Crystals, combinatorics, and *k*-Schur functions

M. Shimozono

Department of Mathematics Virginia Tech

> Berkeley June 2008

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Topics

Crystal graphs for affine type A

• Combinatorics of certain graded *GL_n*-modules supported in the nullcone

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• k-Schur functions

Topics

- Crystal graphs for affine type A
- Combinatorics of certain graded *GL_n*-modules supported in the nullcone

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• k-Schur functions

Topics

- Crystal graphs for affine type A
- Combinatorics of certain graded *GL_n*-modules supported in the nullcone

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

k-Schur functions

General crystal graphs

- M. Kashiwara, On crystal bases, Representations of Groups, Proceedings of the 1994 Annual Seminar of the Canadian Math. Soc. Ban 16 (1995) 155–197, Amer. Math. Soc., Providence, RI.
- P. Littelmann, Paths and root operators in representation theory. Ann. of Math. (2) 142 (1995), no. 3, 499–525.
- Crystal graphs of classical Lie algebras
 - M. Kashiwara and T. Nakashima, Crystal graphs for representations of the *q*-analogue of classical Lie algebras. J. Algebra 165 (1994), no. 2, 295–345.
 - C. Lecouvey, Schensted-type correspondence, plactic monoid, and jeu de taquin for type C_n. J. Algebra 247 (2002), no. 2, 295–331. Schensted-type correspondences and plactic monoids for types B_n and D_n. J. Algebraic Combin. 18 (2003), no. 2, 99–133.

Crystal graphs

g	simple Lie algebra over ${\mathbb C}$
$U_q(\mathfrak{g})$	quantized universal enveloping algebra of \mathfrak{g}
$U_q(\mathfrak{g})$ -Mod	category of fin. dim. irreducible
	integrable $U_q(\mathfrak{g})$ -modules
$\mathcal{C}(\mathfrak{g})$	category of crystal graphs of $M \in U_q(\mathfrak{g})$ -Mod

The crystal basis *B* of $M \in U_q(\mathfrak{g})$ -Mod, is the vertex set of a directed graph with edges labeled by the Dynkin nodes *I* of \mathfrak{g} .

Example for $g = \mathfrak{sl}_2$: $I = \{1\}$

$$1 \xrightarrow{1} 2$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Crystal graphs

g	simple Lie algebra over ${\mathbb C}$
$U_q(\mathfrak{g})$	quantized universal enveloping algebra of $\mathfrak g$
$U_q(\mathfrak{g})$ -Mod	category of fin. dim. irreducible
	integrable $U_q(\mathfrak{g})$ -modules
$\mathcal{C}(\mathfrak{g})$	category of crystal graphs of $M \in U_q(\mathfrak{g})$ -Mod

The crystal basis *B* of $M \in U_q(\mathfrak{g})$ -Mod, is the vertex set of a directed graph with edges labeled by the Dynkin nodes *I* of \mathfrak{g} .

Example for $\mathfrak{g} = \mathfrak{sl}_2$: $I = \{1\}$

$$1 \xrightarrow{1} 2$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- Disjoint union (direct sum)
- Taking a connected component (summand)
- Cartesian product* (tensor product)
- Reversing all arrows (dual)
- Dynkin automorphisms

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

- Disjoint union (direct sum)
- Taking a connected component (summand)
- Cartesian product* (tensor product)
- Reversing all arrows (dual)
- Dynkin automorphisms

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- Disjoint union (direct sum)
- Taking a connected component (summand)
- Cartesian product* (tensor product)
- Reversing all arrows (dual)
- Dynkin automorphisms

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- Disjoint union (direct sum)
- Taking a connected component (summand)
- Cartesian product* (tensor product)
- Reversing all arrows (dual)
- Dynkin automorphisms

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- Disjoint union (direct sum)
- Taking a connected component (summand)
- Cartesian product* (tensor product)
- Reversing all arrows (dual)
- Dynkin automorphisms

 $\begin{aligned} \{\omega_i \mid i \in I\} \text{ fund. wts.} \\ P^+ = \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \omega_i & \text{dominant integral weights} \end{aligned}$

Representation theory of $U_q(g)$ -Mod says:

There is a bijection

The identity map is the unique morphism $B_{\lambda} \rightarrow B_{\lambda}$.

A morphism $B \to B'$ between objects in $\mathcal{C}(\mathfrak{g})$, sends each component of *B* isomorphically to a component of *B'* or "makes it disappear" (sends the corresponding summand to zero).

 $\{\omega_i \mid i \in I\}$ fund. wts. $P^+ = \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \omega_i$ dominant integral weights

Representation theory of $U_q(\mathfrak{g})$ -Mod says:

There is a bijection

$$egin{aligned} \mathcal{P}^+ &
ightarrow egin{cases}{c} & ext{iso. classes of} \ ext{connected graphs in } \mathcal{C}(\mathfrak{g}) \ \end{pmatrix} \ \lambda &\mapsto \mathcal{B}_\lambda & ext{ crystal graph of highest weight } \lambda \end{aligned}$$

The identity map is the unique morphism $B_{\lambda} \rightarrow B_{\lambda}$.

A morphism $B \to B'$ between objects in $\mathcal{C}(\mathfrak{g})$, sends each component of *B* isomorphically to a component of *B'* or "makes it disappear" (sends the corresponding summand to zero).

 $\begin{array}{l} \{\omega_i \mid i \in I\} \text{ fund. wts.} \\ P^+ = \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \omega_i & \text{dominant integral weights} \end{array}$

Representation theory of $U_q(\mathfrak{g})$ -Mod says:

There is a bijection

$$onumber P^+
ightarrow \left\{ egin{array}{c} ext{iso. classes of} \ ext{connected graphs in } \mathcal{C}(\mathfrak{g})
ight\} \ \lambda \mapsto eta_{\lambda} \qquad ext{crystal graph of highest weight } \lambda$$

The identity map is the unique morphism $B_{\lambda} \rightarrow B_{\lambda}$.

A morphism $B \to B'$ between objects in $\mathcal{C}(\mathfrak{g})$, sends each component of *B* isomorphically to a component of *B'* or "makes it disappear" (sends the corresponding summand to zero).

 $\begin{array}{l} \{\omega_i \mid i \in I\} \text{ fund. wts.} \\ P^+ = \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \omega_i & \text{dominant integral weights} \end{array}$

Representation theory of $U_q(\mathfrak{g})$ -Mod says:

There is a bijection

$$\mathcal{P}^+
ightarrow egin{cases}{l} ext{iso. classes of} \ ext{connected graphs in } \mathcal{C}(\mathfrak{g}) \end{array}$$

 $\lambda \mapsto \mathcal{B}_\lambda \qquad ext{crystal graph of highest weight } \lambda$

The identity map is the unique morphism $B_{\lambda} \rightarrow B_{\lambda}$.

A morphism $B \to B'$ between objects in $\mathcal{C}(\mathfrak{g})$, sends each component of *B* isomorphically to a component of *B'* or "makes it disappear" (sends the corresponding summand to zero).

 $\begin{array}{l} \{\omega_i \mid i \in I\} \text{ fund. wts.} \\ P^+ = \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \omega_i & \text{dominant integral weights} \end{array}$

Representation theory of $U_q(\mathfrak{g})$ -Mod says:

There is a bijection

$${f P}^+
ightarrow egin{cases}{l} {f iso. classes of} \ {f connected graphs in } {f C}({f g}) \end{array}$$
 $\lambda \mapsto {f B}_\lambda \qquad ext{crystal graph of highest weight } \lambda$

The identity map is the unique morphism $B_{\lambda} \rightarrow B_{\lambda}$.

A morphism $B \to B'$ between objects in $\mathcal{C}(\mathfrak{g})$, sends each component of *B* isomorphically to a component of *B'* or "makes it disappear" (sends the corresponding summand to zero).

Comment on Littelmann paths

Littelmann paths: construction of crystal graphs B_{λ} of irr. int. highest weight $U_q(\mathfrak{g})$ -modules when \mathfrak{g} is a symm. Kac-Moody algebra.

We consider the special case that \mathfrak{g} is an affine algebra and focus on:

• Nonhighest weight (Kirillov-Reshetikhin) $U'_{\alpha}(\mathfrak{g})$ -modules

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

• Special properties of affine-to-finite branching

Comment on Littelmann paths

Littelmann paths: construction of crystal graphs B_{λ} of irr. int. highest weight $U_q(\mathfrak{g})$ -modules when \mathfrak{g} is a symm. Kac-Moody algebra.

We consider the special case that \mathfrak{g} is an affine algebra and focus on:

• Nonhighest weight (Kirillov-Reshetikhin) $U'_{\alpha}(\mathfrak{g})$ -modules

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Special properties of affine-to-finite branching

$\mathcal{C}(\mathfrak{sl}_2)$

$\mathfrak{g}=\mathfrak{sl}_2,$ $\textit{I}=\{1\},$ $\textit{P}^+=\mathbb{Z}_{\geq 0}\omega$

 $B_{r\omega}$ is a directed path of length r; it has r + 1 vertices. "string"

$$\bullet \longrightarrow e(b) \longrightarrow b \longrightarrow f(b) \longrightarrow \bullet \longrightarrow \bullet$$
$$| \longleftarrow \varepsilon(b) \longrightarrow | \longleftarrow \varphi(b) \longrightarrow |$$

Notation:

- e(b) vertex before b on its string
- f(b) vertex after b on its string
- $\varepsilon(b)$ distance (number of edges) to beginning of string
- $\varphi(b)$ distance to end of string

$\mathcal{C}(\mathfrak{sl}_2)$

$$\mathfrak{g} = \mathfrak{sl}_2, I = \{1\}, P^+ = \mathbb{Z}_{\geq 0}\omega$$

 $B_{r\omega}$ is a directed path of length *r*; it has r + 1 vertices. "string"

$$\bullet \longrightarrow e(b) \longrightarrow b \longrightarrow f(b) \longrightarrow \bullet \longrightarrow \bullet$$
$$| \longleftarrow \varepsilon(b) \longrightarrow | \longleftarrow \varphi(b) \longrightarrow |$$

Notation:

- e(b) vertex before b on its string
- f(b) vertex after b on its string
- $\varepsilon(b)$ distance (number of edges) to beginning of string
- $\varphi(b)$ distance to end of string

$\mathcal{C}(\mathfrak{sl}_2)$

$$\mathfrak{g}=\mathfrak{sl}_2,$$
 $\emph{I}=\{1\},$ $\emph{P}^+=\mathbb{Z}_{\geq 0}\omega$

 $B_{r\omega}$ is a directed path of length r; it has r + 1 vertices. "string"

$$\bullet \longrightarrow e(b) \longrightarrow b \longrightarrow f(b) \longrightarrow \bullet \longrightarrow \bullet$$
$$| \longleftarrow \varepsilon(b) \longrightarrow | \longleftarrow \varphi(b) \longrightarrow |$$

Notation:

- e(b) vertex before b on its string
- f(b) vertex after b on its string
- $\varepsilon(b)$ distance (number of edges) to beginning of string
- $\varphi(b)$ distance to end of string

Signature of elements in a string (Kashiwara^{op})

(ロ) (同) (三) (三) (三) (○) (○)

f changes rightmost ")" to "(" or 1 to 2 e changes leftmost "(" to ")" or 2 to 1 Signature of elements in a string (Kashiwara^{op})

(ロ) (同) (三) (三) (三) (○) (○)

f changes rightmost ")" to "(" or 1 to 2 e changes leftmost "(" to ")" or 2 to 1

Signature of elements in a string (Kashiwara^{op})

(ロ) (同) (三) (三) (三) (○) (○)

f changes rightmost ")" to "(" or 1 to 2 e changes leftmost "(" to ")" or 2 to 1

Tensor product (Kashiwara^{op})

 $B_{r\omega} \otimes B_{s\omega}$ has vertex set $B_{r\omega} \times B_{s\omega}$. Example for r = 2, s = 3

 $B_{2\omega} \otimes B_{3\omega} \cong B_{5\omega} \sqcup B_{3\omega} \sqcup B_{\omega}$

・ロン ・ 母 と ・ ヨ と ・ ヨ と

Tensor product (Kashiwara^{op})

 $B_{r\omega} \otimes B_{s\omega}$ has vertex set $B_{r\omega} \times B_{s\omega}$. Example for r = 2, s = 3

$$B_{2\omega}\otimes B_{3\omega}\cong B_{5\omega}\sqcup B_{3\omega}\sqcup B_{\omega}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Let $b = b_2 \otimes b_1 \in B_2 \otimes B_1$. Write signatures of b_2 and b_1 :

Match parentheses. Unmatched substring has the form $))\cdots)((\cdots)$

 $\varphi(b)$ is the number of unmatched ")". $\varepsilon(b)$ is the number of unmatched "(".

If $\varphi(b) > 0$ then f(b) is defined and

$$f(b) = egin{cases} b_2 \otimes f(b_1) & ext{if } arepsilon(b_2) < arphi(b_1) \ f(b_2) \otimes b_1 & ext{if } arepsilon(b_2) \geq arphi(b_1) \end{cases}$$

Let $b = b_2 \otimes b_1 \in B_2 \otimes B_1$. Write signatures of b_2 and b_1 :

Match parentheses. Unmatched substring has the form)) \cdots) ((\cdots (

 $\varphi(b)$ is the number of unmatched ")". $\varepsilon(b)$ is the number of unmatched "(".

If $\varphi(b) > 0$ then f(b) is defined and

$$f(b) = egin{cases} b_2 \otimes f(b_1) & ext{if } arepsilon(b_2) < arphi(b_1) \ f(b_2) \otimes b_1 & ext{if } arepsilon(b_2) \geq arphi(b_1) \end{cases}$$

Let $b = b_2 \otimes b_1 \in B_2 \otimes B_1$. Write signatures of b_2 and b_1 :

Match parentheses. Unmatched substring has the form)) \cdots) ((\cdots (

 $\varphi(b)$ is the number of unmatched ")". $\varepsilon(b)$ is the number of unmatched "(".

If $\varphi(b) > 0$ then f(b) is defined and

 $f(b) = egin{cases} b_2 \otimes f(b_1) & ext{if } arepsilon(b_2) < arphi(b_1) \ f(b_2) \otimes b_1 & ext{if } arepsilon(b_2) \geq arphi(b_1) \end{cases}$

Let $b = b_2 \otimes b_1 \in B_2 \otimes B_1$. Write signatures of b_2 and b_1 :

Match parentheses. Unmatched substring has the form)) \cdots) ((\cdots (

 $\varphi(b)$ is the number of unmatched ")". $\varepsilon(b)$ is the number of unmatched "(".

If $\varphi(b) > 0$ then f(b) is defined and

$$f(b) = \begin{cases} b_2 \otimes f(b_1) & \text{if } \varepsilon(b_2) < \varphi(b_1) \\ f(b_2) \otimes b_1 & \text{if } \varepsilon(b_2) \ge \varphi(b_1) \end{cases}$$

(ロ) (同) (三) (三) (三) (○) (○)

Let $b = b_2 \otimes b_1 \in B_2 \otimes B_1$. Write signatures of b_2 and b_1 :

Match parentheses. Unmatched substring has the form)) \cdots) ((\cdots (

 $\varphi(b)$ is the number of unmatched ")". $\varepsilon(b)$ is the number of unmatched "(".

If $\varepsilon(b) > 0$ then e(b) is defined and

$$\mathbf{e}(b) = \begin{cases} \mathbf{e}(b_2) \otimes b_1 & \text{if } \varepsilon(b_2) > \varphi(b_1) \\ b_2 \otimes \mathbf{e}(b_1) & \text{if } \varepsilon(b_2) \le \varphi(b_1) \end{cases}$$

Crystal graphs

$$b = b_1 \otimes b_2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tensor product is associative

 $(B_3 \otimes B_2) \otimes B_1$: match parens in B_3 and B_2 , then match with B_1 .

 $B_3 \otimes (B_2 \otimes B_1)$: match parens in B_2 and B_1 then match with B_3 .

The matched parentheses are the same in either case.

For any number of tensor factors: write signatures, pair parens, see which parenthesis is turned around and apply e or f in that tensor factor.

Tensor product is associative

 $(B_3 \otimes B_2) \otimes B_1$: match parens in B_3 and B_2 , then match with B_1 .

 $B_3 \otimes (B_2 \otimes B_1)$:

match parens in B_2 and B_1 then match with B_3 .

))(((⊗))(⊗))(

The matched parentheses are the same in either case.

For any number of tensor factors: write signatures, pair parens, see which parenthesis is turned around and apply e or f in that tensor factor.

Tensor product is associative

 $(B_3 \otimes B_2) \otimes B_1$: match parens in B_3 and B_2 , then match with B_1 .

 $B_3\otimes (B_2\otimes B_1)$:

match parens in B_2 and B_1 then match with B_3 .

The matched parentheses are the same in either case.

For any number of tensor factors: write signatures, pair parens, see which parenthesis is turned around and apply e or f in that tensor factor.
$\mathcal{C}(\mathfrak{g})$ and *i*-strings

For each Dynkin node $i \in I$ there is a copy $U_q(\mathfrak{sl}_2) \subset U_q(\mathfrak{g})$ which makes B into an \mathfrak{sl}_2 crystal graph. Label these directed edges with i. "*i*-strings"

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $e_i(b)$ vertex before *b* on its *i*-string $f_i(b)$ vertex after *b* on its *i*-string $e_i(b)$ distance to beginning of *i*-string $\varphi_i(b)$ distance to end of *i*-string

$\mathcal{C}(\mathfrak{g})$ and *i*-strings

For each Dynkin node $i \in I$ there is a copy $U_q(\mathfrak{sl}_2) \subset U_q(\mathfrak{g})$ which makes *B* into an \mathfrak{sl}_2 crystal graph. Label these directed edges with *i*. "*i*-strings"

•
$$\xrightarrow{i} e_i(b) \xrightarrow{i} b \xrightarrow{i} f_i(b) \xrightarrow{i} \bullet \xrightarrow{i} \bullet \xrightarrow{i} \bullet$$

| $\leftarrow \varepsilon_i(b) \rightarrow | \leftarrow \varphi_i(b) \longrightarrow |$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

 $e_i(b)$ vertex before *b* on its *i*-string $f_i(b)$ vertex after *b* on its *i*-string $\varepsilon_i(b)$ distance to beginning of *i*-string $\varphi_i(b)$ distance to end of *i*-string

Connected graphs in C(g)

For $B \in C(\mathfrak{g})$ and $b \in B$, let $C(b) \subset B$ be the component of b.

- Every connected graph B ∈ C(g) has a unique highest weight vector u (vertex with no in-edges).
 Let u_λ be the h.w.v. of B_λ.
- Let $\lambda = \sum_{i \in I} \varphi_i(u) \omega_i$. Then there is a unique isomorphism $B \cong B_\lambda$ denoted $b \mapsto P(b)$. Write shape $(b) = \lambda$.
- Let $B_1, B_2 \in C(\mathfrak{g})$ and $b_2 \otimes b_1 \in B_2 \otimes B_1$. Then

$$P(b_2 \otimes b_1) = P(P(b_2) \otimes P(b_1)).$$

Connected graphs in C(g)

For $B \in C(\mathfrak{g})$ and $b \in B$, let $C(b) \subset B$ be the component of b.

- Every connected graph B ∈ C(g) has a unique highest weight vector u (vertex with no in-edges).
 Let u_λ be the h.w.v. of B_λ.
- Let $\lambda = \sum_{i \in I} \varphi_i(u) \omega_i$. Then there is a unique isomorphism $B \cong B_{\lambda}$ denoted $b \mapsto P(b)$. Write shape $(b) = \lambda$.
- Let $B_1, B_2 \in \mathcal{C}(\mathfrak{g})$ and $b_2 \otimes b_1 \in B_2 \otimes B_1$. Then

 $P(b_2 \otimes b_1) = P(P(b_2) \otimes P(b_1)).$

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

Connected graphs in C(g)

For $B \in C(\mathfrak{g})$ and $b \in B$, let $C(b) \subset B$ be the component of b.

- Every connected graph B ∈ C(g) has a unique highest weight vector u (vertex with no in-edges).
 Let u_λ be the h.w.v. of B_λ.
- Let $\lambda = \sum_{i \in I} \varphi_i(u) \omega_i$. Then there is a unique isomorphism $B \cong B_\lambda$ denoted $b \mapsto P(b)$. Write shape $(b) = \lambda$.
- Let $B_1, B_2 \in \mathcal{C}(\mathfrak{g})$ and $b_2 \otimes b_1 \in B_2 \otimes B_1$. Then

$$P(b_2 \otimes b_1) = P(P(b_2) \otimes P(b_1)).$$

Say $C(b_1) \cong B_\mu$, $C(b_2) \cong B_\nu$, $C(b_2 \otimes b_1) \cong B_\lambda$.

Then $C(b_2) \otimes C(b_1) \cong B_{\nu} \otimes B_{\mu}$ with $b_2 \otimes b_1 \mapsto P(b_2) \otimes P(b_1)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Say $C(b_1) \cong B_{\mu}$, $C(b_2) \cong B_{\nu}$, $C(b_2 \otimes b_1) \cong B_{\lambda}$. Then $C(b_2) \otimes C(b_1) \cong B_{\nu} \otimes B_{\mu}$ with $b_2 \otimes b_1 \mapsto P(b_2) \otimes P(b_1)$.

Say $C(b_1) \cong B_{\mu}$, $C(b_2) \cong B_{\nu}$, $C(b_2 \otimes b_1) \cong B_{\lambda}$. Then $C(b_2) \otimes C(b_1) \cong B_{\nu} \otimes B_{\mu}$ with $b_2 \otimes b_1 \mapsto P(b_2) \otimes P(b_1)$.

Say $C(b_1) \cong B_{\mu}$, $C(b_2) \cong B_{\nu}$, $C(b_2 \otimes b_1) \cong B_{\lambda}$. Then $C(b_2) \otimes C(b_1) \cong B_{\nu} \otimes B_{\mu}$ with $b_2 \otimes b_1 \mapsto P(b_2) \otimes P(b_1)$.

$P^+(\mathfrak{sl}_n)$ and partitions

$$I = \{1, 2, \dots, n-1\}$$

 $P^+ \leftrightarrow \{ \text{partitions with} < n \text{ parts} \}$

 $\sum_{i=1}^{n-1} a_i \omega_i$ goes to the partition with a_i columns of size *i*. Example: n = 4:

$$3\omega_1 + \omega_2 + 2\omega_3 \mapsto$$

 $\omega_1 \mapsto \Box$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$P^+(\mathfrak{sl}_n)$ and partitions

$$I = \{1, 2, \dots, n-1\}$$

 $P^+ \leftrightarrow \{ \text{partitions with} < n \text{ parts} \}$

 $\sum_{i=1}^{n-1} a_i \omega_i$ goes to the partition with a_i columns of size *i*. Example: n = 4:

$$3\omega_1 + \omega_2 + 2\omega_3 \mapsto \blacksquare$$

 $\omega_1 \mapsto \Box$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$P^+(\mathfrak{sl}_n)$ and partitions

$$I = \{1, 2, \dots, n-1\}$$

 $P^+ \leftrightarrow \{ \text{partitions with} < n \text{ parts} \}$

 $\sum_{i=1}^{n-1} a_i \omega_i$ goes to the partition with a_i columns of size *i*. Example: n = 4:

$$3\omega_1 + \omega_2 + 2\omega_3 \mapsto$$

 $\omega_1 \mapsto \Box$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$B_{\omega_1} \in \mathcal{C}(\mathfrak{g})$

$B = B_{\omega_1}$: Vector rep: vertices 1 through n.

1-strings:

$B_{\omega_1} \in \mathcal{C}(\mathfrak{g})$

$B = B_{\omega_1}$: Vector rep: vertices 1 through n.

2-strings:

$B_{\omega_1} \in \mathcal{C}(\mathfrak{g})$

$B = B_{\omega_1}$: Vector rep: vertices 1 through n.

3-strings:

$B^{\otimes L}$: words of length *L* in alphabet $B = B_{\omega_1} = \{1, 2, \dots, n\}$.

Fix $i \in I = \{1, ..., n-1\}$.

To get *i*-string of $u \in B^{\otimes L}$:

- Ignore letters not in {i, i + 1}; their i-signature is empty.
- *i*-signature of each *i* is).
- *i*-signature of each i + 1 is (.
- Match parens.
- To get $f_i(u)$ change rightmost unmatched *i* to i + 1.
- To get $e_i(u)$ change leftmost unmatched i + 1 to i.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

 $B^{\otimes L}$: words of length *L* in alphabet $B = B_{\omega_1} = \{1, 2, \dots, n\}$.

Fix $i \in I = \{1, ..., n-1\}$.

- Ignore letters not in {*i*, *i* + 1}; their *i*-signature is empty.
- *i*-signature of each *i* is).
- *i*-signature of each i + 1 is (.
- Match parens.
- To get $f_i(u)$ change rightmost unmatched *i* to i + 1.
- To get $e_i(u)$ change leftmost unmatched i + 1 to i.

 $B^{\otimes L}$: words of length *L* in alphabet $B = B_{\omega_1} = \{1, 2, \dots, n\}$.

Fix $i \in I = \{1, ..., n-1\}$.

- Ignore letters not in {*i*, *i* + 1}; their *i*-signature is empty.
- *i*-signature of each *i* is).
- *i*-signature of each i + 1 is (.
- Match parens.
- To get $f_i(u)$ change rightmost unmatched *i* to i + 1.
- To get $e_i(u)$ change leftmost unmatched i + 1 to i.

 $B^{\otimes L}$: words of length *L* in alphabet $B = B_{\omega_1} = \{1, 2, \dots, n\}$.

Fix $i \in I = \{1, ..., n-1\}$.

- Ignore letters not in {*i*, *i* + 1}; their *i*-signature is empty.
- *i*-signature of each *i* is).
- *i*-signature of each i + 1 is (.
- Match parens.
- To get $f_i(u)$ change rightmost unmatched *i* to i + 1.
- To get $e_i(u)$ change leftmost unmatched i + 1 to i.

 $B^{\otimes L}$: words of length *L* in alphabet $B = B_{\omega_1} = \{1, 2, \dots, n\}$.

Fix $i \in I = \{1, ..., n-1\}$.

- Ignore letters not in {*i*, *i* + 1}; their *i*-signature is empty.
- *i*-signature of each *i* is).
- *i*-signature of each *i* + 1 is (.
- Match parens.
- To get $f_i(u)$ change rightmost unmatched *i* to i + 1.
- To get $e_i(u)$ change leftmost unmatched i + 1 to i.

 $B^{\otimes L}$: words of length *L* in alphabet $B = B_{\omega_1} = \{1, 2, \dots, n\}$.

Fix $i \in I = \{1, ..., n-1\}$.

To get *i*-string of $u \in B^{\otimes L}$:

- Ignore letters not in {*i*, *i* + 1}; their *i*-signature is empty.
- *i*-signature of each *i* is).
- *i*-signature of each *i* + 1 is (.
- Match parens.
- To get $f_i(u)$ change rightmost unmatched *i* to i + 1.
- To get $e_i(u)$ change leftmost unmatched i + 1 to i.

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

 $B^{\otimes L}$: words of length *L* in alphabet $B = B_{\omega_1} = \{1, 2, \dots, n\}$.

Fix $i \in I = \{1, ..., n-1\}$.

- Ignore letters not in {*i*, *i* + 1}; their *i*-signature is empty.
- *i*-signature of each *i* is).
- *i*-signature of each *i* + 1 is (.
- Match parens.
- To get $f_i(u)$ change rightmost unmatched *i* to i + 1.
- To get $e_i(u)$ change leftmost unmatched i + 1 to i.

Crystal graphs

$\mathcal{C}(\mathfrak{sl}_n)$ and tableaux

Skew partition diagram: D = (6, 5, 5, 3)/(4, 2, 1) |D| = 12

 B_D : set of tableaux of shape D row reading word:

 $word(t) = 224 \cdot 1334 \cdot 123 \cdot 12$

We identify a tableau with its reading word:

$$egin{aligned} B_D &
ightarrow B^{\otimes |D|} \ t &\mapsto \operatorname{word}(t) \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

$\mathcal{C}(\mathfrak{sl}_n)$ and tableaux

Tableau *t* of shape *D*: filling of *D* with entries in $B_{\omega_1} = \{1, 2, ..., n\}$ < in rows \forall in columns

B_D: set of tableaux of shape *D* row reading word:

 $word(t) = 224 \cdot 1334 \cdot 123 \cdot 12$

We identify a tableau with its reading word:

 $egin{aligned} B_D & o B^{\otimes |D|} \ t &\mapsto \operatorname{word}(t) \end{aligned}$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$\mathcal{C}(\mathfrak{sl}_n)$ and tableaux

Tableau *t* of shape *D*: filling of *D* with entries in $B_{\omega_1} = \{1, 2, ..., n\}$ < in rows \lor in columns

 B_D : set of tableaux of shape D row reading word:

$word(t) = 224 \cdot 1334 \cdot 123 \cdot 12$

We identify a tableau with its reading word:

 $egin{aligned} & B_D o B^{\otimes |D|} \ & t \mapsto \operatorname{word}(t) \end{aligned}$

$\mathcal{C}(\mathfrak{sl}_n)$ and tableaux

Tableau *t* of shape *D*: filling of *D* with entries in $B_{\omega_1} = \{1, 2, ..., n\}$ < in rows \lor in columns

 B_D : set of tableaux of shape D row reading word:

$$word(t) = 224 \cdot 1334 \cdot 123 \cdot 12$$

We identify a tableau with its reading word:

$$egin{aligned} B_D & o B^{\otimes |D|} \ t &\mapsto \operatorname{word}(t) \end{aligned}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

The image of B_D in $B^{\otimes |D|}$ is stable under e_i and f_i for all $i \in I$. Enough to check for skew subtableau of letters *i* and i + 1.

$11122222 \cdot 1111122$

No column violation: Letters in columns of size two are always matched, and so not changed by e_1 or f_1 . Only possible violation is to create

The image of B_D in $B^{\otimes |D|}$ is stable under e_i and f_i for all $i \in I$. Enough to check for skew subtableau of letters *i* and i + 1.

$11122222 \cdot 1111122$

No column violation: Letters in columns of size two are always matched, and so not changed by e_1 or f_1 . Only possible violation is to create

The image of B_D in $B^{\otimes |D|}$ is stable under e_i and f_i for all $i \in I$. Enough to check for skew subtableau of letters *i* and i + 1.

$1112 \\ \underline{2222} \cdot \underline{1111122}$

No column violation: Letters in columns of size two are always matched, and so not changed by e_1 or f_1 .

Only possible violation is to create

The image of B_D in $B^{\otimes |D|}$ is stable under e_i and f_i for all $i \in I$. Enough to check for skew subtableau of letters *i* and i + 1.

$11122222\cdot 1111122$

No column violation: Letters in columns of size two are always matched, and so not changed by e_1 or f_1 . Only possible violation is to create

2 1

 $D = \lambda$ partition shape Let $u_{\lambda} \in B_{\lambda}$ be the Yamanouchi tableau of shape λ , the one having only letters *i* in row *i* for all *i*.

Example: n = 4, $\lambda = (4, 2, 1)$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$$\varphi_1(u_\lambda) = 2, \ \varphi_2(u_\lambda) = 1, \ \varphi_3(u_\lambda) = 1.$$

 $\lambda = 2\omega_1 + 1\omega_2 + 1\omega_3.$

 $D = \lambda$ partition shape Let $u_{\lambda} \in B_{\lambda}$ be the Yamanouchi tableau of shape λ , the one having only letters *i* in row *i* for all *i*.

Example: n = 4, $\lambda = (4, 2, 1)$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$$\varphi_1(u_{\lambda}) = 2, \ \varphi_2(u_{\lambda}) = 1, \ \varphi_3(u_{\lambda}) = 1.$$

$$\lambda = 2\omega_1 + 1\omega_2 + 1\omega_3.$$

 $D = \lambda$ partition shape Let $u_{\lambda} \in B_{\lambda}$ be the Yamanouchi tableau of shape λ , the one having only letters *i* in row *i* for all *i*.

Example: n = 4, $\lambda = (4, 2, 1)$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$$\varphi_1(u_\lambda) = 2, \varphi_2(u_\lambda) = 1, \varphi_3(u_\lambda) = 1.$$

 $\lambda = 2\omega_1 + 1\omega_2 + 1\omega_3.$

 $D = \lambda$ partition shape Let $u_{\lambda} \in B_{\lambda}$ be the Yamanouchi tableau of shape λ , the one having only letters *i* in row *i* for all *i*.

Example: n = 4, $\lambda = (4, 2, 1)$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$$\varphi_1(u_\lambda) = 2, \ \varphi_2(u_\lambda) = 1, \ \varphi_3(u_\lambda) = 1.$$

 $\lambda = 2\omega_1 + 1\omega_2 + 1\omega_3.$

Consider an i + 1 in the first row of a tableau $t \in B_{\lambda}$.

word(t) = word(w) u i+1 v

v has no letters i. Thus the i + 1 is i-unpaired.

After applying e_i several times, this i + 1 is changed to i.

Repeating this process, using various e_i we may reach a tableau where first row consists of only 1s.

Similarly using various e_i the second row can be made into only 2s, ... Can reach u_{λ} from any $t \in B_{\lambda}$ by e's.

Consider an i + 1 in the first row of a tableau $t \in B_{\lambda}$.

v has no letters *i*. Thus the i + 1 is *i*-unpaired. After applying e_i several times, this i + 1 is changed to *i*. Repeating this process, using various e_i we may reach a tableau whose first row consists of only 1s. Similarly using various e_i the second row can be made into only 2s, ... Can reach u_λ from any $t \in B_\lambda$ by e's.

word(t) = word(w) u i+1 v

v has no letters *i*. Thus the i + 1 is *i*-unpaired.

After applying e_i several times, this i + 1 is changed to i. Repeating this process, using various e_i we may reach a tableau whose first row consists of only 1s. Similarly using various e_i the second row can be made into only 2s, ... Can reach u_λ from any $t \in B_\lambda$ by e's.

word(t) = word(w) u i+1 v

v has no letters *i*. Thus the *i* + 1 is *i*-unpaired. After applying e_i several times, this *i* + 1 is changed to *i*. Repeating this process, using various e_i we may reach a tableau whose first row consists of only 1s. Similarly using various e_i the second row can be made into only 2s, ... Can reach u_λ from any $t \in B_\lambda$ by e's.

word(t) = word(w) u i+1 v

v has no letters *i*. Thus the i + 1 is *i*-unpaired. After applying e_i several times, this i + 1 is changed to *i*. Repeating this process, using various e_i we may reach a tableau whose first row consists of only 1s.

Similarly using various e_i the second row can be made into only 2s, ... Can reach u_{λ} from any $t \in B_{\lambda}$ by e's.

word(t) = word(w) u i+1 v

v has no letters *i*. Thus the i + 1 is *i*-unpaired.

After applying e_i several times, this i + 1 is changed to *i*.

Repeating this process, using various e_i we may reach a tableau whose first row consists of only 1s.

Similarly using various e_i the second row can be made into only 2s, ... Can reach u_{λ} from any $t \in B_{\lambda}$ by e's.

word(t) = word(w) u i+1 v

v has no letters *i*. Thus the i + 1 is *i*-unpaired.

After applying e_i several times, this i + 1 is changed to i.

Repeating this process, using various e_i we may reach a tableau whose first row consists of only 1s.

Similarly using various e_i the second row can be made into only 2s, ... Can reach u_{λ} from any $t \in B_{\lambda}$ by e's.

i-unpaired letters in blue

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

i-unpaired letters in blue

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

i-unpaired letters in blue

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

 $B_{\Box} \stackrel{J}{\cong} B_{\Box}$

æ

Knuth relations

Exercise: Show that for all *n* the above isomorphism sends

$$bca \mapsto bac$$
 if $a < b \le c$

 $acb\mapsto cab \quad ext{if } a\leq b< c$

P(bca) = bac = P(bac) resp. P(acb) = cab = P(cab). Jeu:

Knuth relations

Exercise: Show that for all *n* the above isomorphism sends

$$bca \mapsto bac$$
 if $a < b \le c$

 $acb\mapsto cab$ if $a\leq b< c$

P(bca) = bac = P(bac) resp. P(acb) = cab = P(cab). Jeu:

Knuth relations

Exercise: Show that for all *n* the above isomorphism sends

$$bca \mapsto bac$$
 if $a < b \le c$

 $acb \mapsto cab$ if $a \leq b < c$

P(bca) = bac = P(bac) resp. P(acb) = cab = P(cab). Jeu:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Knuth relations

There are isomorphisms id $\otimes J \otimes id$

$$\mathbf{u}^{\otimes p} \otimes \mathbf{u} \otimes \mathbf{u}^{\otimes q} \longrightarrow \mathbf{u}^{\otimes p} \otimes \mathbf{u} \otimes \mathbf{u}^{\otimes q}$$

Define equivalence relation \equiv on $B^{\otimes L}$ by

$ubcav \equiv ubacv$	if $a < b \le c$
$uacbv \equiv ucabv$	if $a \le b < c$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Lemma. $w \equiv w'$ implies $C(w) \cong C(w')$ with $w \mapsto w'$ and P(w) = P(w'). Proof. w = ubcav, w' = ubacv.

$$B^{\otimes p} \otimes C(bca) \otimes B^{\otimes q} \cong B^{\otimes p} \otimes C(bac) \otimes B^{\otimes q}$$
$$u \otimes bca \otimes v \mapsto u \otimes bac \otimes v$$

Restrict:

Lemma. $w \equiv w'$ implies $C(w) \cong C(w')$ with $w \mapsto w'$ and P(w) = P(w'). Proof. w = ubcav, w' = ubacv.

$$B^{\otimes p} \otimes C(bca) \otimes B^{\otimes q} \cong B^{\otimes p} \otimes C(bac) \otimes B^{\otimes q}$$
$$u \otimes bca \otimes v \mapsto u \otimes bac \otimes v$$

Restrict:

$$C(u \otimes bca \otimes v) \rightarrow C(u \otimes bac \otimes v)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B_{\lambda} \xrightarrow{id} \qquad B_{\lambda}$$

$$u \otimes bca \otimes v \rightarrow u \otimes bac \otimes v$$

$$\downarrow \qquad \qquad \downarrow$$

$$P(ubcav) \xrightarrow{id} P(ubacv)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Jeu de taquin

Swap the hole with the entry above or to the right, whichever is smaller.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Jeu de taquin

4	6			_
3	4	4	6	
1	3	3	5	
	1	2	4	
	٠	1	3	5

Jeu de taquin

4	6			_
3	4	4	6	
1	3	3	5	
	٠	2	4	
	1	1	3	5

Jeu de taquin

4	6			_
3	4	4	6	
1	3	3	5	
	2	•	4	
	1	1	3	5

Jeu de taquin

4	6			_
3	4	4	6	
1	3	٠	5	
	2	3	4	
	1	1	3	5

Jeu de taquin

4	6			_
3	4	٠	6	
1	3	4	5	
	2	3	4	
	1	1	3	5

Jeu de taquin

4	6			_
3	4	6	•	
1	3	4	5	
	2	3	4	
	1	1	3	5