{2}=0$, and

$$
E_{k}\left[u_{1}, \ldots, u_{d}\right] \stackrel{N}{=} E_{k}\left[u_{1}\right] \otimes_{k} E_{k}\left[u_{2}\right] \otimes_{k} \cdots \otimes_{k} E_{k}\left[u_{d}\right]
$$

We can now state
Lemma 3.7 Let k be a field of characteristic p, let $|G|=p$ and let $0 \neq u \in H^{1}(G, k)$

Then
(i) If p is odd then $H^{*}(G, k) \cong k[\beta u] \otimes_{k} E_{k}[u]$.
(ii) If $p=2$ then $H^{*}(G, k) \cong k[u]$.

Cohomology of an elementary abelian p-group Let k be a field of characteristic p, let $d \in \mathbb{P}$ and let G be the elementary abelian p-group of rank d (so $|G|=p^{d}$). Let (u_{1}, \ldots, u_{d}) be a k -basis for $\mathrm{H}^{1}(\mathrm{G}, \mathrm{k})$ ($=\operatorname{Hom}(\mathrm{G}, \mathrm{k})$ by Proposition 1.20). By Theorem 3.4 and Lemma 3.7 we now have
Theorem 3.8 (i) If p is odd then $H^{*}(G, k) \cong k\left[\beta u_{1}, \ldots, \beta u_{d}\right] \otimes_{k} E_{k}\left[u_{1}, \ldots, u_{d}\right]$.
(ii) If $p=2$ then $H^{*}(G, k) \cong k\left[u_{1}, \ldots, u_{d}\right]$.

Cohomology with coefficients in II Let G be an elementary abelian p-group. Then we need

Lemma 3.9 If $n \in \mathbb{P}$ and $x \in H^{n}(G, \mathbb{I})$, then $p x=0$.

Proof Exercise using 2.4 (Künneth formula) and 3.6.

Let $\mathrm{k}=\mathbb{I} / \mathrm{p} \mathbb{Z}$. Then we have an exact sequence

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\mu} \mathbb{Z} \xrightarrow{\varphi} \mathrm{k} \longrightarrow 0
$$

where μ is "multiplication by p ", and hence an exact sequence
$\ldots \longrightarrow \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathbb{Z}) \xrightarrow{\mu_{*}} \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathbb{Z}) \xrightarrow{\varphi_{*}} \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{k}) \xrightarrow{\delta} \mathrm{H}^{\mathrm{n}+1}(\mathrm{G}, \mathbb{Z}) \xrightarrow{\mu_{*}} \mathrm{H}^{\mathrm{n}+1}(\mathrm{G}, \mathbb{Z}) \longrightarrow \longrightarrow$
by Corollary 1.13 (i), and μ_{*} is "multiplication by p ". Using Lemma 3.9, im $\mu_{*}=0$ for all $n \in \mathbb{P}$ so we have an exact sequence

$$
0 \longrightarrow \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathbb{I}) \xrightarrow{\varphi_{*}} \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{k}) \xrightarrow{\delta} \mathrm{H}^{\mathrm{n}+1}(\mathrm{G}, \mathbb{Z}) \xrightarrow{\cdot} 0
$$

Define $\quad \tilde{H}^{\mathrm{n}}(\mathrm{G}, \mathbb{Z})=\mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathbb{Z}) \mathrm{n}_{\mathrm{n}}>0$

$$
\tilde{H}^{0}(\mathrm{G}, \mathbb{I})=\mathrm{k}
$$

so $\tilde{\mathrm{H}}^{*}(\mathrm{G}, \pi) \cong \mathrm{H}^{*}(\mathrm{G}, \not \mathrm{Z}) /(\mathrm{p})$ as anticommutative graded rings and φ_{*} induces a ring mono-
morphism $\tilde{\mathrm{H}}^{*}(\mathrm{G}, \mathbb{Z}) \longrightarrow \mathrm{H}^{*}(\mathrm{G}, \mathrm{k})$. Therefore $\tilde{\mathrm{H}}^{*}(\mathrm{G}, \mathbb{I}) \cong \operatorname{ker} \delta=\operatorname{ker} \varphi_{*} \delta$. Now $\varphi_{*} \delta=\beta$:

$$
\begin{aligned}
\mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{k}) \longrightarrow \mathrm{H}^{\mathrm{n}+1}(\mathrm{G}, \mathrm{k}) & \text { (exercise), so } \\
& \tilde{\mathrm{H}}^{*}(\mathrm{G}, \mathbb{I}) \cong \operatorname{ker} \beta
\end{aligned} \quad \mathrm{H}^{*}(\mathrm{G}, \mathrm{k}) \longrightarrow \mathrm{H}^{*}(\mathrm{G}, \mathrm{k}) .
$$

Example $G=\mathbb{I} / \mathrm{p} \mathbb{Z} \times \mathbb{I} / \mathrm{p} \mathbb{Z}, \mathrm{p}$ odd. Then (Theorem 3.8) $H^{*}(\mathrm{G}, \mathrm{k}) \cong \mathrm{k}[\mathrm{x}, \mathrm{y}] \otimes_{\mathrm{k}} \mathrm{E}_{\mathrm{k}}[\mathrm{u}, \mathrm{v}]$,

$$
\beta \mathrm{u}=\mathrm{x}, \beta \mathrm{v}=\mathrm{y}
$$

$$
\text { Now } \beta\left(f_{1}+f_{2} u+f_{3} v+f_{4} u v\right)=0 \quad\left(f_{i} \in k[x, y]\right)
$$

$$
\Leftrightarrow\left(\text { using } 3.5(\mathrm{v}) \text { and 3.6) } \mathrm{f}_{2} \mathrm{x}+\mathrm{f}_{3} \mathrm{y} \text { and } \mathrm{f}_{4}(\mathrm{xv}-\mathrm{yu})=0\right.
$$

$$
\Leftrightarrow f_{4}=0, f_{2}=y f, f_{3}=-x f \text { some } f \in k[x, y]
$$

Therefore $\tilde{H}^{*}(G, l l) \cong k[x, y] \otimes_{k} E_{k}[u y-v x]$.
Exercise If $p=2$ show $\overline{\mathrm{H}}^{*}(\mathrm{G}, \mathbb{Z}) \cong \mathrm{k}\left[\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{x}^{2} \mathrm{y}+\mathrm{xy}{ }^{2}\right]$.
4. The Evens Norm Map Let $H \leq G$. Recall the transfer map

$$
\operatorname{tr}_{\mathrm{H}, \mathrm{G}}: \mathrm{H}^{*}(\mathrm{H}, \mathrm{k}) \longrightarrow \mathrm{H}^{*}(\mathrm{G}, \mathrm{k})
$$

is a map satisfying $\operatorname{tr}_{H, G}(x+y)=\operatorname{tr}_{H, G}(x)+\operatorname{tr}_{H, G}(y)$ i.e. $\operatorname{tr}_{H, G}$ respects the additive structure. The Evens norm map is a map

$$
\operatorname{norm}_{\mathrm{H}, \mathrm{G}}: \mathrm{H}^{*}(\mathrm{H}, \mathrm{k}) \longrightarrow \mathrm{H}^{*}(\mathrm{G}, \mathrm{k})
$$

which respects the multiplicative structure. To define this map, we need to consider tensor induction. Write $G=x_{1} H \uplus \ldots \uplus x_{\ell} H$ and let M be a $k H-$ module. For $g \in G$ write

$$
\begin{equation*}
\mathrm{g} \mathrm{x}_{\mathrm{i}}=\underset{\hat{\mathrm{g} i}}{\mathrm{x}_{\hat{i}}} \mathrm{~g}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

where $g_{i} \in H(i=1, \ldots, \ell)$ and $\hat{g} \in \Sigma_{\ell}$. Define a $k G-m o d u l e$ by

$$
\mathrm{M}^{\ell}=\mathrm{M} \otimes_{\mathrm{k}} \ldots \otimes_{\mathrm{k}} \mathrm{M} \quad(\ell \text { times })
$$

$$
\begin{equation*}
\left(\mathrm{m}_{1} \otimes \ldots \otimes \mathrm{~m}_{\ell}\right) \mathrm{g}=\mathrm{m}_{\mathrm{g} 1}^{\wedge} \mathrm{g}_{1} \otimes \ldots \otimes \mathrm{~m}_{\mathrm{g} \ell}^{\wedge} \mathrm{g}_{\ell} \tag{2}
\end{equation*}
$$

It is easy to check that this gives a well defined kG -module whose isomorphism type is independant of the choice of transversal $\left\{\mathrm{x}_{1} \cdots, \mathrm{x}_{\ell}\right\}$, and $\mathrm{k}^{\ell} \stackrel{\cong}{\underline{n}}$ (naturally).

However P^{ℓ} is not a projective kG -module in general when P is a projective kH -module.

Similarly if P is a chain complex of kH -modules then P^{ℓ} is a chain complex of kG -modules, but we need a sign in (2) (so that the G-action commutes with the boundary maps), namely (when the m_{i} are homogeneous)

However we must check that (3) gives a G-action, and that the action commutes with the boundary map: i.e. for $f, g \in G$ and $u \in P^{\ell}, u$ homogeneous,

$$
(\mathrm{uf}) \mathrm{g}=\mathrm{u}(\mathrm{fg}) \text { and }(\mathrm{u} \partial) \mathrm{g}=(\mathrm{ug}) \partial
$$

To do this directly is technically unpleasant, especially the sign in the latter equality, so we pro-
ceed differently and first use (1) to embed G in the Wreath product $\Sigma_{\ell} 2 H$. Recall that $\Sigma_{\ell} 乙 H$ consists of elements $\left(\pi ; h_{1}, \ldots, h_{\ell}\right)\left(\pi \in \Sigma_{\ell} h_{i} \in H\right)$ with multiplication

$$
\left(\pi ; h_{1}, \ldots, h_{\ell}\right)\left(\sigma ; e_{1}, \ldots, e_{\ell}\right)=\left(\pi \sigma ; h_{\sigma 1} e_{1}, \ldots, h_{\sigma \ell} e_{\ell}\right)
$$

Clearly $(\pi ; 1, \ldots, 1)^{-1}=\left(\pi^{-1} ; 1, \ldots, 1\right)$ and $\left(1 ; h_{1}, \ldots, h_{\ell}\right)^{-1}=\left(1 ; h_{1}^{-1}, \ldots, h_{\ell}^{-1}\right)$. For convenience we shall let $\operatorname{sign}\left(\pi ; h_{1}, \ldots, h_{\ell}\right)$ denote the sign of the permutation π. Using the notation of (1), define $\theta: \mathrm{G} \longrightarrow \Sigma_{\ell} \mathrm{Z} \mathrm{H}$ by

Then we have

Lemma 4.1 (i) θ is a monomorphism.

(ii) Suppose $\left\{y_{1}, \ldots, y_{\ell}\right\}$ is another left transversal for H in G and $\varphi: G \longrightarrow \Sigma_{\ell} \imath H$ is the corresponding monomorphism. Then there exists $w \in \Sigma_{\ell}$ 乙 H such that. $\mathrm{g} \varphi=\mathrm{w}^{-1}(\mathrm{~g} \theta) \mathrm{w}$ for all $g \in G$, and $\operatorname{sign}(w)=\operatorname{sign}$ of the permutation $x_{i} H \longmapsto y_{i} H$ on the left cosets of H in G. Proof (i) This is routine checking.
(ii) It will be sufficient to consider the following two cases:

Case 1 There exist $h_{1}, \ldots, h_{\ell} \in H$ such that $y_{i}=x_{i} h_{i}$. Here we choose $w=\left(1 ; h_{1}, \ldots, h_{\ell}\right)$
Case 2 There exists $\sigma \in \Sigma_{\boldsymbol{\ell}}$ such that $\mathbf{y}_{\mathrm{i}}=\mathrm{x}_{\sigma \mathrm{i}}$. Here we choose $\mathrm{w}=(\sigma ; 1, \ldots, 1)$.

We now need to discuss differential graded algebras as described in VI 7 of [S. MacLane, Homology, Springer-Verlag, Berlin-New York 1975]. Section 4.2 is no more than a summary of portions of Chapter VI of MacLane's book.
4.2 Definitions Let K be a commutative ring with a 1 , and let $A=\oplus_{i=0}^{\infty} A_{i}$ be a graded $K-$-module. An element a in A is homogeneous means $a \in A_{i}$ for some $i \in \mathbb{N}$.
(i) Suppose A is a K-algebra. Then A is a graded K-algebra means $A_{i} A_{j} \subseteq A_{i+j}$
(ii) If there is a K-module homomorphism $\partial: A \longrightarrow A$ such that $A_{i} \partial \subseteq A_{i-1}$ for all $i \in \mathbb{P}$, $\mathrm{A}_{0} \partial=0$ and $\partial^{2}=0$, then A is called a DG-module.
(iii) Suppose A is a graded K -algebra which is also a DG-module. Then A is a DG-algebra means $(a b) \partial=(a \partial) b+(-1)^{\operatorname{deg} a} a(b \partial)$ for all homogeneous elements a, b in A.
(iv) If A and B are graded K-algebras, then $A \otimes_{k} B$ is a graded K-algebra with multiplication and degree

$$
\begin{aligned}
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right) & =a a^{\prime} \otimes b b^{\prime}(-1)^{\operatorname{deg} b \operatorname{deg} a^{\prime}} \\
\operatorname{deg}(a \otimes b) & =\operatorname{deg} a+\operatorname{deg} b
\end{aligned}
$$

($a, a^{\prime} \in A, b, b^{\prime} \in B$ homogeneous). Note that forming tensor products of graded algebras is associative: i.e. we get the same sign in the above whether we consider $A \otimes_{K}\left(B \otimes_{K} C\right)$ or $\left(A \otimes_{K} B\right) \otimes_{K} C$, and in both cases

$$
(a \otimes b \otimes c)\left(a^{\prime} \otimes b^{\prime} \otimes c^{\prime}\right)=a a^{\prime} \otimes b b^{\prime} \otimes c c^{\prime}(-1)^{\sigma}
$$

where $\sigma=\operatorname{deg} a^{\prime} \operatorname{deg} b+\operatorname{deg} a^{\prime} \operatorname{deg} c+\operatorname{deg} b^{\prime} \operatorname{deg} c$. Thus we can write unambiguously $\mathrm{A} \otimes_{\mathrm{K}} \mathrm{B} \otimes_{\mathrm{K}} \mathrm{C}$.
(v) If A and B are DG-modules, then $A \otimes_{K} B$ is a DG-module with $\operatorname{deg}(a \otimes b)=$ $\operatorname{deg} a+\operatorname{deg} b$ and

$$
(\mathrm{a} \otimes \mathrm{~b}) \partial=\mathrm{a} \partial \otimes \mathrm{~b}+(-1)^{\operatorname{deg} \mathrm{a}} \mathrm{a} \otimes \mathrm{~b} \partial
$$

for homogeneous $a \in A, b \in B$. As in (iv) forming tensor products is associative i.e we get the same sign in the above whether we consider $A \otimes_{K}\left(B \otimes_{K} C\right)$ or $\left(A \otimes_{K} B\right) \otimes_{K} C$, and in both cases

$$
(a \otimes b \otimes c) \partial=a \partial \otimes b \otimes c+(-1)^{\operatorname{deg} a} a \otimes b \partial \otimes c+(-1)^{\operatorname{deg} a+\operatorname{deg} b} a \otimes b \otimes c \partial
$$

Thus again we can write unambiguously $A \otimes_{K} B \otimes_{K} C$.
(vi) Suppose A is a $D G$-module which is also a graded K-algebra. Then A is a $D G$-algebra means

$$
(\mathrm{ab}) \partial=(\mathrm{a} \partial) \mathrm{b}+(-1)^{\operatorname{deg} \mathrm{a}} \mathrm{a}(\mathrm{~b} \partial)
$$

for all homogeneous $a, b \in A$. If A, B, C are $D G$-algebras, then $A \otimes_{K} B$ is a DG-algebra and by parts (iv) and (v) and we can write unambiguously $\mathrm{A} \otimes_{\mathrm{K}} \mathrm{B} \otimes_{\mathrm{K}} \mathrm{C}$.
(vii) The tensor algebra

- 34 -
$T(A)=K \oplus A \oplus A \otimes_{K} A \oplus \ldots$
is a graded K-algebra with $\operatorname{deg}\left(a_{1} \otimes \ldots \otimes a_{\ell}\right)=\operatorname{deg} a_{1}+\ldots+\operatorname{deg} a_{\ell}$ and

$$
\left(a_{1} \otimes \ldots \otimes a_{\ell}\right)\left(a_{1}^{\prime} \otimes \ldots \otimes a_{\ell^{\prime}}^{\prime}\right)=a_{1} \otimes \ldots \otimes a_{\ell} \otimes a_{1}^{\prime} \otimes \ldots \otimes a_{\ell^{\prime}}^{\prime}
$$

If A is a DG-module, then $T(A)$ becomes a DG-algebra with

$$
\left(a_{1} \otimes \ldots \otimes a_{\ell}\right) \partial=\sum_{i=1}^{\ell}(-1)^{\sigma_{i}} a_{1} \otimes \ldots \otimes a_{i} \partial \otimes \ldots \otimes a_{\ell}
$$

where $\sigma_{i}=\operatorname{deg} a_{1}+\ldots+\operatorname{deg} a_{i-1}$. Note that the natural injection $A \longrightarrow T(A)$ is a chain map.

Recall the following elementary result:

Lemma, 4.3 Let A, R be K-algebras, let $\theta: A \longrightarrow R$ be a K-module homomorphism, and let $X \subseteq A$ such that X generates A as a K-module. If $(x y) \theta=x \theta y \theta$ for all $x, y \in X$, then θ is a K-algebra homomorphism.

We now have

Proposition 4.4 Let $\alpha: \mathrm{A} \longrightarrow \mathrm{R}, \beta: \mathrm{B} \longrightarrow \mathrm{R}$ be homomorphisms of graded K -algebras, let X, Y be the homogeneous elements of A, B respectively, and let $X^{\prime} \subseteq X$ be a subset which generates A as a K-algebra. If

$$
\mathrm{x} \alpha \mathrm{y} \beta=(-1)^{\operatorname{deg} \mathrm{x} \operatorname{deg} \mathrm{y}} \mathrm{y} \beta \mathrm{x} \alpha
$$

for all $x \in X^{\prime}, y \in Y$, then there is a unique graded K-algebra homomorphism $\theta: A \otimes_{\mathrm{K}} \mathrm{B} \longrightarrow \mathrm{R}$ such that $(\mathrm{a} \otimes \mathrm{b}) \theta=\mathrm{a} \alpha \mathrm{b} \beta$ for all $\mathrm{a} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}$.
Proof Certainly there is a unique $\mathrm{K}-$ module homomorphism $\theta: \mathrm{A} \otimes_{\mathrm{K}} \mathrm{B} \longrightarrow \mathrm{R}$ such that $(\mathrm{a} \otimes \mathrm{b}) \theta=\mathrm{a} \alpha \mathrm{b} \beta$ for all $\mathrm{a} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}$, so we need to prove that θ respects multiplication. Let $\mathrm{X}^{\prime \prime}$ be the multiplicative semigroup generated by X^{\prime}. If $\mathrm{x}=\mathrm{x}_{1} \mathrm{x}_{2}$ with $\mathrm{x}, \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}^{\prime \prime}$ and

$$
\mathrm{x}_{\mathrm{i}} \alpha \mathrm{y} \beta=(-1)^{\operatorname{deg} \mathrm{x}_{\mathrm{i}} \operatorname{deg} \mathrm{y}} \mathrm{y} \beta \mathrm{x}_{\mathrm{i}}^{\alpha} \quad(\mathrm{i}=1,2)
$$

then

$$
\begin{aligned}
\mathrm{x} \alpha \mathrm{y} \beta & =\left(\mathrm{x}_{1} \mathrm{x}_{2}\right) \alpha \mathrm{y} \beta=\mathrm{x}_{1} \alpha \mathrm{x}_{2} \alpha \mathrm{y} \beta \\
& =(-1)^{\operatorname{deg} \mathrm{x}_{2} \operatorname{deg} \mathrm{y}} \mathrm{x}_{1} \alpha \mathrm{y} \beta \mathrm{x}_{2} \alpha \\
& =(-1)^{\operatorname{deg} \mathrm{x}_{2} \operatorname{deg} \mathrm{y}}(-1)^{\operatorname{deg} x_{1} \operatorname{deg} y} \mathrm{y} \beta \mathrm{x}_{1} \alpha \mathrm{x}_{2} \alpha \\
& =(-1)^{\operatorname{deg} \mathrm{x} \operatorname{deg} \mathrm{y}} \mathrm{y} \beta\left(\mathrm{x}_{1} \mathrm{x}_{2}\right) \alpha=(-1)^{\operatorname{deg} \mathrm{xdeg} \mathrm{y}} \mathrm{y} \beta \mathrm{x} \alpha
\end{aligned}
$$

and we deduce that

$$
\mathrm{x} \alpha \mathrm{y} \beta=(-1)^{\operatorname{deg} x \operatorname{deg} y} \mathrm{y} \beta \mathrm{x} \alpha
$$

for all $x \in X^{\prime \prime}, y \in Y$. An easy calculation now shows that $\left(\left(u_{1} \otimes v_{1}\right)\left(u_{2} \otimes v_{2}\right)\right) \theta=$ $\left(u_{1} \otimes v_{1}\right) \theta\left(u_{2} \otimes v_{2}\right) \theta$ for all $u_{1}, u_{2} \in X^{\prime \prime}, v_{1}, v_{2} \in Y$. Since the elements $\left\{u \otimes v \mid u \in X^{\prime \prime}\right.$, $v \in Y\}$ generate $A \otimes_{K} B$ as a K-module, the result follows from Lemma 4.3.

Corollary 4.5 Let $\alpha_{i}: A_{i} \longrightarrow R(i=1, \ldots, n)$ be homomorphisms of graded K-algebras such that

$$
a_{i} \alpha_{i} a_{j} \alpha_{j}=(-1)^{\operatorname{deg} a_{i} \operatorname{deg} a_{j}} a_{j} \alpha_{j} a_{i} \alpha_{i} \text { for all } \mathbf{i} \neq \mathbf{j}
$$

($a_{i} \in A_{i}$, homogeneous). Then there is a unique graded K-algebra homomorphism
$\theta: A_{1} \otimes_{K} \cdots \otimes_{K} A_{n} \longrightarrow R$ such that $\left(a_{1} \otimes \ldots \otimes a_{n}\right) \theta=a_{1} \alpha_{1} \ldots a_{n} \alpha_{n}$.
Proof Certainly there is a unique K -module homomorphism $\theta: \mathrm{A}_{1}{ }_{\mathrm{O}}^{\mathrm{K}}{ }^{\cdots}{ }_{\mathrm{M}}^{\mathrm{K}} \mathrm{A}_{\mathrm{n}} \longrightarrow \mathrm{R}$ such that $\left(a_{1} \otimes \ldots \otimes a_{n}\right) \theta=a_{1} \alpha_{1} \ldots a_{n} \alpha_{n}$, so we need to prove that θ respects multiplication.

We shall use induction on n, so if $\varphi: A_{1} \otimes_{K} \cdots \otimes_{K} A_{n-1} \longrightarrow R$ is defined by $\left(a_{1} \otimes \ldots \otimes a_{n-1}\right) \varphi$ $=a_{1} \alpha_{1} \ldots a_{n-1} \alpha_{n-1}$, we may assume that φ is a K-algebra homomorphism. In view of Proposition 4.4 we need to prove

$$
\left(1 \otimes \ldots \otimes a_{i} \otimes \ldots \otimes 1\right) \varphi a_{n} \alpha_{n}=(-1)^{\operatorname{deg} a_{i} \operatorname{deg} a_{n}} a_{n} \alpha_{n}\left(1 \otimes \ldots \otimes a_{i} \otimes \ldots \otimes 1\right) \varphi
$$

which is true because $\left(1 \otimes \ldots \otimes a_{i} \otimes \ldots \otimes 1\right) \varphi=a_{i} \alpha_{i}$
(4.6) Let A be a graded K-algebra, let $\ell \in \mathbb{P}$, let $\pi \in \Sigma_{\ell}$, and let $A^{\ell}=A \otimes_{K} \cdots_{K} A \quad(\ell$ factors). For $i=1, \ldots, \ell$ define $\alpha_{i}: A \longrightarrow A^{\ell}$ by

$$
\mathrm{a} \alpha_{i}=1 \otimes \ldots \otimes a \otimes \ldots \otimes 1
$$

where the a on the right is in the $\pi^{-1} \mathbf{i}$-position. Since

$$
a \alpha_{i} b \alpha_{j}=(-1)^{\operatorname{deg} a \operatorname{deg} b} b \alpha_{j} \text { a } \alpha_{i} \text { for all } i \neq j
$$

it follows from Corollary 4.5 that π induces a unique graded K-algebra homomorphism $\pi: A^{\ell} \longrightarrow A^{l}$: Clearly this defines an action of Σ, on A^{ℓ} (i.e. $\alpha(\pi \sigma)=(\alpha \pi) \sigma$ for $\alpha \in A^{\ell}, \pi$, $\sigma \in \Sigma_{\ell}$, and π satisfies for homogeneous $a_{i} \in A_{i}$

$$
\left(a_{1} \otimes \ldots \otimes a_{\ell}\right) \pi=a_{\pi 1} \otimes \ldots \otimes a_{\pi \ell} \chi
$$

where χ is a sign (depending on π and the degrees of the a_{i}).
(4.7) Let A be a DG-algebra and let Σ_{ℓ} act on A^{ℓ} by the rule

$$
\left(a_{1} \otimes \ldots \otimes a_{\ell}\right) \pi=a_{\pi 1} \otimes \ldots \otimes a_{\pi \ell} \chi
$$

as described in (4.6). We want to show that the action commutes with the boundary map, i.e.

$$
\begin{equation*}
\alpha \partial \pi=\alpha \pi \partial \text { for all } \alpha \in A^{\ell}, \pi \in \Sigma_{\ell} . \tag{4}
\end{equation*}
$$

Note that if α, β are homogeneous elements of A^{ℓ} and $\alpha \partial \pi=\alpha \pi \partial, \beta \partial \pi=\beta \pi \partial$, then $(\alpha+\beta) \partial \pi=(\alpha+\beta) \pi \partial$ and

$$
\begin{aligned}
(\alpha \beta) \partial \pi & =\left(\alpha \partial \beta+(-1)^{\operatorname{deg} \alpha} \alpha \beta \partial\right) \pi \\
& =\alpha \partial \pi \beta \pi+(-1)^{\operatorname{deg} \alpha \pi} \alpha \pi \beta \partial \pi \\
& =\alpha \pi \partial \beta \pi+(-1)^{\operatorname{deg} \alpha \pi} \alpha \pi \beta \pi \partial \\
& =(\alpha \pi \beta \pi) \partial=(\alpha \beta) \pi \partial
\end{aligned}
$$

It follows that we need only check (4) when α is of the form $1 \otimes \ldots \otimes a \otimes \ldots \otimes 1$, and this is obvious.
(4.8) Let $P=\oplus_{i=0}^{\infty} \mathrm{P}_{\mathrm{i}}$ be a DG-module and let Σ_{t} act on P^{ℓ} according to the formula

$$
\left(p_{1} \otimes \ldots \otimes p_{\ell}\right) \pi=p_{\pi 1} \otimes \ldots \otimes p_{\pi \ell} \chi
$$

as described in (4.6). We want to show that this is an action and that it commutes with the boundary map i.e.

$$
\alpha \pi \rho=\alpha \rho \pi \text { and } \alpha \pi \partial=\alpha \partial \pi
$$

for all $\alpha \in \mathrm{P}^{\ell}$ and $\pi, \rho \in \Sigma_{\ell}, B y(4.7)$ this is certainly true if $\alpha \in T(P)^{\ell}$ (where $T(P)$ is the tensor algebra of Definition 4.2 (vii)). But the natural injection $P \longrightarrow T(P)$ is a chain map, and the natural injection $\mathrm{P}^{\ell} \longrightarrow \mathrm{T}(\mathrm{P})^{\ell}$ commutes with the action of Σ_{ℓ}, and the result follows.

Note that in the special case π is a transposition $(n \quad n+1)$, it is easy to see that

(4.9) Let H be a group, let P be a complex of $K H-$ modules, let $\ell \in \mathbb{P}$, and let $W=\Sigma_{\ell}$? H denote the Wreath product. We make P^{ℓ} into a complex of KH^{ℓ}-modules by defining

$$
\left(p_{1} \otimes \ldots \otimes p_{\ell}\right)\left(h_{1}, \ldots, h_{\ell}\right)=p_{1} h_{1} \otimes \ldots \otimes p_{\ell} h_{\ell}
$$

and into a complex of $K \Sigma_{\ell}$-modules (using (4.8)) by defining for homogeneous $p_{i} \in P_{i}$

$$
\left(\mathrm{p}_{1} \otimes \ldots \otimes \mathrm{p}_{\ell}\right) \pi=\mathrm{p}_{\pi 1} \otimes \ldots \otimes \mathrm{p}_{\pi \ell} \chi
$$

We claim that P^{ℓ} is a complex of KW-modules with

$$
\left(p_{1} \otimes \ldots \otimes p_{\ell}\right)(\pi h)=\left(\left(p_{1} \otimes \ldots \otimes p_{\ell}\right) \pi\right) h
$$

$\left(\pi \in \Sigma_{\ell^{\prime}} \mathbf{h} \in \mathrm{H}^{\ell}\right)$. To establish this claim, we must verify
(i) $\left(p_{1} \otimes \ldots \otimes p_{\ell}\right)\left(g_{1} g_{2}\right)=\left(\left(p_{1} \otimes \ldots \otimes p_{\ell}\right) g_{1}\right) g_{2}$
(ii) $\left(\left(\mathrm{p}_{1} \otimes \ldots \otimes \mathrm{p}_{\ell}\right) \mathrm{g}\right) \partial=\left(\left(\mathrm{p}_{1} \otimes \ldots \otimes \mathrm{p}_{\ell}\right) \partial\right) g$
for all $g_{1}, g_{2}, g \in W$. Since W is generated by Σ_{ℓ} and H^{ℓ} we need only check (i) and for this we use

Lemma Let G be a semidirect product of A and H, so $H \triangleleft G$ and every element of G can be written uniquely in the form $a h(a \in A, h \in H)$, and let K be a commutative ring with

- 38 -

a 1 . Suppose M is both a KA-module and a KH-module Define $m(a h)=(m a) h$ for $m \in$ M.
(1) If (mh$) \mathrm{a}=\mathrm{ma}\left(\mathrm{a}^{-1} \mathrm{~h} a\right.$) for all $\mathrm{m} \in \mathrm{M}, \mathrm{a} \in \mathrm{A}, \mathrm{h} \in \mathrm{H}$, then M is $\mathrm{a} K G$-module.
(2) If $A=\left\langle A_{0}\right\rangle, H=\left\langle H_{0}\right\rangle, M$ is generated as a K-module by M_{0}, and
$(m h) a=m a\left(a^{-1} h a\right)$ for all $m \in M_{0}, a \in A_{0}, h \in H_{0}$,
then M is a $K G-m o d u l e$.

We omit the elementary proof. Thus to verify (i), we need only show

$$
\left(\left(\mathrm{p}_{1} \otimes \ldots \otimes \mathrm{p}_{\ell}\right)\left(\mathrm{h}_{1} \ldots \mathrm{~h}_{\ell}\right)\right) \pi=\left(\mathrm{p}_{1} \otimes \ldots \otimes \mathrm{p}_{\ell}\right) \pi\left(\pi^{-1}\left(\mathrm{~h}_{1}, \ldots, \mathrm{~h}_{\ell}\right) \pi\right)
$$

for $h_{i} \in H$ and π a transposition ($n \mathbf{n}+1$), which is obvious (recall $\pi^{-1}\left(h_{1}, \cdots, h_{\ell}\right) \pi=$
$\left.\left(h_{1}, \ldots, h_{n+1}, h_{n}, \ldots, h_{\ell}\right)\right)$.
(4.10) Now let us return to the situation at the beginning of this chapter, so $\mathrm{H} \leq \mathrm{G}$, $G=x_{1} H \uplus \ldots \uplus x_{\ell} H, g x_{i}=x_{g i} g_{i}$, and P is a chain complex of $k H-$ modules. Let W be the Wreath product Σ_{ℓ} ? H , and let $\theta: \mathrm{G} \longrightarrow \mathrm{W}$ be the monomorphism of Lemma 4.1. Then (4.9) shows that P^{ℓ} is a complex of kW -modules, hence P^{l} becomes a complex of $k G$-modules with G-action given by $\mathrm{qg}=\mathrm{q}(\mathrm{g} \theta)$ for $\mathrm{q} \in \mathrm{P}^{\ell}$ and $\mathrm{g} \in \mathrm{G}$. Explicitly the G -action is given by

$$
\left(\mathrm{m}_{1} \otimes \ldots \otimes \mathrm{~m}_{\ell}\right) \mathrm{g}=\underset{\mathrm{g} 1}{\mathrm{~m}_{\dot{1}} \mathrm{~g}_{1} \otimes \ldots \otimes \mathrm{~m}_{\mathrm{g} \ell} \mathrm{~g}_{\ell} \chi}
$$

for homogeneous $m_{i} \in P_{i}$ where χ is a sign (depending on g and the degrees of the m_{i}): it is easy to see that when all the deg m_{i} are equal χ is given by (3) (see 4.8); we leave it as an exercise to check that χ is always given by (3), since we do not need the general case in the sequel.

Suppose $\left\{y_{1}, \ldots, y_{\ell}\right\}$ is another set of left coset representatives, so that $G=y_{1} H \cup \ldots \cup y_{\ell} H$, and let $\varphi: \mathrm{G} \longrightarrow \mathrm{W}$ be the corresponding monomorphism. Then Lemma 4.1 shows that there exists $w \in W$ such that $g \varphi=w^{-1}(g 0) w$ and $\operatorname{sign}(w)=\operatorname{sign}$ of the permutation $x_{i} H \longmapsto y_{i} H$,

$$
-39-
$$

and we now have a chain isomorphism $\psi: \mathrm{P}^{\ell} \longrightarrow \mathrm{P}^{\ell}$ extending the identity defined by $\mathrm{q} \psi=\mathrm{q} \mathrm{w}$ which satisfies $\mathrm{q}(\mathrm{g} \theta) \psi=\mathrm{q} \psi(\mathrm{g} \varphi)$ for all $\mathrm{q} \in \mathrm{P}^{\ell}$. In particular the different chain complexes arising from different left coset representatives of H in G are chain isomorphic.

We can now define the Evens norm map. Let
$\mathrm{P}: \ldots \longrightarrow \mathrm{P}_{1} \longrightarrow \mathrm{P}_{0} \longrightarrow \mathrm{k} \longrightarrow 0$ be a projective resolution with kH -modules,
$\mathrm{V}: \ldots \longrightarrow \mathrm{V}_{1} \longrightarrow \mathrm{~V}_{0} \xrightarrow{\epsilon} \mathrm{k} \longrightarrow 0$ be a resolution with kG -modules.
Then $P^{\ell}{ }_{\mathbf{k}} \mathrm{V}$ is a resolution of k with kG -modules (by the Künneth formula), not in general projective. So we choose V to make $\mathrm{P}^{\ell} \otimes_{\mathrm{k}} \mathrm{V}$ projective (eg. if V is projective, then $\mathrm{P}^{\ell} \otimes_{\mathrm{k}} \mathrm{V}$ is projective by Lemma 1.11). Let k_{n} denote the $k G-m o d u l e ~ w h i c h ~ i s ~ t h e ~ s i g n ~ o f ~ t h e ~ p e r m a t a-~$ tion representation of G on $\left\{x_{1} H, \ldots, x_{\ell} H\right\}$ for n odd, and is the trivial module k for n even. Thus $\mathbf{k}_{\mathbf{n}}=\mathrm{k}$ as k -modules and for $\lambda \in \mathrm{k}_{\mathrm{n}}, \mathrm{g} \in \mathrm{G}$

$$
\begin{aligned}
& \lambda \mathrm{g}=\lambda \text { if } \mathrm{n} \text { is even, } \\
& \lambda \mathrm{g}=\hat{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{i}>\mathrm{j}}^{\mathrm{j}} \hat{\mathrm{~g}}^{-1}(-1)
\end{aligned}
$$

Write
$H(G)=\underset{i \in \mathbb{N}}{\oplus} H^{i}(G, k)$ if k is a field of characteristic two,

$$
=\underset{i \in \mathbb{N}}{\oplus} H^{2 i}(G, k) \text { otherwise. }
$$

Let $u \in H^{*}(H, k)$ and let $f \in \operatorname{Hom}_{k H}(P, k)$ represent u.
(i) If $u \in H(H)$, then $f \otimes \ldots \otimes f \otimes \epsilon \in \operatorname{Hom}_{k G}\left(\mathrm{P}^{\ell} \otimes_{k} W, k\right)$ represents an element norm $_{H, G}(u) \in H(G)$. If u is homogeneous with degree n, then norm $H_{H, G}(u)$ is homogeneous with degree $n \ell$.
(ii) If $f \in \operatorname{Hom}_{k H}\left(P_{n}, k\right.$) (so u is homogeneous with degree n, n possibly odd), then

$$
\mathrm{f} \otimes \ldots \otimes \mathrm{f} \otimes \epsilon \in \operatorname{Hom}_{\mathrm{k} G}\left(\left(\mathrm{P}^{\ell} \otimes_{\mathrm{k}} \mathrm{~W}\right)_{\mathrm{n} \ell}, \mathrm{k}_{\mathrm{n}}\right)
$$

and represents an element norm $_{H, G}(u) \in H^{n \ell}\left(G, k_{n}\right)$.

Note If n is odd, we need k_{n} (not k). Also if $g \in \operatorname{Hom}_{k H}\left(P_{n}, k\right.$) represents u, then $g \otimes \ldots \otimes g \otimes \epsilon$ represents $n^{n o r m} H_{H}(u)$ (i.e. $n^{(n o r m} H_{H}(u)$ does not depend on the choice of f). To see this, write $f=g+\delta h$ where $h \in \operatorname{Hom}_{k H}\left(P_{n-1}, k\right)$ (so δ is the coboundary map and $\delta g=0)$. Then $f \otimes \ldots \otimes f \otimes \epsilon-g \otimes \ldots \otimes g \otimes \epsilon$ is a sum of elements of the form $g_{1} \otimes \ldots \otimes g_{i-1} \otimes \delta h \otimes g_{i+1} \otimes \ldots \otimes g_{\ell} \otimes \epsilon$ where each $g_{i}=g$ or δh, which up to sign is

$$
\delta\left(\mathrm{g}_{1} \otimes \ldots \otimes \mathrm{~g}_{\mathrm{i}-1} \otimes \mathrm{~h} \otimes \mathrm{~g}_{\mathrm{i}+1} \otimes \ldots \otimes \mathrm{~g}_{\ell} \otimes \epsilon\right)
$$

because $\delta g_{i}=0$ for all i.

Lemma 4.11 Let $\mathrm{H} \leq \mathrm{G}$ and $\ell=[\mathrm{G}: \mathrm{H}]$.
(i) If $\lambda \in \mathrm{k}=\mathrm{H}^{0}(\mathrm{H}, \mathrm{k})$, then $\operatorname{norm}_{\mathrm{H}, \mathrm{G}}(\lambda)=\lambda^{\ell}$.
(ii) If $u, v \in H^{*}(H, k)$ are homogeneous, then

$$
\operatorname{norm}_{H, G}(\mathrm{u} \mathrm{v})=\operatorname{norm}_{\mathrm{H}, \mathrm{G}}(\mathrm{u}) \operatorname{norm}_{\mathrm{H}, \mathrm{G}}(\mathrm{v})(-1)^{\operatorname{deg} u \operatorname{deg} \mathrm{y}} \frac{\ell(\ell-1)}{2} .
$$

(iii) If $u, v \in H(H)$, then $\operatorname{norm}_{H, G}(u v)=\operatorname{norm}_{H, G}(u) \operatorname{norm}_{H, G}(v)$.

Proof (i) is obvious. (ii) and (iii) are very similar, so we will prove just (ii).
Let P be a projective resolution of k with kH -modules, let (V, ϵ) be a projective resolution of k with kG -modules, and let

$$
\theta: \mathrm{P} \longrightarrow \mathrm{P} \otimes_{\mathrm{k}} \mathrm{P}, \varphi: \mathrm{V} \longrightarrow \mathrm{~V} \otimes_{\mathrm{k}} \mathrm{~V}
$$

be chain maps extending the identity map on k (cf. 3.1).

$$
\text { Define } \quad \tau: \mathrm{P}^{\ell} \otimes_{\mathrm{k}} \mathrm{P}^{\ell} \otimes_{\mathrm{k}} \mathrm{~V} \otimes_{\mathrm{k}} \mathrm{~V} \longrightarrow \mathrm{P}^{\ell} \otimes_{\mathrm{k}} \mathrm{~V} \otimes_{\mathrm{k}} \mathrm{P}^{\ell} \otimes_{\mathrm{k}} \mathrm{~V}
$$

by $(\bar{p} \otimes \bar{q} \otimes u \otimes v) \tau=\bar{p} \otimes u \otimes \bar{q} \otimes v(-1)^{\operatorname{deg} \bar{q} \operatorname{deg} u}$ where $\bar{p}, \bar{q} \in P^{\ell}, u, v \in V$ and \bar{q}, u are homogeneous. Then τ is a G-map which is a chain map extending the identity. Now use (4.8) to define a chain map $\pi:\left(P \otimes_{k} P^{\ell} \longrightarrow \mathrm{P}^{\ell} \dot{\otimes}_{k} \mathrm{P}^{\ell}\right.$ extending the identity by

$$
\left(p_{1} \otimes q_{1} \otimes \ldots \otimes p_{\ell} \otimes q_{\ell}\right) \pi=p_{1} \otimes \ldots \otimes p_{\ell} \otimes q_{1} \otimes \ldots \otimes q_{\ell} \chi
$$

- 41 -

where χ is a sign. Let $\hat{\pi} \in \Sigma_{2 \ell}$ be the permutation corresponding to π. Then $\hat{\pi}$ can be written as the product of $\ell(\ell-1) / 2$ transpositions of the form $(n n+1)$, each interchanging a p_{i} and a q_{j}. So if all the p_{i} have the same degree, and all the q_{j} have the same degree, then

$$
\chi=(-1)^{\operatorname{deg} p_{1} \operatorname{deg} q_{1} \ell(\ell-1) / 2}
$$

by (4.8).
Finally we claim that π is a G-map. By embedding G in $\Sigma_{\ell} 乙 H$ as in Lemma 4.1, this amounts to showing that π commutes with the action of Σ_{ℓ}. This is a consequence of the fol-
lowing Lemma, whose proof we omit.

Lemma Let $\sigma \in \Sigma_{\ell}$ and define $\alpha, \beta \in \Sigma_{2 \ell}$ by

$$
\begin{array}{rll}
\alpha(2 \mathrm{i}-1)=2 \sigma \mathrm{i}-1, \alpha(2 \mathrm{i})=2 \sigma \mathrm{i} & & (1 \leq \mathrm{i} \leq \ell) \\
\beta \mathrm{i}=\sigma \mathrm{i}, \beta(\mathrm{i}+\ell)=\sigma \mathrm{i}+\ell . & &
\end{array}
$$

If $\pi \in \Sigma_{2 \ell}$ is defined by

$$
\pi(2 \mathbf{i}-1)=\mathbf{i}, \pi(2 \mathrm{i})=\mathrm{i}+\ell \quad(1 \leq \mathrm{i} \leq \ell)
$$

then $\pi \alpha=\beta \pi$.

Let $r=\operatorname{deg} u, s=\operatorname{deg} v$, and let $f \in \operatorname{Hom}_{k H}\left(P_{r^{\prime}} k\right), g \in \operatorname{Hom}_{k H}\left(P_{s^{\prime}} ; k\right)$ represent u, v respectively. Then

$$
\theta(\mathrm{f} \otimes \mathrm{~g}) \in \operatorname{Hom}_{\mathrm{kH}}\left(\mathrm{P}_{\mathrm{r}+\mathrm{s}^{\prime}}, \mathrm{k}\right)
$$

represents $u v \in H^{r+s}(H, k)$,

$$
\theta(\mathrm{f} \otimes \mathrm{~g}) \otimes \ldots \otimes \theta(\mathrm{f} \otimes \mathrm{~g}) \otimes \epsilon=\left(\theta^{\ell} \otimes \varphi\right)^{*}(\mathrm{f} \otimes \mathrm{~g} \otimes \ldots \otimes \mathrm{f} \otimes \mathrm{~g} \otimes \epsilon \otimes \epsilon) \in \operatorname{Hom}_{\mathrm{kG}}\left(\left(\mathbf{P}^{\ell} \otimes_{\mathrm{k}} \mathrm{~V}\right)_{\ell \mathrm{r}+\ell s^{\prime}}, \mathbf{k}_{\mathrm{r}+\mathrm{s}}\right)
$$

$$
\text { represents norm }{ }_{H, G}(\mathrm{u} v) \in \mathrm{H}^{\ell(\mathrm{r}+\mathrm{s})}\left(\mathrm{G}, \mathrm{k}_{\mathrm{r}+\mathrm{s}}\right)
$$

$$
\mathrm{f} \otimes \ldots \otimes \mathrm{f} \otimes \epsilon \in \operatorname{Hom}_{k G}\left(\left(\mathrm{P}^{\ell} \otimes_{k} \mathrm{~V}\right)_{\ell r^{\prime}}, \mathrm{k}_{\mathrm{r}}\right)
$$

represents norm $H_{, G}(\mathrm{u})$,

$$
\mathrm{g} \otimes \ldots \otimes \mathrm{~g} \otimes \in \in \operatorname{Hom}_{\mathrm{kG}}\left(\left(\mathrm{P}^{\ell} \otimes_{\mathrm{k}} \mathrm{~V}\right)_{\mathrm{s}^{\prime}}, \mathrm{k}_{\mathrm{s}}\right)
$$

represents norm $_{H, G}(\mathbf{v})$, and

$$
\left(\theta^{\ell} \otimes \varphi\right)^{*}(\pi \otimes i d)^{*} \tau^{*}(\mathrm{f} \otimes \ldots \otimes \mathrm{f} \otimes \epsilon \otimes \mathrm{~g} \otimes \ldots \otimes \mathrm{~g} \otimes \epsilon) \in \operatorname{Hom}_{\mathrm{kG}}\left(\left(\mathrm{P}^{\ell} \otimes_{\mathrm{k}} \mathrm{~V}\right)_{\ell \mathrm{f}+\mathrm{S}^{s}} \mathrm{k}_{\mathrm{r}+\mathrm{s}}\right)
$$

represents $\operatorname{norm}_{H, \mathrm{~S}}(\mathrm{uv}) \in \mathrm{H}^{\ell(\mathrm{r}+\mathrm{s})}\left(\mathrm{G}, \mathrm{k}_{\mathrm{r}+\mathrm{s}}\right)$.
Therefore $\operatorname{norm}_{H, G}(\mathrm{u} v)=\operatorname{norm}_{\mathrm{H}, \mathrm{G}}(\mathrm{u})$ norm $_{\mathrm{H}, \mathrm{G}}(\mathrm{v})$ unless both r and s are odd, in which case they differ by a sign $(-1)^{(\ell-1) / 2}$.
4.12 Change of coset representatives Let $H \leq G$, let $r \in \mathbb{N}$, and suppose

$$
G=x_{1} H \uplus \ldots \uplus x_{l} H=y_{1} H \uplus \ldots \uplus y_{l} H .
$$

Define

$$
\begin{aligned}
& N_{1}: H^{\mathrm{r}}(\mathrm{H}, \mathrm{k}) \rightarrow \mathrm{H}^{\mathrm{rl}}\left(\mathrm{G}, \mathrm{k}_{\mathrm{r}}\right) \text { to be } \text { norm }_{\mathrm{H}, \mathrm{G}} \text { with respect to }\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\ell}\right\} \\
& N_{2}: H^{r}(H, k) \longrightarrow H^{r l}\left(G, k_{r}\right) \text { to be } \text { norm }_{H, G} \text { with respect to }\left\{y_{1}, \ldots, y_{l}\right\} .
\end{aligned}
$$

Then for $u \in H^{r}(H, k)$,

$$
N_{1}(u)=N_{2}(u) \sigma
$$

where $\sigma=1$ if r is even, and $\sigma=$ sign of the permutation $x_{i} H \longmapsto y_{i} H$ on the left cosets of H in G .
Proof Let
$\mathrm{P}: \ldots \longrightarrow \mathrm{P}_{1} \rightarrow \mathrm{P}_{0} \longrightarrow \mathrm{k} \longrightarrow 0$ be a projective resolution with kH -modules
$\mathrm{V}: \ldots \longrightarrow \mathrm{V}_{1} \longrightarrow \mathrm{~V}_{0} \xrightarrow{\epsilon} \mathrm{k} \longrightarrow 0$ be a projective resolution with kH -modules.
Let $Q(1)$ denote P^{ℓ} with $k G$-module structure with respect to $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\ell}\right\}$, let $\mathrm{Q}(2)$ denote P^{ℓ} with $k G-$ module with respect to $\left\{y_{1}, \ldots, y_{\ell}\right\}$, and let $f \in \operatorname{Hom}_{k H}\left(P_{r}, k\right)$.represent u. Then

$$
\mathrm{f} \otimes \ldots \otimes \mathrm{f} \otimes \epsilon \in \operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{Q}(\mathrm{i}) \otimes_{\mathrm{k}} \mathrm{~V}, \mathrm{k}_{\mathrm{r}}\right)
$$

represents $\mathrm{N}_{\mathrm{i}}(\mathrm{u}) \quad(\mathrm{i}=1,2)$. Using (4.10) there is a chain isomorphism $\psi: Q(1) \longrightarrow Q(2)$ extending the identity: in the notation of (4.10) $q \psi=q w$ where $w \in \Sigma_{\ell} 乙 H$ and $\operatorname{sign}(w)=$ sign of the permutation $\mathrm{x}_{\mathrm{i}} \mathrm{H} \longmapsto \mathrm{y}_{\mathrm{i}} \mathrm{H}$. Clearly $\psi(\mathrm{f} \otimes \ldots \otimes \mathrm{f})=(\mathrm{f} \otimes \ldots \otimes \mathrm{f}) \sigma$ (use 4.10) and the result follows.

Remark If $\mathrm{v} \in \mathrm{H}(\mathrm{H})$, then similarly in the above $\mathrm{N}_{1}(\mathrm{v})=\mathrm{N}_{2}(\mathrm{v})$.

Lemma 4.13 Let $\theta: \mathrm{G} \longrightarrow \mathrm{H}$ be a group homomorphism, let $\mathrm{B} \leq \mathrm{H}$, let $\mathrm{A}=\mathrm{B} \theta^{-1}$, and let $u \in H^{*}(B, k)$. Suppose u is homogeneous or $u \in H(B)$, and $G: A=H: B$. Then

$$
\operatorname{norm}_{\mathrm{A}, \mathrm{G}}\left(\mathrm{u} \theta^{*}\right)=\left(\operatorname{norm}_{\mathrm{B}, \mathrm{H}} \mathrm{u}\right) \theta^{*} .
$$

Note Write $G=x_{1} A \cup \ldots \cup x_{\ell} A$. Then the hypothesis implies $H=\left(x_{1} \ell\right) B \cup \ldots \cup\left(x_{\ell}\right) B$ and we have calculated norm $_{A, G}$ with respect to $\left\{x_{1}, \ldots, x_{\ell}\right\}$, and norm $_{B, H}$ with respect to $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\ell}\right\}$.

Proof Let P be a projective resolution of k with kB -modules, and let (V, ϵ) be a projective resolution of k with $k H$-modules. We shall just consider the case u is homogeneous, so let $\mathbf{u} \in \mathbf{H}^{\mathrm{r}}(\mathrm{B}, \mathrm{k})$ and let $\mathrm{f} \in \operatorname{Hom}_{\mathbf{k H}}\left(\mathrm{P}_{\mathrm{r}^{\prime}} \mathrm{k}\right)$ represent \mathbf{u}. Then $f \in \operatorname{Hom}_{k A}\left(\mathrm{P}_{\mathrm{r}}, \mathrm{k}\right)$ represents $\mathbf{u} \theta^{*}$, where P is regarded as a kA-module via $q a=q(a \theta)$ for $q \in P$ and $a \in A$. Also $\mathrm{f} \otimes \ldots \otimes \mathrm{f} \otimes \epsilon \in \mathrm{Hom}_{\mathrm{kH}}\left(\mathrm{P}_{\mathrm{r}}^{\ell} \otimes_{\mathrm{k}} \dot{\mathrm{V}}, \mathrm{k}_{\mathrm{r}}\right)$ represents norm $_{\mathrm{B}, \mathrm{H}^{\mathrm{u}}}$, and $\mathrm{f} \otimes \ldots \otimes \mathrm{f} \otimes \epsilon \epsilon$ $\operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{P}_{\mathrm{r}}^{\ell} \otimes_{\mathrm{k}} \mathrm{V}, \mathrm{k}_{\mathrm{r}}\right)$ represents norm $_{\mathrm{A}, \mathrm{G}} \mathrm{u} \theta^{*}$. Regard the $\mathrm{kH} \dot{H}$-module $\mathrm{P}_{\mathrm{r}}^{\ell} \otimes_{\mathrm{k}} \mathrm{V}$ as a kG -inodule via $\mathrm{yg}=\mathrm{y}(\mathrm{g} \theta)$ for $\mathrm{y} \in \mathrm{P}_{\mathrm{r}}^{\ell} \otimes_{\mathrm{k}} \mathrm{V}$ and $\mathrm{g} \in \mathrm{G}$. Then $\mathrm{f} \otimes \ldots \otimes \mathrm{f} \otimes \epsilon \in$ $\operatorname{Hom}_{k G}\left(\mathrm{P}_{\mathrm{r}}^{\ell} \otimes_{\mathbf{k}} \mathrm{V}, \mathrm{k}_{\mathrm{r}}\right)$ represents (norm $\left._{\mathrm{B}, \mathrm{H}} \mathrm{u}\right) \theta^{*}$ with respect to this new kG -module structure on $\mathrm{P}_{\mathrm{r}}^{\ell} \otimes_{\mathrm{k}} \mathrm{V}$. Since the two kG -module structures on $\mathrm{P}_{\mathrm{r}}^{\ell} \otimes_{\mathrm{k}} \mathrm{V}$ agree, we deduce norm ${ }_{\mathrm{A}, \mathrm{G}}\left(\mathrm{u} \theta^{*}\right)$ $=\left(\operatorname{norm}_{\mathbf{B , H}} \mathbf{u}\right) \theta^{*}$ as required.

Combining 4.12 and 4.13 we obtain

Corollary 4.14 Let $\mathrm{H} \triangleleft \mathrm{G}$, let θ be an automorphism of G such that $\mathrm{H} \theta=\mathrm{H}$, and let $u \in H^{*}(H, k)$.
(i) If $u \in H(H)$, then norm $H, G\left(u \theta^{*}\right)=\left(\operatorname{norm}_{H, G} u\right) \theta^{*}$.
$-44-$
(ii) If $u \in H^{r}(H, k)$, then norm ${ }_{H, G}\left(u \theta^{*}\right)=\left(\right.$ norm $\left._{H, G} u\right) \theta^{*} \sigma$ where $\sigma=1$ if r is even and σ $=\operatorname{sign}$ of the permutation of θ on the cosets of H in G if x is odd.

Note: we use the same set of coset representatives of H in G to calculate norm $H_{H, G} u$ and $\operatorname{norm}_{\mathrm{H}, \mathrm{G}} \mathrm{u} \theta^{*}$.

Mackey Decomposition Let $A, B \leq G$, let M be a $k A-m o d u l e$, and let $x \in G$. We define $A^{x}=x^{-1} A x$ and M^{x} to be the $k A^{x}$-module by $M=M^{x}$ as k-modules and action $m a^{x}$ $=m$ a where $a^{x}=x^{-1} a x$ (so $M^{x} \cong M \otimes x$). If N is a $k G$-module, then $N \downarrow_{B}$ denotes the kB -module obtained by restricting the action to B . Then

$$
M \otimes_{k A} k G \stackrel{N}{\cong} \underset{A x B}{\oplus} M^{x} \downarrow_{A}{ }_{\cap B} \otimes_{k\left[A^{x} \cap B\right]} k B
$$

where $\underset{\mathrm{AxB}}{\underset{\mathrm{A}}{\mathrm{O}}} \mathrm{means}$ the sum is over a set of $(\mathrm{A}-\mathrm{B})$ double coset representatives (in the following $\underset{A \times B}{\Sigma}$ and $\mathbb{T}_{A x B}^{-}$will likewise mean the sum and product over a set of $(A-B)$ double coset representatives). There are similar formulae involving res, tr and norm.

We have a homomorphism $i_{x}: A^{x} \longrightarrow A$ defined by $c i_{x}=x c x^{-1}\left(c \in A^{x}\right)$, hence a homomorphism $i_{x}^{*}: H^{*}(\mathrm{~A}, \mathrm{k}) \longrightarrow \mathrm{H}^{*}\left(\mathrm{~A}^{\mathrm{x}}, \mathrm{k}\right)$. For $\mathrm{u} \in \mathrm{H}^{*}(\mathrm{~A}, \mathrm{k})$, we define $\mathrm{u}^{\mathrm{x}}=i_{\mathrm{x}}^{*}(\mathrm{u})$.

Lemma 4.15

(i) $\operatorname{res}_{G, B} \operatorname{tr}_{A, G}(u)=\sum_{A \times B} \operatorname{tr}_{A^{x} \cap B, B}\left(\right.$ res $\left.A_{A}^{x}, A^{x}{ }_{n B} u^{x}\right)$.
(ii) Suppose u is homogeneous or $u \in H(A, k)$. Then

$$
{ }^{\text {res }}{ }_{G, B} \text { norm }_{A, G}(u)=\prod_{A \times B} \operatorname{norm}_{A^{x} \cap B, B}\left(\text { res } A_{A^{x}, A^{x} \cap B} u^{x}\right) .
$$

Remarks If $k^{\prime}, k^{\prime \prime}$ are $k B$-modules, then we have a well defined cup product

$$
H^{i}\left(B, k^{\prime}\right) \otimes_{k} H^{j}\left(B, k^{\prime \prime}\right) \longrightarrow H^{i+j}\left(B, k^{\prime} \otimes_{k} k^{\prime \prime}\right)
$$

where if $f \in \operatorname{Hom}_{k B}\left(P_{i}, k^{\prime}\right), g \in \operatorname{Hom}_{k B}\left(P_{j}, k^{\prime \prime}\right)$ represent u, v, then $f \otimes g \in \operatorname{Hom}_{k B}\left(P_{i+j}{ }^{\prime}\right.$

$$
-45-
$$

$\mathbf{k}^{\prime} \otimes_{\mathbf{k}} \mathbf{k}^{\prime \prime}$) represents u. This applies when $u \in H^{\mathrm{T}}(A, k)$ in (ii), with $\mathbf{k}^{\prime} \doteq \mathbf{k}^{\prime \prime}=\mathbf{k}_{\mathbf{r}}$. Also when calculating norm A, G and norm ${ }_{A} x_{\cap B, B}$ we must choose the coset representative "consistently", otherwise (ii) in the case u is homogeneous will be correct only up to sign (cf. 4.12); a consistent choice of coset representatives will appear in the proof.

Proof Let P be a projective resolution of k with $k G$-modules, and let $f \in \operatorname{Hom}_{k A}(P, k)$ represent u. If $x \in G$, the map $q \longmapsto q x^{-1}\left(q \in P\right.$) is a $k A^{x}-$ module homomorphism from $\mathrm{P} \downarrow_{A^{x}}$ to $P \downarrow_{A}$ regarded as a $k A^{\mathrm{x}}$-module via i_{x}. Clearly this is a chain map extending the identity on k, so $x^{-1} f \in \underset{k A}{\operatorname{Hom}}(P, k)$ represents u^{x}, and $x^{-1} f=x^{-1} f x$ because x acts trivially on k. Write

$$
\begin{aligned}
& G=A x_{1} B \cup \ldots \cup A x_{r} B \\
& B=\left(A^{x_{i}} \cap B\right) y_{i 1} \cup \ldots \cup\left(A^{x_{i}} \cap B\right) y_{i_{n}} \quad(i=1, \ldots, r) .
\end{aligned}
$$

Then $G=\underset{i, j}{\bigcup} A x_{i} y_{i j}$.
(i) $\operatorname{tr}_{A, C}(u)$ is represented by $\sum_{i=1}^{r}\left(\sum_{j=1}^{n} y_{i j}^{-1}\left(x_{i}^{-1} f x_{i}\right) y_{i j}\right.$ and $\operatorname{tr}_{C \cap B, B}\left({ }^{(r e s} C, C \cap B u^{x_{i}}\right)$ is represented by $\sum_{j=1}^{n} y_{i j}^{-1}\left(x_{i}^{-1} f x_{i}\right) y_{i j}$ where $C=A^{x_{i}}$.
(ii) We will just do the case \mathbf{u} is homogeneous. Let (V, v) be a projective resolution of k with $k G-$ modules and let $t=G: A$. Suppose $u \in H^{s}(A, k)$ and $f \in \operatorname{Hom}_{k A}\left(P_{s}, k\right)$ represents \mathbf{u}. Since $\left(V^{\mathrm{r}}, v^{\mathrm{r}}\right)$ is a projective resolution of $\mathrm{k}^{\mathrm{r}} \cong \mathrm{k}$ with kG -modules,
$\left.f^{t} \otimes v^{r} \in \operatorname{Hom}_{k G}\left(P^{t} \otimes_{k} V^{r}\right)_{s t}, k_{s}\right)$ represents norm $A, G(u)$, hence so does

$$
\left(f^{n_{1}} \otimes v\right) \otimes \ldots \otimes\left(f^{n_{r}} \otimes v\right) \in \operatorname{Hom}_{k G}\left(\left(P^{n_{1}} \otimes_{k} W\right) \otimes_{k} \cdots \otimes_{k}\left(P^{n_{r}} \otimes_{k} W\right), k_{s}\right)
$$

We calculate norm ${ }_{A, G}$ with respect to the right transversal

$$
\left\{x_{1} y_{11}, \ldots, x_{1} y_{1_{n}} ; \ldots ; x_{r} y_{r n_{r}}, \ldots, x_{r} y_{r n_{r}}\right\}
$$

We need to show $f^{n_{i}} \otimes v \in \operatorname{Hom}_{k B}\left(P^{n_{i}} \otimes_{k} W, k_{s}\right)$ represents norm ${ }_{C \cap B, B}\left(\right.$ res $\left._{C, C \cap B} u^{x_{i}}\right)$ where
$C=A A^{x_{i}}$. By a similar argument to the first paragraph, $f \in \operatorname{Hom}_{k C}\left(P^{X_{i}}, k\right)$ represents $u^{x_{i}} \in H^{s}\left(A^{x_{j}}, k\right)$ and the result follows.

Consequences of Mackey decomposition

Proposition 4.16 Let $A \triangleleft G$, let x_{1}, \ldots, x_{n} be a transversal for A in G, and let $u \in H(A)$ or homogeneous in $H^{*}(A, k)$. Then $\operatorname{res}_{G, A} n_{A, G}{ }^{n}=\prod_{i=1}^{n} u^{x_{i}}$. In particular if the x_{i} centralize A (i.e. $a x_{i}=x_{i}$ a for all $a \in A$ and i), then $\operatorname{res}_{G, A} \operatorname{Horm}_{A, G} u=u^{n}$.

We shall use the notation $N_{G}(A)$ for the normalizer of A in G.

Proposition 4.17 Let $A \leq G$ with $|A|=p$, let $r=N_{G}(A): A$, and let $0 \neq u \in H^{2}(A, k)$. Then $H^{2 r}(G, k) \neq 0$.
Proof Lemma 4.15 (ii) yields

$$
\operatorname{res}_{G, A} \operatorname{norm}_{A, G}(1+u)=\prod_{A \times A} \lim _{A \cap A^{x}, A} \text { nes } A_{A^{x}, A \cap A^{x}}(1+u)^{x}
$$

Since

$$
\begin{aligned}
& \operatorname{norm} A_{A} A^{x}, A \\
& \text { res } \\
& A^{x}, A \cap A^{x} \\
&(1+u)^{x}\left.=1 \text { if } A \cap A^{x}=1 \text { (use Lemma } 4.11(i)\right), \\
&=1+u \text { if } A \cap A^{x}=A
\end{aligned}
$$

we see that

$$
\mathrm{res}_{\mathrm{G}, \mathrm{~A}} \text { norm }_{\mathrm{A}, \mathrm{G}}(1+\mathrm{u})=(1+u)^{\mathrm{r}}=1+\mathbf{u}^{\mathrm{r}}+\text { terms of intermediate degree. }
$$

Thus if v is the homogeneous part of $\operatorname{norm}_{A, G}(1+u)$ of degree $2 r$, res ${ }_{\mathrm{G}, \mathrm{A}} \mathrm{v}=\mathrm{u}^{\mathrm{r}} \neq 0$, in particular $\mathrm{H}^{2 \mathrm{r}}(\mathrm{G}, \mathrm{k}) \neq 0$.

For the rest of $\S 4$, the following notation will be in force: $\mathrm{C}=\pi / \mathrm{p} \pi$ (the cyclic group of order $\mathrm{p}), \mathrm{C}=\langle\mathrm{c}\rangle, \mathrm{k}=\mathbb{\pi} / \mathrm{p} \mathbb{H}, \mathrm{N}=$ norm $_{\mathrm{C} \times \mathrm{G}}$, and we shall calculate N . with respect to the coset representatives $\left\{1, \mathrm{c}_{2} \ldots, \mathrm{c}^{\mathrm{p}-1}\right\}$. Note in this situation $\mathrm{k}_{\mathrm{r}} \cong \mathrm{k}$ for all $\mathrm{r} \in \mathbb{N}$. Also to construct

N , we may assume that W is a projective resolution with kC -modules and then let G act trivially on W (use Lemma 1.11). The next result is like the formula $(x+y)^{p}=x^{p}+y^{p}$ in a commutative ring of characteristic p.

Lemma 4.18 If $u, v \in H(G)$ or $H^{r}(G, k)$ for some $r \in \mathbb{N}$, then $N(u+v)=N(u)+N(v)$. Proof Let
$\mathrm{P}: \ldots \longrightarrow \mathrm{P}_{1} \longrightarrow \mathrm{P}_{0} \longrightarrow \mathrm{k} \longrightarrow 0$ be a projective resolution with kG -modules
$\mathrm{W}: \ldots \rightarrow \mathrm{W}_{1} \rightarrow \mathrm{~W}_{0} \longrightarrow \mathrm{k} \xrightarrow{\epsilon} 0$ be a projective resolution with kC -modules.
Let $\theta, \varphi \in \operatorname{Hom}_{k G}(P, k)$ represent u, v respectively. Then $N(u+v)-N(u)-N(v)$ is represented by $(\theta+\varphi)^{\mathrm{P}} \otimes \epsilon-\theta^{\mathrm{p}} \otimes \epsilon-\varphi^{\mathrm{P}} \otimes \epsilon \in \mathrm{Hom}_{\mathrm{k}[\mathrm{C} \times \mathrm{G}]}\left(\mathrm{P}^{\mathrm{p}} \otimes_{\mathbf{k}} \mathrm{W}, \mathrm{k}\right)$. This is a sum of elements of the form

$$
\psi=\psi_{1} \otimes \ldots \otimes \psi_{p} \otimes \epsilon+\psi_{2} \otimes \ldots \otimes \psi_{p} \otimes \psi_{1} \otimes \epsilon+\ldots+\psi_{p} \otimes \psi_{1} \otimes \ldots \otimes \psi_{p-1} \otimes \epsilon
$$

where $\psi_{\mathrm{i}}=\theta$ or $\varphi(\mathrm{i}=1, \ldots, \mathrm{p})$. Since $\delta \theta=\delta \varphi=\delta \epsilon=0$ (where δ is the coboundary $\operatorname{map}), \delta\left(\psi_{1} \otimes \ldots \otimes \psi_{p} \otimes \epsilon\right)=0$ so $\psi_{1} \otimes \ldots \otimes \psi_{\mathrm{p}} \otimes \epsilon$ represents an element $\mathrm{x} \in \mathrm{H}(\mathrm{C} \times \mathrm{G})$ or $\mathrm{H}^{\mathrm{Pr}}(\mathrm{C} \times \mathrm{G}, \mathrm{k})$. Let $\gamma: \mathrm{P}^{\mathrm{p}} \otimes_{\mathrm{k}} \mathrm{W} \longrightarrow \mathrm{P}^{\mathrm{P}} \otimes_{\mathrm{k}} \mathrm{W}$ denote "multiplication by $\mathrm{c}^{\prime \prime}$ (i.e. $\left(\mathrm{p}_{1} \otimes \ldots \otimes \mathrm{p}_{\mathrm{p}}\right.$ $\left.\otimes \mathrm{w}) \gamma=\left(\mathrm{p}_{1} \otimes \ldots \otimes \mathrm{p}_{\mathrm{p}}\right) \mathrm{c} \otimes \mathrm{w}\right)$. Then γ is a $\mathrm{k}[\mathrm{C} \times \mathrm{G}]-$ map extending the identity (because c is central in $\mathrm{C} \times \mathrm{G})$, so $\gamma \circ\left(\psi_{1} \otimes \ldots \otimes \psi_{\mathrm{p}} \otimes \epsilon\right)$ also represents $\mathrm{x} \in \mathrm{H}(\mathrm{C} \times \mathrm{G})$ or $\mathrm{H}^{\mathrm{pr}}(\mathrm{C} \times \mathrm{G}, \mathrm{k})$. But $\gamma \circ\left(\psi_{1} \otimes \ldots \otimes \psi_{p} \otimes \epsilon\right)=\psi_{2} \otimes \psi_{3} \otimes \ldots \otimes \psi_{p} \otimes \psi_{1} \otimes \epsilon$, hence $\psi_{2} \otimes \psi_{3} \otimes \ldots \otimes \psi_{p} \otimes \psi_{1}$ represents $x \in H(C \times G)$ or $H^{p r}(C \times G, k)$ and we deduce that ψ represents $p x=0$. Therefore $N(u+v)-N(u)-N(v)=0$ and the result follows.

Lemma 4.19 Let $u \in H^{*}(G, k)$ be homogeneous. If $p \neq 2$, then $\beta N(u)=0$.
Proof Let P be a projective resolution of \mathbb{I} with $\mathbb{Z G}$-modules, and let (W, ϵ) be a projective resolution of \mathbb{I} with $\mathbb{I C} C$-modules. Let $f \in \operatorname{Hom}_{\mathbb{I} G}\left(P_{r}, k\right)$ represent u where $r=\operatorname{deg} u$.

Then $N(u)$ is represented by

$$
\mathrm{f} \otimes \ldots \otimes \mathrm{f} \otimes \epsilon \in \operatorname{Hom}_{\mathbb{Z}[\mathrm{C} \times \mathrm{G}]}\left(\left(\mathrm{P}^{\mathrm{p}} \otimes_{\mathbb{I}} \mathrm{W}\right)_{\mathrm{pr}}, \mathrm{k}\right)
$$

Lift f to a $\mathbb{Z G - m a p ~} \mathrm{h}: \mathrm{P}_{\mathrm{r}} \longrightarrow \mathbb{Z} / \mathrm{p}^{2} \mathbb{I}$, and ϵ to a $\mathbb{I C}-\operatorname{map} v: \mathrm{W}_{0} \longrightarrow \mathbb{I} / \mathrm{p}^{2} \mathbb{I}$. Then

$$
\mathrm{h} \otimes \ldots \otimes \mathrm{~h} \otimes v \in \operatorname{Hom}_{\mathbb{Z}[\mathrm{C} \times \mathrm{G}]}\left(\left(\left.\mathrm{P}^{\mathrm{p}}\right|_{\mathbb{Z}} \mathrm{W}\right)_{\mathrm{pr}}, \mathbb{Z} / \mathrm{p}^{2} \mathbb{Z}\right)
$$

lifts $f \otimes \ldots \otimes f \otimes \epsilon$ (note we have used $p \neq 2$ here: if $p=2$, then $h \otimes h$ commutes with the action of c only up to sign). Let $\gamma: \mathrm{P}^{\mathrm{p}} \oplus_{I I} \mathrm{~W} \longrightarrow \mathrm{P}^{\mathrm{p}} \otimes_{\Pi} \mathrm{W}$ denote "multiplication by $\mathrm{c}^{\prime \prime}$ and let ∂ denote the boundary map (on P or $\mathrm{P}^{\mathrm{P}} \otimes_{\| l} \mathrm{~W}$). Then $(\partial \circ \mathrm{h}) \otimes \mathrm{h} \otimes \ldots \otimes \mathrm{h} \otimes v$ represents an element $x \in H^{p r+1}(C \times G, k), \partial o(h \otimes h \otimes \ldots \otimes h \otimes v)$ represents $\beta u \in H^{p r+1}(C \times G, k)$, and

$$
\left.\partial \circ(\mathrm{h} \otimes \ldots \otimes \mathrm{~h} \otimes v)=\left(1+\gamma+\ldots+\gamma^{\mathrm{p}-1}\right) \circ((\partial \circ \mathrm{h}) \otimes \ldots \otimes \mathrm{h} \otimes v)\right)
$$

(where care is needed over the sign when r is odd).
As in the proof of Lemma 4.18, $\gamma \circ((\partial \circ \mathrm{h}) \otimes \ldots \otimes \mathrm{h} \otimes v)$) also represents x , hence $\beta \mathrm{u}=\mathrm{px}$ $=0$ as required.
4.20 Remarks If $u \in H(G)$ and $p \neq 2$, then $\beta N(u)=0$. When $p=2$, let β^{\prime} be the Bockstein (i.e. connecting homomorphism - see Corollary 1.13) associated to

$$
0 \longrightarrow \mathbb{Z} / 2 \mathbb{I} \longrightarrow \mathbb{Z} / 4 \mathbb{Z} \longrightarrow \mathbb{I} / 2 \mathbb{Z} \longrightarrow 0
$$

where the action of c on $\mathbb{I} / 4 \pi$ is multiplication by -1 Thus G acts trivially on $\mathbb{I} / 2 \mathbb{I}$ and $\pi / 4 \pi, \mathrm{c}$ acts trivially on $\pi / 2 I I$, and we have a long exact sequence
$\cdots \rightarrow H^{n}(C \times G, \mathbb{I} / 4 \mathbb{I}) \rightarrow H^{n}(\mathrm{C} \times \mathrm{G}, \mathbb{Z} / 2 \pi I) \xrightarrow{\beta^{\prime}} \mathrm{H}^{\mathrm{n}+1}(\mathrm{C} \times \mathrm{G}, \mathbb{I} / 2 \pi) \longrightarrow$ $\mathrm{H}^{\mathrm{n}+1}(\mathrm{C} \times \mathrm{G}, \pi / 4 \pi) \longrightarrow \ldots$.

As with the ordinary Bockstein map, we use Remark 1.19 (iii) to define
$\beta^{\prime}: \mathrm{H}^{\mathrm{n}}(\mathrm{C} \times \mathrm{G}, \mathrm{k}) \rightarrow \mathrm{H}^{\mathrm{n}}(\mathrm{C} \times \mathrm{G}, \mathrm{k})$ for an arbitrary field k of characteristic two. Then $\beta^{\prime} N(u)=0$ if $u \in H^{*}(G, k)$ is homogeneous of odd degree, while $\beta N(u)=0$ if $u \in H(G)$ by a similar argument to that of Lemma 4.19. Also $\beta^{r}: H^{2 n}(C, k) \longrightarrow H^{2 n+1}(C, k)$ is an isomorphism and $\beta^{\prime}: H^{2 n+1}(C, k) \rightarrow H^{2 n+2}(C, k)$ is the zero map $\forall n \in \mathbb{N}$; this can be seen by using induction on n and the long exact sequence of Corollary 1.13 (i).

Recall from Proposition 1.20 that $H^{1}(C, k) \cong \operatorname{Hom}(\mathbb{I} / \mathrm{p} \mathbb{Z}, \mathbb{Z} / \mathrm{p} \mathbb{I})$ naturally, so let $w \in H^{1}(C, k)$ correspond to the identity endomorphism of $\mathbb{Z} / \mathrm{p} \mathbb{Z}$. For $\ell \in \mathbb{N}$ define

$$
\mathrm{w}_{2 \ell}=(\beta \mathrm{w})^{\ell}, \mathrm{w}_{2 \ell+1}=(\beta \mathrm{w})^{\ell} \mathrm{w} .
$$

(Thus if $\mathrm{p}=2, \mathrm{w}_{\ell}=\mathrm{w}^{\ell}$ by 3.6; also $\beta^{\prime} \mathrm{w}_{2 \ell}=\mathrm{w}_{2 \ell+1}, \beta^{\prime} \mathrm{w}_{2 \ell+1}=0$). Let

$$
\ldots \longrightarrow v_{2} k C \longrightarrow v_{1} k C \longrightarrow v_{0} k C \longrightarrow k \longrightarrow 0
$$

be a free resolution such that for $\ell \in \mathbb{N}$

$$
\stackrel{v}{0}^{\longmapsto} \longmapsto 1, \mathrm{v}_{2 \ell+1} \longmapsto \mathrm{v}_{2 \ell}(\mathrm{c}-1), \mathrm{v}_{2 \ell+2} \longmapsto \mathrm{v}_{2 \ell+1}\left(1+\mathrm{c}+\ldots+\mathrm{c}^{\mathrm{p}-1}\right)
$$

For $i \in \mathbb{N}$, let $x_{i} \in H^{i}(C, k)$ be represented by $f_{i} \in \operatorname{Hom}_{k C}\left(v_{i} k C, k\right)$ defined by $v_{i} f_{i}=1$. Then we have
Lemma $w_{i}=x_{i}$ for all $i \in \mathbb{N}$.
Proof We shall use the notation of 3.6 , so we have exact sequences

$$
\begin{aligned}
& 0 \longrightarrow g \longrightarrow \mathrm{~g} \longrightarrow \xrightarrow{\epsilon} \mathrm{k} \longrightarrow 0 \\
& 0 \longrightarrow \mathrm{k} \longrightarrow \mathrm{kC} \xrightarrow{u} \mathrm{~g} \longrightarrow 0
\end{aligned}
$$

where $1 \epsilon=1$ and $1 v=\mathrm{g}-1$. Also $\gamma: \mathrm{H}^{\mathrm{n}}(\mathrm{C}, \mathrm{k}) \longrightarrow \mathrm{H}^{\mathrm{n}+1}(\mathrm{C}, \mathrm{g})$ and $\delta: \mathrm{H}^{\mathrm{n}}(\mathrm{C}, \mathrm{g}) \longrightarrow$ $H^{n+1}(G, k)$ are the corresponding connecting homomorphisms. For $i \in \mathbb{N}$, let $y_{i} \in H^{i}(G, k)$ be represented by the element $h_{i} \in \operatorname{Hom}_{k C}\left(v_{i} k C, g\right)$ defined by $v_{i} h_{i}=g-1$. Then by definition of γ and δ (see Lemma 1.12), a straightforward calculation shows that $\gamma x_{i}=y_{i+1}$ and $\delta y_{i}=x_{i+1}$, hence $\delta \gamma x_{i}=x_{i+2}$ for all $i \in \mathbb{N}$. Also $x_{0}=1$ and the description of the Bockstein map given in 1.22 shows that $\mathrm{x}_{2}=\mathrm{w}_{2}$. Therefore for $\mathrm{i} \in \mathbb{N}$,

$$
\begin{aligned}
\mathrm{w}_{\mathrm{i}+2}=\mathrm{x}_{2} \mathrm{w}_{\mathrm{i}} & =\left(\delta \gamma \mathrm{x}_{0}\right) \mathrm{w}_{\mathrm{i}} \\
& =\delta \gamma\left(\mathrm{x}_{0} \mathrm{w}_{\mathrm{i}}\right) \text { by Lemma } 3.5 \text { (iii) } \\
& =\delta \gamma \mathrm{w}_{\mathrm{i}} .
\end{aligned}
$$

Since $w_{0}=x_{0}$ and $w_{1}=x_{1}$, an easy induction argument completes the proof.

By the Künneth formula (Theorem 3.4)

$$
\mathrm{H}^{*}(\mathrm{C} \times \mathrm{G}, \mathrm{k}) \cong \mathrm{H}^{*}(\mathrm{C}, \mathrm{k}) \otimes_{\mathrm{k}} \mathrm{H}^{*}(\mathrm{G}, \mathrm{k})
$$

so for $q \in \mathbb{N}$ and $u \in H^{q}(G, k)$ we can write $N(u)=\Sigma w_{\ell} \otimes D_{\ell} u$ for some maps $D_{\ell}: H^{q}(G, k)$ $\longrightarrow \mathrm{H}^{\mathrm{pq-} \mathrm{\ell}}(\mathrm{G}, \mathrm{k})$. The Steenrod operations are closely related to these maps $\mathrm{D}_{\boldsymbol{\ell}}$. First we

- 50 -

obtain some properties of the D_{ℓ} s.

Lemma 4.21 If $r, \ell \in \mathbb{N}$ and $u, v \in H(G)$ or $H^{r}(G)$, then $D_{\ell}(u+v)=D_{\ell}(u)+D_{\ell}(v)$.

Proof We have

$$
\begin{aligned}
\Sigma w_{\ell} \otimes D_{\ell}(u+v) & =N(u+v) \\
& =N(u)+N(v) \text { by Lemma } 418 \\
& =\Sigma w_{\ell} \otimes\left(D_{\ell} u+D_{\ell} v\right)
\end{aligned}
$$

and the result follows by comparing the coefficient of w

Lemma 4.22 Let $\ell, r, s \in \mathbb{N}$, let $u \in H^{\mathbf{r}}(G, k)$ and let $v \in H^{s}(G, k)$.

If $p=2$ then

$$
D_{\ell}(u v)=\sum_{i+j=\ell} D_{i} u D_{j} v
$$

while if $p>2$ and $\epsilon=(p-1) r s / 2$, then

$$
\mathrm{D}_{2 \ell}(\mathrm{uv})=(-1)^{\epsilon} \sum_{i+j=\ell} \mathrm{D}_{2 \mathrm{i}} \mathrm{u} \mathrm{D}_{2 \mathrm{j}} \mathrm{v}
$$

Proof. We will assume that $p>2$, since the proof for the case $p=2$ is very similar. Then

$$
\begin{aligned}
\Sigma w_{\ell} \otimes D_{\ell}(u v) & =N(u v) \\
& =(-1)^{\epsilon} N u N v \text { by Lemma } 4.11(i i) \\
& =(-1)^{\epsilon} \sum_{i, j}\left(w_{i} \otimes D_{i} u\right)\left(w_{j} \otimes D_{j} v\right) .
\end{aligned}
$$

By definition of the w_{i} and 3.6 , if i and j are odd then $w_{i} w_{j}=0$, while if i or j is even, then $w_{i} w_{j}=w_{i+j}$. The result follows by taking the coefficient of $w_{2 \ell}$.

Lemma 4.23. Let $\ell \in \mathbb{N}$ and let $u \in H^{*}(G, k)$.

(i) Suppose p is odd and u is homogeneous. Then

$$
\beta \mathrm{D}_{2 \ell+2} \mathrm{u}=-\mathrm{D}_{2 \ell+1} \mathrm{u}, \beta \mathrm{D}_{2 \ell+1} \mathrm{u}=0, \beta \mathrm{D}_{0} \mathrm{u}=0
$$

(ii) Suppose $\mathrm{p}=2$. Then $\beta \mathrm{D}_{2 \ell+1} \mathrm{u}=\mathrm{D}_{2 \ell} \mathrm{u}, \beta \mathrm{D}_{2 \ell} \mathrm{u}=0$ if u is homogeneous of odd degree, while $\beta D_{2 \ell+2} u=-D_{2 \ell+1} u, \beta D_{2 \ell+1} u=0, \beta D_{0} u=0$ if $u \in H(G)$.
Proof (i) Since $\beta \mathrm{Nu}=0$ by Lemma 4.19, application of Lemma 3.5 (v) yields

$$
0=\beta \sum_{\ell \in \mathbb{W}} \mathrm{w}_{\ell} \otimes \mathrm{D}_{\ell} \mathrm{u}=\sum_{\ell \in \mathbb{N}}\left(\beta \mathrm{w}_{\ell} \otimes \mathrm{D}_{\ell} \mathrm{u}+(-1)^{\ell} \mathrm{w}_{\ell} \otimes \beta \mathrm{D}_{\ell} \mathrm{u}\right)
$$

Equating the coefficients of $w_{\ell+1}$ shows that $\beta D_{0} u=0$ and

$$
\beta \mathrm{w}_{\ell} \otimes \mathrm{D}_{\ell} \mathrm{u}+(-1)^{\ell+1} \mathrm{w}_{\ell+1} \otimes \beta \mathrm{D}_{\ell+1} \mathrm{u}=0 \quad \forall \ell \in \mathbb{N}
$$

But $\beta \mathrm{w}_{2 \ell}=0, \beta \mathrm{w}_{2 \ell+1}=\mathrm{w}_{2 \ell+2} \quad \forall \ell \in \mathbb{N}$ by Lemma 3.5 (v) again and the result follows.
(ii) If u has even degree then the proof proceeds exactly as in (i), so assume that u has odd degree. The proof of Lemma 3.5 (v) shows that

$$
\beta^{\prime}(x y)=\beta^{\prime}(x) y+x \beta^{\prime}(y)
$$

\forall homogeneous $x, y \in H^{*}(C \times G, k)$. Using $\beta^{\prime} N(u)=0$ (see 4.20)

$$
\begin{aligned}
0=\beta^{\prime} \cdot \sum_{\ell \in \mathbb{N}} \mathrm{w}_{\ell} \otimes \mathrm{D}_{\ell} \mathrm{u} & =\sum_{\ell \in \mathbb{N}}\left(\beta^{\prime} \mathrm{w}_{\ell} \otimes \mathrm{D}_{\ell} \mathrm{u}+\mathrm{w}_{\ell} \otimes \beta^{\prime} \mathrm{D}_{\ell} \mathrm{u}\right) \\
& =\sum_{\ell \in \mathbb{N}}\left(\beta^{\prime} \mathrm{w}_{\ell} \otimes \mathrm{D}_{\ell} \mathrm{u}+\mathrm{w}_{\ell} \otimes \beta \mathrm{D}_{\ell} \mathrm{u}\right)
\end{aligned}
$$

because $\beta^{\prime}(1 \otimes v)=\beta(1 \otimes v)$ for $v \in \mathrm{H}^{*}(\mathrm{G}, \mathrm{k})$, so equating coefficients of $\mathrm{w}_{\ell+1}$ yields $\beta D_{0} u=0$ and

$$
\beta^{\prime} \mathrm{w}_{\ell} \otimes \mathrm{D}_{\ell} \mathrm{u}+\mathrm{w}_{\ell+1} \otimes \beta \mathrm{D}_{\ell} \mathrm{u}=0 \quad \forall \ell \in \mathbb{N}
$$

But $\beta^{\prime} \mathrm{w}_{2 \ell}=\mathrm{w}_{2 \ell+1}$ and $\beta^{\prime} \mathrm{w}_{2 \ell+1}=0$ (see 4.20) from which the result follows.

Lemma 4.24 If: $r \in \mathbb{N}$ and $u \in H^{r}(G, k)$, then $D_{0} u=u^{p}$.
 result follows from Proposition 4.16.

Lemma 4.25 Let $\mathrm{r}, \ell \in \mathbb{N}$ and let $u \in \mathbf{H}^{\mathrm{r}}(\mathrm{G}, \mathrm{k})$. Then

(i) If r is even, $D_{\ell} u=0$ unless $\ell=2 m(p-1)$ or $2 m(p-1)-1$ for some $m \in \mathbb{N}$.
(ii) If r is odd, $\mathrm{D}_{\ell} \mathrm{u}=0$ unless $\ell=(2 \mathrm{~m}+1)(\mathrm{p}-1)$ or $(2 \mathrm{~m}+1)(\mathrm{p}-1)-1$ for some. $\mathrm{m} \in \mathbb{N}$.

Proof The lemma is vacuous if $p=2$, so we may assume that $p>2$. Let A be the subgroup of index two in Aut C and let $\alpha \in$ Aut C. Then α is an even permutation on C if and only if $\alpha \in A$. Let α_{1} be the automorphism of $C \times G$ which is α on C and the identity on G . Then Corollary 4.14 (ii) shows that $(\mathrm{Nu}) \alpha_{1}^{*} \sigma=\mathrm{Nu}$ where $\sigma=1$ if r is even or $\alpha \in A$, and $\sigma=-1$ if r is odd and $\alpha \notin A$.

Now Aut C induces automorphisms on $\mathrm{H}^{*}(\mathrm{C}, \mathrm{k})$ and we have
Aut C fixes $\mathrm{w}_{\ell} \Leftrightarrow \ell=2 \mathrm{~m}(\mathrm{p}-1)$ or $2 \mathrm{~m}\left(\mathrm{p} \frac{1}{1}\right)-1$ for some $\mathrm{m} \in \mathbb{N}$,
A fixes w_{ℓ} and Aut C does not $\Leftrightarrow \ell=(2 m+1)(p-1)$ or $(2 m+1)(p-1)-1$ for some $m \in \mathbb{N}:$
this can be seen using Proposition 1.20 and 3.6. Note that Aut C fixes w_{ℓ} means that $\alpha^{*} w_{\ell}=w_{\ell} \forall \alpha \in$ Aut C, while A fixes w_{ℓ} and Aut C does not means that $\alpha^{*} w_{\ell}=\epsilon w_{\ell}$ where ϵ is the sign of the permutation α on C. The result now follows by using $(\mathrm{Nu}) \alpha_{1}^{*} \sigma=\mathrm{Nu}$ from above.

Lemma 4.26 Let $\theta: H \rightarrow G$ be a homomorphism, let $u \in H^{*}(H, k)$ be homogeneous and let $\ell \in \mathbb{N}$. Then $\mathrm{D}_{\ell}\left(\mathrm{u} \theta^{*}\right)=\left(\mathrm{D}_{\ell} \mathrm{u}\right) \theta^{*}$.

Proof Apply Lemma 4.13 with $\mathrm{G}=\mathrm{C} \times \mathrm{H}$ and $\mathrm{H}=\mathrm{C} \times \mathrm{G}$.

Lemma 4.27 Let $r \in \mathbb{P}$ and let $u \in H^{T}(G, k)$. Then

(i) $\mathrm{D}_{\ell}^{\mathrm{n}}=0$ if $\ell>(\mathrm{p}-1)_{\mathrm{I}}$,
$D_{(p-1) r}{ }^{u}=a_{r}^{u}$
where $a_{r} \in k$ and is independent of G and u.
(ii) The exact value of a_{r} is

$$
\begin{array}{cl}
\left.\left(\frac{\mathrm{p}-1}{2}\right)\right)^{\mathrm{r}} \cdot(-1)^{(\mathrm{p}-1) \mathrm{r}(\mathrm{r}+1) / 4} & \text { if } \mathrm{p} \neq 2, \\
1 & \text { if } \mathrm{p}=2
\end{array}
$$

To establish this, we use the following topological theorem of [D.M. Kan and W.P. Thurston, "Every connected space has the homology of a K($\pi, 1$)", Topology 15 (1976), 253-258].

Theorem 4.28 For every path connected space X , there exists a space TX and a map $t: T X \longrightarrow X$, natural for maps of X, such that
(i) $t^{*}: \mathrm{H}^{*}(\mathrm{X}, \mathrm{k}) \longrightarrow \mathrm{H}^{*}(\mathrm{TX}, \mathrm{k})$ is an isomorphism.
(ii) $\pi_{\mathrm{i}}(\mathrm{TX})=0$ if $\mathrm{i} \neq 1$, and $t_{*}: \pi_{1}(\mathrm{TX}) \longrightarrow \pi_{1}(\mathrm{X})$ is onto.

A proof of this is given in [C.R.F Maunder, "A short proof of a theorem of Kan and Thurston", Bull. London Math. Soc. 13 (1981), 325-327].

Now let X be a $K(G, 1)$, so X is a connected CW-complex with $\pi_{1}^{\prime}(X)=G$ and $\pi_{i}(X)=0$ for $i>1$, and let Y be the r skeleton of X. Thus $H^{*}(G, k) \cong H^{*}(X, k)$. If $H=\pi_{1}(T Y)$, then Theorem 4.28 shows that $H^{i}(H, k)=0$ for $i>r$, and there exists a homomorphism $\theta: \mathrm{H} \longrightarrow \mathrm{G}$ such that

$$
\theta^{*}: \mathrm{H}^{\mathrm{i}}(\mathrm{G}, \mathrm{k}) \longrightarrow \mathrm{H}^{\mathrm{i}}(\mathrm{H}, \mathrm{k})
$$

is an isomorphism for $\mathrm{i}<\mathrm{r}$, and a monomorphism for $\mathrm{i}=\mathrm{r}$ (note that even if G is finite, H may be infinite.). Let $v \in H^{r}(T Y, k)$ correspond to $u \theta^{*}$. and write $w=v\left(t^{*}\right)^{-1} \in \mathrm{H}^{\mathrm{r}}(\mathrm{Y}, \mathrm{k})$.

Let Y_{1} denote the ($r-1$)-skeleton of Y, let $\pi: Y \longrightarrow Y / Y_{1}$ denote the natural
surjection, and let $\pi^{*}: H^{r}\left(Y / Y_{1}, k\right) \longrightarrow H^{r}(Y, k)$ denote the homomorphism induced by π. Then we have an exact sequence.

$$
\ldots \longrightarrow \mathrm{H}^{\mathrm{r}-1}\left(\mathrm{Y}_{1}, \mathrm{k}\right) \longrightarrow \mathrm{H}^{\mathrm{r}}\left(\mathrm{Y} / \mathrm{Y}_{1}, \mathrm{k}\right) \longrightarrow \mathrm{H}^{\mathrm{r}}(\mathrm{Y}, \mathrm{k}) \longrightarrow 0
$$

because $H^{r}\left(Y_{1}, k\right)=0$, so we can choose $f \in H^{r}\left(Y / Y_{1}, k\right)$ such that $\pi^{*}(f)=w$. Let $\left\{e_{\alpha} \mid \alpha \in \mathscr{b}\right\}$ denote the r-cells of Y / Y_{1}, let S^{r} denote an r-sphere with basepoint b, and for each $\alpha \in \mathscr{6}$ let S_{α}^{r} denote an r-sphere with base point b_{α}. Since $H^{r}\left(Y / Y_{1}, k\right)$ can be identified with $\operatorname{Hom}\left(\mathrm{C}_{\mathrm{r}}\left(\mathrm{Y} / \mathrm{Y}_{1}\right)\right.$, k) where C_{r} denotes the $\mathrm{r}^{\text {th }}$ cellular chain group, we can view f as an element of $\operatorname{Hom}\left(\mathrm{C}_{\mathbf{r}}\left(\mathrm{Y} / \mathrm{Y}_{1}\right), k\right)$. Furthermore $\mathrm{C}_{\mathrm{r}}\left(\mathrm{Y} / \mathrm{Y}_{1}\right)=\underset{\alpha \in \mathscr{6}}{\oplus}\left(i_{\alpha}\right)_{*} \mathrm{C}_{\mathrm{r}}\left(\mathrm{S}_{\alpha}^{\mathrm{r}}\right)$ where

$$
\left(i_{\alpha}\right)_{*}: C_{r}\left(S_{\alpha}^{r}\right) \longrightarrow C_{r}\left(Y / Y_{1}\right)
$$

denotes the homomorphism induced by i_{α}. For $\alpha \in \mathscr{S}$ let z_{α} be a generator for $C_{r}\left(S_{\alpha}^{r}\right) \cong \mathbb{I}$, and let z be a generator for $C_{r}\left(S^{r}\right)$. Also choose maps $v_{\alpha}: S_{\alpha}^{r} \longrightarrow S^{r}$ such that $v_{\alpha}\left(b b_{\alpha}\right)=b$ and $\left(v_{\alpha}\right)_{*}\left(z_{\alpha}\right)=f\left(\left(i_{\alpha}\right)_{*} z_{\alpha}\right) z$. Then the v_{α} induce a map $v: Y / Y_{1} \rightarrow S^{\mathrm{r}}$ such that $v i_{\alpha}=$ v_{α} (maps written on left). Define $x \in \operatorname{Hom}\left(C_{r}\left(S^{r}\right), k\right)$ by $x(z)=1$, and

$$
v^{*}: \operatorname{Hom}\left(\mathrm{C}_{\mathrm{r}}\left(\mathrm{~S}^{\mathrm{r}}\right), \mathrm{k}\right) \longrightarrow \operatorname{Hom}\left(\mathrm{C}_{\mathrm{r}}\left(\mathrm{Y} / \mathrm{Y}_{1}\right), \mathrm{k}\right)
$$

to be the map induced by v. Then

$$
\left(v^{*}(x)\right)\left(\left(i_{\alpha *}\right)_{*} z_{\alpha}\right)=x\left(v_{*}\left(i_{\alpha * \alpha_{\alpha}}^{z}\right)\right)=x\left(v_{\alpha *} z_{\alpha}\right)=x\left(f\left(i_{\alpha *} z_{\alpha}\right) z\right)=f\left(\left(i_{\alpha}\right)_{*} z_{\alpha}\right)
$$

so $v^{*}(\mathrm{x})=\mathrm{f}$, hence $(v \pi)^{*}(\mathrm{x})=\mathrm{w}$. Since we can identify $\operatorname{Hom}\left(\mathrm{C}_{\mathrm{r}}\left(\mathrm{S}^{\mathrm{r}}\right), \mathrm{k}\right)$ with $\mathrm{H}^{\mathrm{r}}\left(\mathrm{S}^{\mathrm{r}}, \mathrm{k}\right)$, this means there exists $\varphi: Y \longrightarrow S^{r}$ such that $\varphi^{*}(x)=w$.

Write $\mathrm{F}=\pi_{1}\left(\mathrm{TS}^{\mathrm{r}}\right)$. Then $\mathrm{H}^{\mathrm{i}}(\mathrm{F}, \mathrm{k})=\mathrm{H}^{\mathrm{i}}\left(\mathrm{T} \mathrm{S}^{\mathrm{I}}, \mathrm{k}\right)=\mathrm{H}^{\mathrm{i}}\left(\mathrm{S}^{\mathrm{r}}, \mathrm{k}\right)$. Also φ yields by naturality a map $t \varphi: T Y \longrightarrow T S^{\mathrm{r}}$, hence it induces a map $\psi: H=\pi_{1}(T Y) \longrightarrow \pi_{1}\left(T S^{\mathrm{r}}\right)=\mathrm{F}$. If $\mathrm{y} \in \mathrm{H}^{\mathrm{r}}(\mathrm{F}, \mathrm{k})$ corresponds to $t^{*} \mathrm{x} \in \mathrm{H}^{\mathrm{r}}\left(\mathrm{T} \mathrm{S}^{\mathrm{r}}, \mathrm{k}\right)$, then $\mathrm{y} \psi^{*}$ corresponds to

$$
(t \varphi)^{*} t^{*} \mathrm{x}=t^{*} \varphi^{*} \mathrm{x}=t^{*} \mathrm{w}=\mathrm{v}
$$

and we see that y $\psi^{*}=\mathbf{u} \theta^{*}$. Ușing Lemma 4.26 we have a commutative diagram

$$
\begin{aligned}
& \mathrm{H}^{\mathrm{r}}(\mathrm{G}, \mathrm{k}) \xrightarrow{\theta^{*}} \mathrm{H}^{\mathrm{r}}(\mathrm{H}, \mathrm{k}) \stackrel{\psi^{*}}{\mathrm{H}^{\mathrm{r}}(\mathrm{~F}, \mathrm{k})} \\
& \qquad \mathrm{D}_{\ell} \|_{\ell} \mathrm{D}_{\ell} \mathrm{D}_{\ell} \\
& \mathrm{H}^{\mathrm{pr}-\ell}(\mathrm{G}, \mathrm{k}) \xrightarrow{\theta^{*}} \mathrm{H}^{\mathrm{pr}-\ell}(\mathrm{H}, \mathrm{k}) \stackrel{\psi^{*}}{\mathrm{H}^{\mathrm{pr}-\ell}(\mathrm{F}, \mathrm{k})}
\end{aligned}
$$

Since $H^{i}(F, k)=0$ for $i \neq 0, r$ and $H^{r}(F, k) \cong k$, we see that $D_{\ell} y=0$ when $\ell>(p-1) r$ and $D_{(p-1) r} y=a_{r} y$ for some $a_{r} \in k$; of course a_{r} does not depend on G or u. Examination of the commutative diagram now yields (i).

To prove (ii), we can choose G to suit our needs best, so we begin with $G=\mathbb{Z} / \mathrm{p} \mathbb{Z}$. If $r=2$, then (i) and Lemma 4.25 (i) show that $D_{\ell}=0$ unless $\ell=0,2(p-1)$ or $2(p-1)-1$. Since β is zero on $H^{2}(G, k)$ by 3.6 , we see that $D_{2(p-1)-1} u=0$ by Lemma 4.23. Thus we can write

$$
\mathrm{N}(\mathrm{u})=\mathrm{w}_{0} \otimes \mathrm{u}^{\mathrm{p}}+\mathrm{a}_{2} \mathrm{w}_{2 \mathrm{p}-2} \otimes \mathrm{u}
$$

Let g be a generator for G and identify $H^{1}(G, k)$ with $\operatorname{Hom}(G, k)$ (Proposition 1.20). Define $\hat{g} \in H^{1}(G, k)$ by $\hat{g}(g)=1$ and let $u=\beta \hat{\mathrm{g}}$. Using Corollary 4.14 with $\mathrm{H}=\mathrm{G}$, $G=C \times G$ and θ the automorphism of $C \times G$ which is the identity on G and sends $(c, 1)$ to (c, g), we deduce that $\mathrm{N}(\mathrm{u}) \theta^{*}=\mathrm{N}(\mathrm{u})$. It is not difficult to see that $\left(\mathrm{w}_{0} \otimes \mathrm{u}\right) \theta^{*}=\mathrm{w}_{0} \otimes \mathrm{u}+$ $\mathrm{w}_{2} \otimes 1$ and $\left(\mathrm{w}_{2} \otimes 1\right) \theta^{*}=\mathrm{w}_{2} \otimes 1$, so we have
$w_{0} \otimes u^{p}+a_{2} w_{2 p-2} \otimes u=\left(w_{0} \otimes u+w_{2} \otimes 1\right)^{p}+a_{2} w_{2 p-2} \otimes u+a_{2} w_{2 p} \otimes 1$

$$
=w_{0} \otimes u^{p}+w_{2 p} \otimes 1+a_{2} w_{2 p-2} \otimes u+a_{2} w_{2 p} \otimes 1
$$

hence $a_{2}=-1$ and $N(u)=w_{0} \otimes u^{p}-w_{2 p-2} \otimes u$.
Lemma 4.11 now shows that for $s \in \mathbb{P}$,

$$
\begin{align*}
N\left(u^{s}\right) & =\left(w_{0} \otimes u^{p}-w_{2 p-2} \otimes u\right)^{s} \\
& =(-1)^{s} w_{2 s(p-1)} \otimes u^{s}+\text { terms of the form } w_{s^{\prime}} \otimes u^{\prime} \text { where } s^{\prime}<2 s(p-1) \tag{1}
\end{align*}
$$

and we conclude that $a_{2 s}=(-1)^{s}$. From elementary number theory, $\left.\left(\frac{p-1}{2}\right)\right|^{2}$ $=-(-1)^{(p-1) / 2}$ (p odd) and so (ii) is proven for even r.

Now let us suppose r is odd. If $r=1$, then (i) and Lemma 4.25 (ii) show that

$$
\begin{equation*}
\mathrm{N}(\mathrm{u})=\lambda \mathrm{w}_{\mathrm{p}-2} \otimes \beta \mathrm{u}+\mathrm{a}_{1} \mathrm{w}_{\mathrm{p}-1} \otimes \mathrm{u} \tag{2}
\end{equation*}
$$

for some $\lambda \in k$.
Using (1) and Lemma 4.11, we see that for $s \in \mathbb{P}$,

$$
N\left(u^{2 s+1}\right)=a_{1}(-1)^{s} w_{(2 s+1)(p-1)} \otimes+\text { terms of the form } w_{s^{\prime}} \otimes u^{\prime}
$$

where $s^{\prime}<(2 s+1)(p-1)$ and we deduce that $a_{2 s+1}=a_{1}(-1)^{s}$.

Let us now choose G and $u_{1}, u_{2} \in H^{1}(G, k)$ such that $u_{1} u_{2} \neq 0$. Then (2) and Lemma 4.11 (ii) show that $a_{1}^{2}=a_{2}(-1)^{p(p-1) / 2}$, and it follows that $\left.a_{1}= \pm\left[\frac{p-1}{2}\right] \right\rvert\,(-1)^{(p-1) / 2}$ for p odd (because $\left.\left[\frac{p-1}{2}\right]\right|^{2}=-(-1)^{(p-1) / 2}$ and $a_{2}=-1$) and $a_{1}=1$ for $p=2$. The + sign yields the result. A proof that the + sign holds is given in VII $\S 5$ of [Cohomology Operations by N.E. Steenrod, written by D.B.A Epstein, Annals of Math. Studies no. 50, Princeton Univ. Press 1962], and we assume this. Unfortunately there does not seem to be an easy way to establish this. Alternatively one could use a different set of coset representatives (i.e. $\left\{c, 1, c^{2}, \ldots, c^{\mathrm{p}-1}\right\}$) if necessary when calculating N which in view of Lemma 4.12 would give the correct result.
5. Steenrod Operations In this section $k=\mathbb{I} / \mathrm{p} \mathbb{I}$. For $i, r \in \mathbb{N}$ and $u \in H^{T}(G, k)$, define

$$
\begin{array}{cc}
S q^{i} u=D_{r-i} u & (p=2) \\
P^{i_{u}}=\left.(-1)^{i+(p-1) r(r+1) / 4}\left[\frac{p-1}{2}\right]\right|^{-r} D_{(r-2 i)(p-1)} & (p \neq 2)
\end{array}
$$

(where $D_{j}=0$ for $j<0$). The $S q^{i}$ and P^{i} are called the Steenrod operations. We use the results of section 4 to obtain

Theorem 5.1

(i) $\quad \mathrm{Sq}^{\mathrm{i}}: \mathrm{H}^{\mathrm{r}}(\mathrm{G}, \mathrm{k}) \rightarrow \mathrm{H}^{\mathrm{r}+\mathrm{i}}(\mathrm{G}, \mathrm{k})$ is a natural homomorphism.
(ii) $\mathrm{Sq}^{0}=1$.
(iii) $\mathrm{Sq}^{\mathrm{r}} \mathrm{u}=\mathrm{u}^{2}$.
(iv) $S q^{i} u=0$ unless $0 \leq i \leq r$.

(vi) $\mathrm{Sq}^{2 i+1}=\beta \mathrm{Sq}^{2 \mathrm{i}}$ and $\mathrm{Sq}^{1}=\beta$.

Theorem 5.2

(i) $\quad \mathrm{P}^{\mathrm{i}}: \mathrm{H}^{\mathrm{r}}(\mathrm{G}, \mathrm{k}) \longrightarrow \mathrm{H}^{\Gamma+2 i(\mathrm{p}-1)}(\mathrm{G}, \mathrm{k})$ is a natural homomorphism.
(ii) $\mathrm{P}^{0}=1$
(iii) If r is even, say $r=2 q$, then $P^{q} u=u^{p}$
(iv) $P^{i} u=0$ unless $0 \leq 2 i \leq r$.
(v) $\mathrm{P}^{\ell}(\mathrm{uv})=\underset{\mathrm{i}+\mathrm{j}=\ell}{\Sigma} \mathrm{P}^{\mathrm{i}} \mathrm{P}^{\mathrm{j}} \mathrm{v}$.

Proof of Theorems 5.1 and 5.2 In both Theorems, use Lemmas 4.21 and 4.26 for (i), Lemma 4.27 for (ii), Lemma 4.24 for (iii), Lemma 4.27 (i) for (iv) and Lemma 4.22 for (v). Finally use Lemma 4.23 (ii) for Theorem 5.1 (vi).

The Steenrod operations also satisfy the Adem relations of Theorems 5.3 and 5.4 below. To state these theorems, we let $[x]$ denote the greatest integer $\leq x$, and the binomial coefficients are taken modulo p .

Theorem 5.3 If $a, b \in \mathbb{P}$ and $a<2 b$, then

$$
S q^{a} S q^{b}=\sum_{j=0}^{[a / 2]}\left[\begin{array}{l}
b-1-j \\
a-2 j
\end{array}\right] S q^{a+b-j} S q^{j}
$$

Theorem 5.4 Let $\mathrm{a}, \mathrm{b} \in \mathbb{H}$. If $\mathrm{a}<\mathrm{p}^{\mathrm{b}}$, then

$$
p^{a} p^{b}=\sum_{t=0}^{[a / p]}(-1)^{a+t}\left[\begin{array}{c}
(p-1)(b-t)-1 \\
a-p t
\end{array}\right] p^{a+b-t} p^{t}
$$

If $a \leq b$, then

$$
\begin{aligned}
p^{a} \beta p^{b} & =\sum_{t=0}^{[a / p]}(-1)^{a+t}\left[\begin{array}{c}
(p-1)(b-t) \\
a-p t
\end{array}\right] \beta p^{a+b-t} p^{t} \\
& +\sum_{t=0}^{[(a-1) / p]}(-1)^{a+t-1}\left[\begin{array}{c}
(p-1)(b-t)-1 \\
a-p t-1
\end{array}\right] p^{a+b-t} \beta p^{t}
\end{aligned}
$$

The Adem relations are proved by obtaining further properties of the norim map:

Lemma 5.5 Let $H \leq E \leq G$ and write $E=\mathbb{U}_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{x}_{\mathrm{i}} \mathrm{H}, \mathrm{G}=\underset{\mathrm{i}=1}{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \mathrm{E}$. Suppose the kE-module k_{m} (as defined in the Evens norm map) is isomorphic to k. If $r \in \mathbb{N}$ and $u \in H^{r}(G$, $k)$; then

$$
\operatorname{norm}_{\mathrm{E}, \mathrm{G}} \text { norm }_{\mathrm{H} ; \mathrm{E}} \mathrm{u}=\operatorname{norm}_{\mathrm{H}, \mathrm{G}} \mathrm{u},
$$

where we have calculated $\operatorname{norm}_{H, E}$, $\operatorname{norm}_{E, G}$ and norm ${ }_{H ; G}$ with respect to $\left\{x_{1}, \ldots, x_{m}\right\}$, $\left\{y_{1}, \ldots, y_{n}\right\}$ and $\left.\left\{y_{1} x_{1}, \ldots, y_{1} x_{m}\right\} y_{2} x_{1}, \ldots, y_{n} x_{m-1}, y_{n} x_{m}\right\}$ respectively.
We omit the easy poof.

Lemma 5.6 Let θ be the automorphism of $G \times G$ defined by $(h, g) \theta=(g, h)$, let $r, s \in \mathbb{N}$, and let. $u \in H^{r}(G, k), v \in H^{s}(G, k)$. Then by Theorem 3.4 we may view $u \otimes v \in H^{r+s}(G \times G, k)$ and we have $(u \otimes v) \theta^{*}=(-1)^{\mathrm{rs}} \mathrm{v} \otimes \mathrm{u}$.

The proof of this is very similar to Lemma 3.2: we omit the details.

Now let $B=C=\mathbb{I} / \mathrm{p} I$, and define $v_{i} \in H^{i}(B, k), w_{i} \in H^{i}(C, k)$ in the same way as the w_{i} in Section 4. Let b and c be generators for B and C respectively. By the Künneth formula (Theorem 3.4)

$$
H^{*}(B \times C \times G, k) \cong H^{*}(B, k) \otimes_{k} H^{*}(C, k) \otimes_{k} H^{*}(G, k)
$$

so for $q \in \mathbb{N}$ and $u \in H^{q}(G, k)$, we can imitate Section 4 and write

$$
\operatorname{norm}_{G, B \times C \times G} u=\sum_{i, j} v_{i} \otimes w_{j} \otimes D_{i j} u
$$

for some maps $D_{i j}: H^{q}(G, k) \rightarrow H^{p^{2}}{ }^{q-i-j}(G, k)$, where we have calculated norm with respect to $\left\{1, c, \ldots, c^{p-1}, b, b c, \ldots, b^{p-1} c^{p-2}, b^{p-1} c^{p-1}\right\}$ (this choice of coset representatives is to conform with Lemma 5.5: see the proof of Theorem 5.3). We now have
Lemma 5.7 If $u \in H^{q}(G, k)$, then

$$
\mathrm{D}_{\mathrm{i} j} \mathrm{u}=\mathrm{D}_{\mathrm{ji}} \mathrm{u} \cdot(-1)^{\mathrm{ij}+\mathrm{p}(\mathrm{p}-1) \mathrm{q} / 2}
$$

Proof Define an automorphism θ of $B \times C \times G$ by $\left(b^{r}, c^{\mathbf{s}}, g\right) \theta=\left(c^{\mathbf{s}}, b^{\mathbf{r}}, \mathrm{g}\right)$. Then Lemma 4.13 shows

$$
\operatorname{norm}_{\mathrm{G}, \mathrm{~B} \times \mathrm{C} \times \mathrm{G}} \text { u } \theta^{*}=\left(\operatorname{norm}_{\mathrm{G}, \mathrm{~B} \times \mathrm{C} \times \mathrm{G}} \mathrm{u}\right) \theta_{\sigma}^{*}
$$

where $\sigma=1$ if q is even, and $\sigma=\operatorname{sign}$ of the permutation of 0 on $\mathrm{B} \times \mathrm{C}$ if q is odd, i.e. $(-1)^{p(p-1) / 2}$. Therefore

$$
\begin{aligned}
\operatorname{norm}_{G, B \times C \times G} u & =\sum_{i, j}\left(v_{i} \otimes w_{j} \otimes D_{i j} u\right) \theta^{*} \cdot(-1)^{p(p-1) q / 2} \\
& =\sum_{i, j}\left(v_{i} \otimes w_{j}\right) \theta^{*} \otimes D_{i j} u \cdot(-1)^{p(p-1) q / 2}
\end{aligned}
$$

Now use Lemma 5.6.
Lemma 5.8 Let $r \in \mathbb{N}$ and let $u \in H^{T}(G, k)$.
(i) If $p=2$, then $\operatorname{norm}_{G, C \times G} u=\sum_{i} w_{r-i} \otimes \mathrm{Sq}^{i} u$.
(ii) If $\mathrm{p}>2$, then $\left.(-1)^{(\mathrm{p}-1) \mathrm{r}(\mathrm{r}+1) / 4}\left[\frac{\mathrm{p}-1}{2}\right]\right|_{\text {norm }} ^{\mathrm{G}, \mathrm{C} \times \mathrm{G}}$ $=$ $\sum_{i}(-1)^{i}\left(w_{(r-2 i)(p-1)} \otimes P^{i} u-w_{(r-2 i)(p-1)-1} \otimes \beta P^{i}(u)\right.$.
Proof (i) This follows immediately from the definition of $\mathrm{Sq}^{\mathbf{i}}$.
(ii) By definition norm ${ }_{G, C \times G} u=\sum_{\ell} w_{\ell} \otimes D_{\ell} u \cdot$ But $D_{\ell} u=0$ unless $\ell=(r-2 i)(p-1)$ or (r $-2 \mathrm{i})(\mathrm{p}-1)-1$ for some $\mathrm{i} \in \mathbb{I}$ by Lemma 4.25, and

$$
\mathrm{D}_{(\mathrm{r}-2 \mathrm{i})(\mathrm{p}-1)-1} \mathrm{u}=-\beta \mathrm{D}_{(\mathrm{r}-2 \mathrm{i})(\mathrm{p}-1)}{ }^{\mathrm{u}}
$$

by Lemma $4.23(\mathrm{i})$. The result follows from the definition of P^{i}.

The Adem relations are no more than interpreting Lemma 5.7 (correctly!) in terms of the Steenrod operations. However this is not easy and we shall only deal with the case $p=2$; the case $p>2$ is similar but more complicated.

Assume that $p=2$. Let $x=v_{1} \otimes 1$ and $y=1 \otimes w_{1}$. Note that norm ${ }_{C, B \times C} w_{1}$ $=x y+y^{2}$ by Lemmas 4.24 and 4.27. If $u \in H^{r}(G, k)$, then

$$
\underset{i, j}{\sum v_{i} \otimes w_{j} \otimes D_{i j} u}
$$

$=\operatorname{norm}_{\mathrm{G}, \mathrm{B} \times \mathbb{C} \times \mathrm{G}^{\mathbf{u}}}{ }^{\mathbf{u}}$
$=$ norm $_{\mathrm{C} \times \mathrm{G}, \mathrm{B} \times \mathrm{C} \times \mathrm{G}}$ norm $_{\mathrm{G}, \mathrm{C} \times \mathrm{G}} \mathrm{u}$
$=\operatorname{norm}_{\mathrm{C} \times \mathrm{G}, \mathrm{B} \times \mathrm{C} \times \mathrm{G}} \sum_{\mathrm{j} \in \mathbb{N}} \mathrm{w}_{1}^{\mathrm{r}-\mathrm{j}} \otimes \mathrm{Sq}^{\mathrm{j}} \mathbf{u}$

$=\sum_{j \in \mathbb{W}}\left(x y+y^{2}\right)^{r-j} \otimes 1$ norm ${ }_{C \times G, B \times C \times G} 1 \otimes S q^{j} u$
$=\underset{i, j \in \mathbb{N}}{\sum}\left(x \cdot y+y^{2}\right)^{r-j} \otimes 1 v_{1}^{r+j-i} \otimes 1 \otimes S q^{i} S q^{j} \cdot u$ $=\sum_{i, j \in \mathbb{N}}\left(x y+y^{2}\right)^{r-j} x^{r+j-i} \otimes S q^{i} S q^{j} u$.
by definition
by Lemma 5.5
by Lemma 5.8 (i)
by Lemma. 4.18
by Lemma 4.11 and Corollary 4.14
by Lemma 5.8 (i) and Corollary 4.14

By Lemma 5.7 this expression is symmetric in x and y, and the resulting equality is the Adem relations. However the combinatorics involved to get it in the form of Theorem 5.3 is difficult. We shall follow the treatment of [S.R. Bullett and I.G. Macdonald, On the Adem relations, Topology 21 (1982), 329-332].

Let $k(s, t)$ denote the field of fractions of the polynomial ring $k[s, t]$ in the indeterminants s and t. Let $F(t)$ denote the formal power series

$$
\sum_{i \in \mathbb{N}} t^{\mathrm{i}} S q^{i}
$$

One can view $\mathrm{F}(\mathrm{t})$ as an element of $\mathrm{k}(\mathrm{t})\left[\left[\mathrm{Sq}^{0}, \mathrm{Sq}^{1}, \ldots\right]\right]$, the power series ring in the noncommuting variables Sq^{i} quotiented out by all the relations satisfied by the Sq^{i}. Similarly one can view expression (1) as an element of $k(x, y)\left[\left[\mathrm{Sq}^{0}, \mathrm{Sq}^{1}, \ldots\right]\right]$.

We rewrite expression (1) as
$x^{r} y^{r}(x+y)^{r} \underset{i, j}{\sum} x^{-i}\left(y+x^{-1} y^{2}\right)^{-j} \otimes S q^{i} S q^{j} u=x^{r} y^{r}(x+y)^{r} F\left(x^{-1}\right) F\left(\left(y+x^{-1} y^{2}\right)^{-1}\right) u$.
Since this is symmetric in x and y, we see that $F\left(x^{-1}\right) F\left(\left(y+x^{-1} y^{2}\right)^{-1}\right) u$
$=F\left(y^{-1}\right) F\left(\left(x+y^{-1} x^{2}\right)^{-1}\right) u \forall r$ and $\forall u$, hence $F\left(x^{-1}\right) F\left(\left(y+x^{-1} y^{2}\right)^{-1}\right)$
$=F\left(y^{-1}\right) F\left(\left(x+y^{-1} x^{2}\right)^{-1}\right)$. If we perform the endomorphism

$$
x \longmapsto x^{-1}(x+y)^{-1}, y \longmapsto y^{-1}(x+y)^{-1}
$$

of $k(x, y)$, then $y+x^{-1} y^{2} \longrightarrow y^{-2}$ and we deduce that

$$
F(x(x+y)) F\left(y^{2}\right)=F(y(x+y)) F\left(x^{2}\right)
$$

Setting $y=1$ yields $F(x(x+1)) F(1)=F(x+1) F\left(x^{2}\right)$. Equating the terms which increase the cohomological degree by n (in other words the terms involving $\mathrm{Sq}^{\mathrm{a}} \mathrm{Sq}^{b}$ where $\mathrm{a}+\mathrm{b}=\mathrm{n}$) yields

$$
\underset{a+b=n}{\sum}\left(x^{2}+x\right)^{a} S q^{a} S q^{b}=\sum_{j=0}^{n}(x+1)^{n-j} x^{2 j} S q^{n-j} S q^{j}
$$

Now $\mathrm{Sq}^{\mathrm{a}} \mathrm{Sq}^{\mathrm{b}}$ is the coefficient of $\left(\mathrm{x}^{2}+\mathrm{x}\right)^{-1}$ in

$$
\left(x^{2}+x\right)^{-a-1} \sum_{j=0}^{n}(x+1)^{n-j} x^{2 j} S q^{n-j} S q^{j}
$$

-62-
which is the same as the coefficient of x^{-1} in

$$
\sum_{j=0}^{a+b}(x+1)^{b-j-1} x^{2 j-a-1} S q^{a+b-j} S q^{j}
$$

Therefore $S q^{a} S q^{b}=\sum_{j=0}^{a+b}\left[\begin{array}{c}b-j-1 \\ a-2 j\end{array}\right] S q^{a+b-j} S q^{j}$. This is Theorem 5.3: note that $\left[\begin{array}{l}i \\ j\end{array}\right]=0$ if j or $\mathrm{i}-\mathrm{j}<0$. -
6. Further Reading The classic books [5], [8] and [9] are recommended for nonrecent work on homological algebra. Presently the best account of the cohomology of finite groups is [2]; this is very comprehensive and up-to-date, and is an outgrowth of [1] (though [2] does not completely supercede [1]). Less comprehensive, though more detailed, is [6]. The classic work [11] remains an excellent exposition of the Steenrod operations. For the important topic of spectral sequences, not covered in these notes, [10] is recommended. The books [3], [4] and [7] contain much valuable information and are similar in spirit to these notes, but with the emphasis on infinite groups.

1. D.J. Benson, Modular Representation Theory: New Trends and Methods, LNM 1081 Springer-Verlag, Berlin-New York, 1984
2. D.J. Benson, Representations and Cohomology I \& II, Cambridge Studies in Advanced Math. nos. 30 \& 31, Cambridge University Press, Cambridge-New York, 1991.
3. R. Bieri, Homological Dimension of Discrete Groups, Queen Mary College Mathematics Notes, Queen Mary College, London, 1976.
4. K.S. Brown, Cohomology of Groups, Graduate Texts in Math. no. 87, Springer--Verlag, Berlin-New York, 1982.
5. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton NJ, 1956.
6. L. Evens, The Cohomology of Groups, Oxford University Press, Oxford-New York, 1991.
7. K.W. Gruenberg, Cohomological Topics in Group Theory, LNM 143, Springer-Verlag Berlin-New York, 1970.
8. P.J. Hilton and U. Stammbach, A Course in Homological Algebra, Graduate Texts in Math. no. 4, Springer-Verlag, Berlin-New York, 1971.
9. S. MacClane, Homology, Springer-Verlag, Berlin-New York, 1975.
10. J. McCleary, User's Guide to Spectral Sequences, Mathematics Lecture Series no. 12 , Publish or Perish, Inc., Wilmington DE, 1985.
11. N.E. Steenrod, Cohomology Operations (written by D.B.A. Epstein), Annals of Math. Studies no. 50, Princeton University Press, Princeton NJ, 1962.
