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General crystal graphs

e M. Kashiwara, On crystal bases, Representations of
Groups, Proceedings of the 1994 Annual Seminar of the
Canadian Math. Soc. Ban 16 (1995) 155-197, Amer.
Math. Soc., Providence, RI.

e P. Littelmann, Paths and root operators in representation
theory. Ann. of Math. (2) 142 (1995), no. 3, 499-525.

Crystal graphs of classical Lie algebras

e M. Kashiwara and T. Nakashima, Crystal graphs for
representations of the g-analogue of classical Lie
algebras. J. Algebra 165 (1994), no. 2, 295-345.

e C. Lecouvey, Schensted-type correspondence, plactic
monoid, and jeu de taquin for type C,. J. Algebra 247
(2002), no. 2, 295-331. Schensted-type correspondences
and plactic monoids for types B, and D,. J. Algebraic
Combin. 18 (2003), no. 2, 99-133.
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Crystal graphs

simple Lie algebra over C
Uq(g) quantized universal enveloping algebra of g
Uq(g)-Mod category of fin. dim. irreducible

integrable Uq(g)-modules
C(g) category of crystal graphs of M € Uq(g)-Mod

The crystal basis B of M € Uq(g)-Mod, is the vertex set of a
directed graph with edges labeled by the Dynkin nodes | of g.



Crystal graphs

Crystal graphs

simple Lie algebra over C
Uq(g) quantized universal enveloping algebra of g
Uq(g)-Mod category of fin. dim. irreducible

integrable Uq(g)-modules
C(g) category of crystal graphs of M € Uq(g)-Mod

The crystal basis B of M € Uq(g)-Mod, is the vertex set of a
directed graph with edges labeled by the Dynkin nodes | of g.

Example for g = slp: | = {1}

1] —[2]
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Operations on crystal graphs

C(g) is closed under:
e Disjoint union (direct sum)

Taking a connected component (summand)

Cartesian product* (tensor product)

Reversing all arrows (dual)

Dynkin automorphisms
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Structure of C(g)

{wi |1 €1} fund. wts.
Pt =@ic Z>owi dominant integral weights

Representation theory of Ug(g)-Mod says:

There is a bijection

P+, iso. classes of
connected graphs in C(g)

A — By crystal graph of highest weight A

The identity map is the unique morphism B, — Bi.

A morphism B — B’ between objects in C(g), sends each
component of B isomorphically to a component of B’ or “makes
it disappear" (sends the corresponding summand to zero).
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Comment on Littelmann paths

Littelmann paths: construction of crystal graphs B, of irr. int.
highest weight Uq(g)-modules when g is a symm. Kac-Moody
algebra.

We consider the special case that g is an affine algebra and
focus on:
e Nonhighest weight (Kirillov-Reshetikhin) U; (g)-modules
e Special properties of affine-to-finite branching



C(s[z)
g :5[2, | = {1}, P+ = Zzow

B, is a directed path of length r; it has r + 1 vertices. “string

e —>e(b) —= b —> f(b) . .
| =— ¢(b) |
Notation:
e(b)
f(b)

[ ]
p(b) ————
vertex before b on its string
vertex after b on its string
e(b) di
p(b) di

distance (number of edges) to beginning of string
distance to end of string

«O>r «Fr «EZr» «E)»

nae
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C(E[z)
g=usl, | ={1},PT = L>ow

B:., is a directed path of length r; it has r + 1 vertices. “string"

e — e(b) — b — f(b) 3 o o
| =— ¢(b) | p(b) ———
Notation:
e(b) vertex before b on its string

)
f(b) vertex after b on its string
e(b) distance (number of edges) to beginning of string
¢(b) distance to end of string
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Signature of elements in a string (Kashiwara®P)

b 7(3)—/?(3)—/ 1#(b)pe(b)
. ) 111

| ¢ |

. ))( 112

| ' |

. )(( 122

| ! |

o ((( 222
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Signature of elements in a string (Kashiwara®P)

w(b)  e(b)
. ) 111
| / |
. )( 112
| / |
. )( 122
| y !
. (( 222

f changes rightmost ")" to "(" or 1 to 2
e changes leftmost "("to ")" or2to 1
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Tensor product (Kashiwara®P)
B, ® Bg,, has vertex set B,,, x Bg,,.
Example forr =2,s =3
BZw ® B3w

]

oo e >

BZw

—>0—>0

oo e e
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Tensor product (Kashiwara®P)
B, ® Bg,, has vertex set B,,, x Bg,,.
Example forr =2,s =3
BZw ® B3w

]

oo e >

BZw

—>0—>0

oo e e

B3w

Baw ® Ba, = Bs, LI B3, LBy,
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Signature rule for tensor product

Letb =b, ®b; € B, ® B;.
Write signatures of b, and by :

NN ) (
—_—— = =

w(bz) e(b2) w(by) e(by)
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Signature rule for tensor product

Letb =b, ®b; € B, ® B;.
Write signatures of b, and by :

N )G )) ) (
N e e Ve
p(b2)  e(b) w(b1) e(b1)
Match parentheses. Unmatched substring has the form

©(b) is the number of unmatched ")".
e(b) is the number of unmatched "(".

If o(b) > 0 then f(b) is defined and

f(b) = by ®f(b1) ife(b2) < p(by)
 |f(b2) @by ife(bz) > o(by)

effect on signature: change rightmost unmatched “)" to “(".
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Signature rule for tensor product

Letb =b, ®b; € B, ® B;.
Write signatures of b, and by :

N )G )) ) (
N e e Ve
p(b2)  e(b) w(b1) e(b1)
Match parentheses. Unmatched substring has the form

©(b) is the number of unmatched ")".
e(b) is the number of unmatched "(".

If £(b) > 0 then e(b) is defined and

e(b) B E(bz) & bl if €(b2) > Lp(bl)
| by®@e(by) ife(by) < ¢(bi)

effect on signature: change leftmost unmatched “(" to “)".



b=b;®b,
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Tensor product is associative

(Bg [} Bz) X Bl:
match parens in Bs and B,, then match with B;.

—~~
—~

®

~—
~—
~—~

®

| ES— |

~—

))? )I(

ﬁ

Bs ® (B2 ® By):
match parens in B, and B, then match with Bs.

®

)
—~

[
|

~
A
)
&
A
L ~—
)

))?
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Tensor product is associative

(B3 [} Bz) X Bl:
match parens in Bs and B,, then match with B;.

—_ |

))?((®))(®))|(

Bs ® (B2 ® By):
match parens in B, and B, then match with Bs.

)) (((®)) (®))(
[L—] — |
The matched parentheses are the same in either case.
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Tensor product is associative

(B3 [} Bz) X Bl:
match parens in Bs and B,, then match with B;.

—_ |

))?((®))(®))|(

Bs ® (B2 ® By):
match parens in B, and B, then match with Bs.

)) (((®)) (®))(
[L—] — |
The matched parentheses are the same in either case.

For any number of tensor factors: write signatures, pair parens,
see which parenthesis is turned around and apply e or f in that
tensor factor.
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For each Dynkin node i € | there is a copy Uq(sl2) C Uq(g)
which makes B into an sl, crystal graph.
Label these directed edges withi.  "i-strings"
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C(g) and i-strings

For each Dynkin node i € | there is a copy Uq(sl2) C Uq(g)
which makes B into an sl, crystal graph.
Label these directed edges withi.  "i-strings"

o—|>ei(b)—i>b—i>fi(b)—i>o—i>o—i>o

| <— &i(b) — | ¢i(b)

ej(b) vertex before b on its i-string
fi(b) vertex after b on its i-string
ei(b) distance to beginning of i-string
vi(b) distance to end of i-string
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Connected graphs in C(g)

ForB € C(g) and b € B, let C(b) C B be the component of b.

e Every connected graph B € C(g) has a unique highest
weight vector u (vertex with no in-edges).
Let uy be the h.w.v. of B,.
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o Let A=) ¢i(u)wi. Then there is a unique isomorphism
B = B, denoted b — P(b). Write shape(b) = A.
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Connected graphs in C(g)

ForB € C(g) and b € B, let C(b) C B be the component of b.

e Every connected graph B € C(g) has a unique highest
weight vector u (vertex with no in-edges).
Let uy be the h.w.v. of B,.

o Let A=) ¢i(u)wi. Then there is a unique isomorphism
B = B, denoted b — P(b). Write shape(b) = A.

e LetB;,B; € C(g) and b, ® by € B, ® B1. Then

P(bz ® by) = P(P(b2) ® P(by1)).
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Say C(b;) = B, C(bz) = B,, C(b, ® by) = B,.
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Say C(b;) = B, C(bz) = B,, C(b, ® by) = B,.
Then C(bz) ® C(bl) 2B, ® BM with b, ® by — P(bz) & P(bl).
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Say C(b;) = B, C(bz) = B,, C(b, ® by) = B,.
Then C(bz) ® C(bl) 2B, ® BM with b, ® by — P(bz) & P(bl).

C(b2 @ by) —— C(P(bz) ® P(b1))
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Say C(b;) = B, C(bz) = B,, C(b, ® by) = B,.
Then C(bz) ® C(bl) 2B, ® BM with b, ® by — P(bz) & P(bl).

C(b2 @ by) —— C(P(bz) ® P(b1))

| |

B. B.

b, ® by P(bz) & P(bl)

| |

P(bz @by) —— P(P(b2) ® P(b1))
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P*(sl,) and partitions

l={1,2,...,n—1}
P+ « {partitions with < n parts}

i”;ll ajw;j goes to the partition with a; columns of size i.
Example: n = 4:

3w1+w2+2w3r—>%:m

w1 — 0O



Crystal graphs

P*(sl,) and partitions

l={1,2,...,n—1}
P+ « {partitions with < n parts}

i”;ll ajw;j goes to the partition with a; columns of size i.
Example: n = 4:

3w1+w2+2w3}—>%:m

w1 — 0O



Crystal graphs

P*(sl,) and partitions

l={1,2,...,n—1}
P+ « {partitions with < n parts}

i”;ll ajw;j goes to the partition with a; columns of size i.
Example: n = 4:

3w1 + wo + 2w3 H%ZED

w1 — 0O



Crystal graphs

B., € C(g)

B = B,,,: Vector rep: vertices L] through .

1-strings:
1 2 3
[ ]

)
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B., € C(g)

B = B,,,: Vector rep: vertices L] through .

2-strings:
1 2

3
)
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B., € C(g)

B = B,,,: Vector rep: vertices L] through .

3-strings:
1 3

1-{2{3}{a]
)
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Words and C(sly)

B®L: words of length L in alphabet B = B,, = {1,2,...,n}.
Fixiel={1,...,n—1}.

To get i-string of u € B®L:
e Ignore letters notin {i,i + 1}; their i-signature is empty.
e i-signature of eachi is ).
e i-signature of eachi + 1 s (.
e Match parens.
e To get fi(u) change rightmost unmatched i toi + 1.
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Words and C(sly)

B®L: words of length L in alphabet B = B,, = {1,2,...,n}.
Fixiel={1,...,n—1}.

To get i-string of u € B®L:
e Ignore letters notin {i,i + 1}; their i-signature is empty.
e i-signature of eachi is ).

i-signature of eachi + 11is (.

Match parens.

To get fj(u) change rightmost unmatchedi toi + 1.

To get ej(u) change leftmost unmatched i + 1 toi.
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C(sly) and tableaux
Skew partition diagram: D = (6,5,5,3)/(4,2,1) |ID| = 12
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C(sly) and tableaux
Tableau t of shape D:

filling of D with entries in B,,, = {1,2,...,n}
< in rows V in columns

12]2]4
1[3]3]4
1]2]3
1]2]

Bp: set of tableaux of shape D
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C(sly) and tableaux
Tableau t of shape D:
filling of D with entries in B,,, = {1,2,...,n}
< in rows V in columns

1N

12]2
1

w
w
IS

Bp: set of tableaux of shape D
row reading word:

word(t) = 224 - 1334 - 123 - 12
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C(sly) and tableaux
Tableau t of shape D:
filling of D with entries in B,,, = {1,2,...,n}
< in rows V in columns

1N

12]2
1

w
w
IS

Bp: set of tableaux of shape D
row reading word:

word(t) =224 -1334-123-12
We identify a tableau with its reading word:
Bp — B®[Pl

t — word(t)
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The image of Bp in B®/Pl is stable under e; and f; for all i  I.
Enough to check for skew subtableau of letters i and i + 1.
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The image of Bp in B®/Pl is stable under e; and f; for all i  I.
Enough to check for skew subtableau of letters i and i + 1.

[1]1]1]2

2

2

2

2

1

1

1

1

1]2[2]

11122222 - 1111122
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The image of Bp in B®/Pl is stable under e; and f; for all i  I.
Enough to check for skew subtableau of letters i and i + 1.

[1]1]1]2]2]2]2]2
1]1]1]1]1]2]2]

11122222 - 1111122

No column violation: Letters in columns of size two are always
matched, and so not changed by e, or f;.
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The image of Bp in B®/Pl is stable under e; and f; for all i  I.
Enough to check for skew subtableau of letters i and i + 1.

[1]1]1]2]2]2]2]2
1]1]1]1]1]2]2]

11122222 - 1111122

No column violation: Letters in columns of size two are always
matched, and so not changed by e, or f;.
Only possible violation is to create

in some row, but this creates a new matching pair, while e; and
f; preserve the matched letters.
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Yamanouchi tableau in B),

D=2\ partition shape
Let uy € B, be the Yamanouchi tableau of shape ), the one
having only letters i in row i for all i.

Example:n =4, A = (4,2,1)

Ux

I—‘I\JOO|
N
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Yamanouchi tableau in B),

D=2\ partition shape
Let uy € B, be the Yamanouchi tableau of shape ), the one
having only letters i in row i for all i.

Example:n =4, A = (4,2,1)

Ux

I—‘I\JOO|
N

1]1]1]

u, is a highest weight vector: every i + 1 is i-paired.
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Yamanouchi tableau in B),

D=2\ partition shape
Let uy € B, be the Yamanouchi tableau of shape ), the one
having only letters i in row i for all i.

Example:n =4, A = (4,2,1)

Ux

I—‘I\JOO|
N

1]1]1]

u, is a highest weight vector: every i + 1 is i-paired.

w1(uyn) =2, pa(uy) =1, p3(uy) = 1.
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Yamanouchi tableau in B),

D=2\ partition shape
Let uy € B, be the Yamanouchi tableau of shape ), the one
having only letters i in row i for all i.

Example:n =4, A = (4,2,1)

Ux

I—‘I\JOO|
N

1]1]1]

u, is a highest weight vector: every i + 1 is i-paired.

1(uy) =2, po(uy) = 1, p3(uy) = 1.
A= Zwl + lu)z + 1&)3.
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Consider an i + 1 in the first row of a tableau t € B,.

I

t = w

T i I




Crystal graphs

Consider an i + 1 in the first row of a tableau t € B,.

I

t = w

T i I

word(t) = word(w)u i+1 v



Crystal graphs

Consider an i + 1 in the first row of a tableau t € B,.

I

t = w
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v has no letters i. Thus the i + 1 is i-unpaired.
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Consider an i + 1 in the first row of a tableau t € B,.

t = w

I

u

=

v

word(t) = word(w)u i+1 v

v has no letters i. Thus the i + 1 is i-unpaired.
After applying e;j several times, thisi + 1 is changed toi.
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v has no letters i. Thus the i + 1 is i-unpaired.

After applying e;j several times, thisi + 1 is changed toi.
Repeating this process, using various e; we may reach a
tableau whose first row consists of only 1s.
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After applying e;j several times, thisi + 1 is changed toi.
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tableau whose first row consists of only 1s.

Similarly using various e; the second row can be made into only
2s, ...
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Consider an i + 1 in the first row of a tableau t € B,.

I

t = w

T i I

word(t) = word(w)u i+1 v

v has no letters i. Thus the i + 1 is i-unpaired.

After applying e;j several times, thisi + 1 is changed toi.
Repeating this process, using various e; we may reach a
tableau whose first row consists of only 1s.

Similarly using various e; the second row can be made into only
2s, ... Canreach uy fromanyt € B, by e’s.
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i-unpaired letters in blue

1|2]2]3]

23]

1]3]
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i-unpaired letters in blue

2|3 1
1|2]2]3] 2|3] 1]3]
2|3 2
1/1]1]3] 1]3] 1]2]
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i-unpaired letters in blue

1]1]

2[3 2 2

1|2]2]3] 1]1]2]3] 1]1]1]3]

2]3 2 2

1/1]1]3] 1]1]1]3] 1]1]1]2]
2 2



Crystal graphs
J

By = B
[2]2 2]3 ElE
2 2 3
/12| 1131 13|\
l 1
- 13[3
2 12
2 3
2] 2]3]
X /
[1]3 [1]3 HE
3 o8 B
11] 1]2] 213]
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b

Knuth relations
Exercise: Show that for all n the above isomorphism sends

c| bca— bac ifa<b<c

E

|cro|mo

mo|mo—|

b| acb—cab ifa<b<c
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Knuth relations
Exercise: Show that for all n the above isomorphism sends

b

c| bca— bac ifa<b<c

E

plo||p|o|

acb—cab ifa<b<c

|cro|mo

b

P(bca) = bac = P(bac) resp. P(acb) = cab = P(cab).
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Knuth relations
Exercise: Show that for all n the above isomorphism sends

b

c| bca— bac ifa<b<c

E

plo||p|o|

acb—cab ifa<b<c

|cro|mo

b

P(bca) = bac = P(bac) resp. P(acb) = cab = P(cab). Jeu:

[b]c b[c b b[e b]
a e|a ale alc alc]|
[a]c alc o[c cle c]
b] b alb alb alb]




Crystal graphs

Knuth relations

There are isomorphisms id ® J ® id
g®P ®EE‘®|:|®q — 2P ®E|:|®|:|®q

Define equivalence relation = on B®- by

ubcav = ubacv fa<b<c
uacbv = ucabv ifa<b<ec.



Crystal graphs

Lemma. w = w’ implies C(w) = C(w’) with w — w’ and
P(w)=P(w’).
Proof. w = ubcav, w’ = ubacv.
B®P ® C(bca) ® B¥? = B®P @ C(bac) ® B®
uRbca®vi—u®bac®v
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Lemma. w = w’ implies C(w) = C(w’) with w — w’ and
P(w)=P(w’).
Proof. w = ubcav, w’ = ubacv.
B®P ® C(bca) ® B¥? = B®P @ C(bac) ® B®
uRbca®vi—u®bac®v

Restrict:
Clu®bca®v) - C(u®bac @Vv)
| |
B, B,

id

ubca®v - ubac®v

| |

P (ubcav) - P (ubacv)
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Jeu de taquin

Swap the hole with the entry above or to the right, whichever is
smaller.
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