Equivariant Quantum Schubert Calculus

Leonardo C. Mihalcea

October 24, 2004

Classical cohomology

Notations:

1. $X=G r(p, m)$, the Grassmannian of subspaces of dimension p in \mathbb{C}^{m}.
2. $D(p, m-p)$ the $p \times(m-p)$ rectangle.

- $H^{*}(X)$ - a graded \mathbb{Z}-algebra with a \mathbb{Z}-basis consisting of Schubert classes σ_{λ}.

Here $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ varies over the partitions included in $D(p, m-p)$ and the degree of σ_{λ} is $|\lambda|=\lambda_{1}+\ldots+\lambda_{p}$.

- multiplication:

$$
\sigma_{\lambda} \cdot \sigma_{\mu}=\sum c_{\lambda, \mu}^{\nu} \sigma_{\nu}
$$

where $c_{\lambda, \mu}^{\nu}$ is the Littlewood-Richardson coefficient (abbreviated LR).

Quantum cohomology

Notation: $Q H^{*}(X)$.

- $Q H^{*}(X)$ is a graded $\mathbb{Z}[q]$-algebra, where q is an indeterminate of degree m.
- it has a $\mathbb{Z}[q]$-basis $\left\{\sigma_{\lambda}\right\}$ where λ varies over the partitions included in $D(p, m-p)$.
- multiplication:

$$
\sigma_{\lambda} \star \sigma_{\mu}=\sum_{d \geqslant 0} \sum_{\nu} q^{d} c_{\lambda, \mu}^{\nu}(d) \sigma_{\nu}
$$

where $c_{\lambda, \mu}^{\nu}(d)$ is the (3-point, genus 0) GromovWitten (GW) invariant, which counts the number of rational curves of degree d passing through general translates of Schubert varieties $\Omega_{\lambda}, \Omega_{\mu}$ and $\Omega_{\nu} \vee$ (where ν^{\vee} is the partition dual to ν).

Equivariant cohomology

- $T \simeq\left(\mathbb{C}^{*}\right)^{m}$ acts on X by the action induced by the $G l(m)$-action.
- $H_{T}^{*}(p t)$ (the T-equivariant cohomology of a point), is equal to the polynomial ring $\mathbb{Z}[t]$ where $t=\left(t_{1}, \ldots, t_{m}\right)$.
- $H_{T}^{*}(X)$ is a graded $\mathbb{Z}[t]$-algebra, with a $\mathbb{Z}[t]$-basis

$$
\left\{\sigma_{\lambda}^{T}\right\}_{\lambda \subset D(p, m-p)} .
$$

- multiplication:

$$
\sigma_{\lambda}^{T} \cdot \sigma_{\mu}^{T}=\sum_{\nu} c_{\lambda, \mu}^{\nu}(t) \sigma_{\nu}^{T}
$$

where $c_{\lambda, \mu}^{\nu}(t)$ are homogeneous polynomials in $\mathbb{Z}[t]$ of degree $|\lambda|+|\mu|-|\nu|$.

- if $|\lambda|+|\mu|-|\nu|=0$ one recovers the classical Littlewood-Richardson coefficients.

Equivariant quantum cohomology

Notation: $Q H_{T}^{*}(X)$.

- $Q H_{T}^{*}(X)$ is a graded $\mathbb{Z}[t][q]$-algebra, where q is an indeterminate of degree m.
- it has a $\mathbb{Z}[t][q]$-basis $\left\{\sigma_{\lambda}\right\}_{\lambda \subset D(p, m-p)}$.
- multiplication:

$$
\sigma_{\lambda} \circ \sigma_{\mu}=\sum_{d \geqslant 0} \sum_{\nu} q^{d} c_{\lambda, \mu}^{\nu}(d ; t) \sigma_{\nu}
$$

where $c_{\lambda, \mu}^{\nu}(d ; t)$ is the (3-point, genus 0) equivariant GW-invariant (Givental-Kim).

- $c_{\lambda, \mu}^{\nu}(d ; t)$ is a homogeneous polynomial in \wedge of degree $|\lambda|+|\mu|-|\nu|-m d$.

The coefficient $c_{\lambda, \mu}^{\nu}(d ; t)$ when $d=0$.

If $d=0$ then

$$
c_{\lambda, \mu}^{\nu}(0 ; t)=c_{\lambda, \mu}^{\nu}(t)
$$

where $c_{\lambda, \mu}^{\nu}(t)$ is the equivariant coefficient.

Properties of the equivariant coefficients:

- $c_{\lambda, \mu}^{\nu}(t) \in \mathbb{Z}_{\geqslant 0}\left[t_{1}-t_{2}, \ldots, t_{m-1}-t_{m}\right]$ (W. Graham [year], for any G / P).
- A closed, positive formula for $c_{\lambda, \mu}^{\nu}(t)$ (in the sense above) is known, in term of weighted puzzles (A. Knutson - T. Tao [year]).

The case $|\lambda|+|\mu|=|\nu|+m d$

This is the case when the polynomial degree of $c_{\lambda, \mu}^{\nu}(d ; t)$ is equal to zero. Then

$$
c_{\lambda, \mu}^{\nu}(d ; t)=c_{\lambda, \mu}^{\nu}(d)
$$

where $c_{\lambda, \mu}^{\nu}(d)$ is the GW invariant. There are several algorithms to compute these invariants:

- the quantum Pieri and Giambelli formulae of A. Bertram [year].
- rim-hook algorithm of A. Bertram - W. Fulton - I. C.-Fontanine
- the reduction to two-step flag manifolds of A. Buch - A. Kresch - H. Tamvakis
- the toric tableau approach of A. Postnikov.
- using I. Coskun's degenerations.

Vanishing of certain coefficients $c_{\lambda, \mu}^{\nu}(d ; t)$

The coefficients for which both $d>0$ and $|\lambda|+$ $|\mu|-|\nu|-m d>0$ are called mixed.

Lemma 1 Let λ, μ, ν be three partitions included in $p \times(m-p)$ rectangle and let d be a positive integer. Suppose that $|\lambda|+d^{2}>$ $|\nu|+m d$. Then $c_{\lambda, \mu}^{\nu}(d ; t)=0$.

The lemma implies the vanishing of all mixed coefficients of the form $c_{\lambda,(1)}^{\nu}(d ; t)$.

Proof: $d>0$ and $c_{\lambda,(1)}^{\nu}(d ; t)$ mixed implies that

$$
|\lambda|+d^{2} \geqslant|\lambda|+1>|\nu|+m d .
$$

This implies an equivariant quantum PieriChevalley formula.

Equivariant quantum Pieri-Chevalley formula

Theorem 1 The following formula holds in $Q H_{T}^{*}(X)$:

$$
\sigma_{\lambda} \circ \sigma_{(1)}=\sum_{\mu \rightarrow \lambda} \sigma_{\mu}+c_{\lambda,(1)}^{\lambda}(t) \sigma_{\lambda}+q \sigma_{\lambda^{-}}
$$

where

$$
c_{\lambda,(1)}^{\lambda}(t)=\sum_{i=1}^{p} t_{m-p+i-\lambda_{i}}-\sum_{j=m-p+1}^{m} t_{j}
$$

- here $\mu \rightarrow \lambda$ means that $\lambda \subset \mu$ and $|\mu|=$ $|\lambda|+1$.
- λ^{-}is obtained from λ by removing $m-1$ boxes from its border rim. The last term is omitted if λ^{-}does not exist.

No mixed terms!

Examples of λ^{-}

$$
p=3, m=7
$$

λ^{-}does not exist.

An algorithm

In the next result $c_{\lambda, \mu}^{\nu}(d ; t)$ are just homogeneous rational functions (not necessarily polynomials) of degree $|\lambda|+|\mu|-|\nu|-m d$.

Theorem 2 The coefficients $c_{\lambda, \mu}^{\nu}(d ; t)$ are determined (algorithmically) by:
(a) (multiplication by (0))

$$
c_{\lambda,(0)}^{\lambda}(d ; t)= \begin{cases}1 & \text { if } d=0 \\ 0 & \text { otherwise }\end{cases}
$$

(b) (commutativity) $c_{\lambda, \mu}^{\nu}(d ; t)=c_{\mu, \lambda}^{\nu}(d ; t)$
(c) (special associativity)

$$
\begin{equation*}
\sigma_{(1)} \circ\left(\sigma_{\lambda} \circ \sigma_{\mu}\right)=\left(\sigma_{(1)} \circ \sigma_{\lambda}\right) \circ \sigma_{\mu} \tag{1}
\end{equation*}
$$

for any $\lambda \neq \mu$.

A recurrence formula

Let

$$
F_{\nu, \lambda}(t)=c_{(1), \nu}^{\nu}(t)-c_{(1), \lambda}^{\lambda}(t)
$$

Given EQ Pieri-Chevalley the special associativity equation (1) is equivalent to:

$$
\begin{aligned}
F_{\nu, \lambda}(t) c_{\lambda, \mu}^{\nu}(d ; t) & =\left(\sum_{\delta \rightarrow \lambda} c_{\delta, \mu}^{\nu}(d ; t)-\sum_{\nu \rightarrow \zeta} c_{\lambda, \mu}^{\zeta}(d ; t)\right) \\
& +\left(c_{\lambda^{-}, \mu}^{\nu}(d-1 ; t)-c_{\lambda, \mu}^{\nu^{+}}(d-1 ; t)\right)
\end{aligned}
$$

for any partitions λ, μ, ν and any nonnegative integer d.

- ν^{+}is the partition obtained from ν by adding $m-1$ boxes to the rim-hook.

This formula, in the equivariant setting, was used by Knutson-Tao to derive their puzzle formula for $c_{\lambda, \mu}^{\nu}(t)$.

The induction

Recall the formula

$$
\begin{aligned}
F_{\nu, \lambda}(t) c_{\lambda, \mu}^{\nu}(d ; t) & =\left(\sum_{\delta \rightarrow \lambda} c_{\delta, \mu}^{\nu}(d ; t)-\sum_{\nu \rightarrow \zeta} c_{\lambda, \mu}^{\zeta}(d ; t)\right) \\
& +\left(c_{\lambda^{-}, \mu}^{\nu}(d-1 ; t)-c_{\lambda, \mu}^{\nu^{+}}(d-1 ; t)\right)
\end{aligned}
$$

for any partitions λ, μ, ν such that $\lambda \neq \nu$. We use double induction:

- ascending on d.
- descending on the polynomial degree.

For a fixed d, it remains to investigate the cases when $\lambda=\mu=\nu$ and when $c_{\lambda, \mu}^{\nu}(d ; t)$ has the maximum polynomial degree.

Case $\lambda \varsubsetneqq \nu$

In the recurrence formula, the coefficient $c_{\lambda, \mu}^{\nu}(d ; t)$ is determined by

- coefficients of smaller degree d.
- coefficients of the same degree d, but with larger λ.
- coefficients of the same degree d, but with smaller ν.

This implies that:

Lemma 2 The coefficients $c_{\lambda, \mu}^{\nu}(d ; t)$ such that either λ or μ is not included in ν are determined by those of degree $d-1$, or are equal to zero if $d=0$.

An example

Take $X=G r(2,4)$. Want to compute $c_{(2),(2)}^{(2)}(1 ; t)$. The recurrence formula yields

$$
\begin{aligned}
c_{(1),(2)}^{(2)}(1 ; t)= & \frac{c_{(2),(2)}^{(2)}(1 ; t)+c_{(1,1),(2)}^{(2)}(1 ; t)}{T_{1}-T_{2}} \\
& -\frac{c_{(1),(2)}^{(1)}(1 ; t)}{T_{1}-T_{2}}+(\operatorname{deg} d=0 \text { terms }) \\
c_{(0),(2)}^{(2)}(1 ; t) & =\frac{c_{(1),(2)}^{(2)}(1 ; t)}{T_{1}-T_{2}}-\frac{c_{(0),(2)}^{(1)}(1 ; t)}{T_{1}-T_{2}} \\
& +(\operatorname{deg} 0)
\end{aligned}
$$

- $c_{(0),(2)}^{(2)}(1 ; t)=0$ by hypothesis.
- $c_{(1,1),(2)}^{(2)}(1 ; t), c_{(1),(2)}^{(1)}(1 ; t)$ and $c_{(0),(2)}^{(1)}(1 ; t)$ can be reduced to a combination of terms of degree $d=0$.

An algorithm for the coefficients $c_{\lambda, \lambda}^{\lambda}(d ; t)$

Let $\alpha \subset \lambda$ (one should think at $\alpha=$ (0) or $\alpha=(1))$. Define a rational function in $\mathbb{Q}[t]$, denoted $R_{\lambda, \alpha}(t)$ as follows:

$$
R_{\lambda, \alpha}(t)= \begin{cases}\sum \prod_{i=0}^{l-1} \frac{1}{F_{\lambda, \alpha}(i)}(t) & \text { if } \lambda \neq \alpha \\ 1 & \text { if } \alpha=\lambda\end{cases}
$$

In the case $\lambda \neq \alpha, l$ denotes the nonnegative integer $|\lambda|-|\alpha|$, and the sum is over all chains of partitions

$$
\lambda=\alpha^{(l)} \rightarrow \alpha^{(l-1)} \rightarrow \ldots \rightarrow \alpha^{(1)} \rightarrow \alpha^{(0)}=\alpha .
$$

Lemma 3

$$
c_{\alpha, \lambda}^{\lambda, d}=R_{\lambda, \alpha}(t) c_{\lambda, \lambda}^{\lambda, d}+(\text { deg } d-1 \text { terms })
$$

If $d=0$ the degree $d-1$ part vanishes.

The case of maximal polynomial degree

Fix d and let $c_{\lambda, \mu}^{\nu}(d ; t)$ of maximal polynomial degree. Then $\lambda=\mu=(m-p)^{p}$ (the full rectangle) and $\nu=(0)$. The recurrence relation yields

$$
\begin{aligned}
c_{(m-p)^{p},(m-p)^{p}}^{(0)}(d ; t) & =\frac{c_{(m-p-1)^{p-1}, \mu}^{(0)}(d-1 ; t)}{F_{(0),(m-p)^{p}}(t)} \\
& -\frac{\left.c_{(m-p)^{p}, \mu}^{(m-p, \mu}\right)(d-1 ; t)}{F_{(0),(m-p)^{p}}^{p}(t)}
\end{aligned}
$$

which shows that the coefficient $c_{(m-p)^{p},(m-p)^{p}}^{(0)}(d ; t)$ is determined by coefficients of degree $d-1$, known by induction on d.

A consequence of the algorithm

Corollary 4 Let (A, \diamond) be a graded, commutative, associative $\mathbb{Z}[t][q]$-algebra with unit such that:

1. A has an additive $\mathbb{Z}[t][q]$-basis $\left\{t_{\lambda}\right\}$ (graded as usual).
2. The equivariant quantum Pieri holds, i.e.

$$
t_{\lambda} \diamond t_{(1)}=\sum_{\mu \rightarrow \lambda} t_{\mu}+c_{\lambda,(1)}^{\lambda}(t) t_{\lambda}+q t_{\lambda^{-}}
$$

where the last term is omitted if λ^{-}does not exist.

Then A is canonically isomorphic to $Q H_{T}^{*}(X)$, as $\mathbb{Z}[t][q]$-algebras.

Positivity

Theorem 3 The coefficients $c_{\lambda, \mu}^{\nu}(d ; t)$ are homogeneous polynomials in $\mathbb{Z}[t]$ such that

$$
c_{\lambda, \mu}^{\nu}(d ; t) \in \mathbb{Z}_{\geqslant 0}\left[t_{1}-t_{2}, \ldots, t_{m-1}-t_{m}\right] .
$$

- Case $d=0$ (equivariant coefficients), conjectured by D. Peterson, proved by W. Graham.
- The proof of the positivity is purely geometrical. An interesting question is to derive positivity from the algorithm.

Further work

All the results generalize to the case G / P. We have obtained:

- EQ Chevalley - with no mixed terms.
- An algorithm to compute the structure coefficients - it is determined by the same equations (but now one has more divisor classes - one for each simple root not in the Weyl group of P).
- Positivity holds, and it is expressed in terms of negative simple roots.

A consequence in quantum cohomology of G / P

One gets an algorithm to compute the GWinvariants for G / P. So far, these coefficients have been computed using:

- Peterson comparison formula which writes a coefficient $c_{u, v}^{w}(d)$ (u, v, w minimal length representatives for W / W_{P}) on G / P as a coefficient, of possibly different degree, on G / B.
- polynomial representatives for quantum Schubert classes.
- Quantum Chevalley formula.
(On G / B the (quantum) cohomology is generated by divisors).

Except for the EQ Chevalley, we don't use any of these.

Possible directions

- A. Knutson - T.Tao prove that their puzzles satisfy the equivariant restriction of the recurrence formula (X - Grassmannian). Are there EQ puzzles ?
- Find polynomial representatives for the EQ Schubert classes. In type A, A. Kirillov proposes some double Schubert polynomials, but one has to check if they satisfy the EQ Chevalley formula.

