Factorial Schur functions represent equivariant quantum Schubert classes

Leonardo C. Mihalcea

April 17, 2005

Slides available at: www.math.lsa.umich.edu/~lmihalce

Goals

- Give a presentation by generators and relations of the equivariant quantum cohomology of the Grassmannian.
- 2. In the given presentation, find polynomial representatives for the EQ Schubert classes.
- 3. Explain the main result behind the proof: an equivariant quantum Pieri-Chevalley rule.

Classical cohomology ring of the Grassmannian

Let X = Gr(p, m) be the Grassmannian of subspaces of dimension p in \mathbb{C}^m .

D denotes the $p \times (m-p)$ rectangle. A partition $\lambda = (\lambda_1, ..., \lambda_p) \subset D$ is given by a sequence $m - p \ge \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0$ of integers.

 $H^*(X)$ is a graded \mathbb{Z} -algebra with a \mathbb{Z} -basis consisting of Schubert classes $\{\sigma_{\lambda}\}_{\lambda \subset D}$.

The complex degree of σ_{λ} is $|\lambda| = \lambda_1 + ... + \lambda_p$.

Multiplication:

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \sum c_{\lambda,\mu}^{\nu} \sigma_{\nu}$$

where $c_{\lambda,\mu}^{\nu}$ is the Littlewood-Richardson coefficient.

Quantum cohomology

 $QH^*(X)$ is a graded $\mathbb{Z}[q]$ -algebra, where q is an indeterminate of degree m.

 $QH^*(X)$ has a $\mathbb{Z}[q]$ -basis $\{\sigma_{\lambda}\}_{\lambda \subset D}$.

Multiplication:

$$\sigma_{\lambda} \star \sigma_{\mu} = \sum_{d \ge 0} \sum_{\nu} q^{d} c_{\lambda,\mu}^{\nu,d} \sigma_{\nu},$$

where $c_{\lambda,\mu}^{\nu,d}$ is the (3-point,genus 0) **Gromov-Witten invariant** (GW). It counts the number of rational curves of degree *d* passing through general translates of Schubert varieties Ω_{λ} , Ω_{μ} and $\Omega_{\nu^{\vee}}$, where ν^{\vee} is the partition complementary to ν in D.

Equivariant cohomology

 $T \simeq (\mathbb{C}^*)^m$ acts on X by the action induced by the Gl(m)-action.

The eq. coh. of a point is $\Lambda := \mathbb{Z}[T_1, ..., T_m]$.

 $H_T^*(X)$ is a graded Λ -algebra, with a Λ -basis $\{\sigma_{\lambda}^T\}_{\lambda \subset D}$.

Multiplication:

$$\sigma_{\lambda}^{T} \cdot \sigma_{\mu}^{T} = \sum_{\nu} c_{\lambda,\mu}^{\nu}(t) \sigma_{\nu}^{T}$$

where the $c_{\lambda,\mu}^{\nu}(t)$ are homogeneous polynomials in Λ of degree $|\lambda| + |\mu| - |\nu|$.

If $|\lambda| + |\mu| - |\nu| = 0$ then $c^{\nu}_{\lambda,\mu}(t) = c^{\nu}_{\lambda,\mu}$.

Equivariant quantum cohomology

 $QH_T^*(X)$ is a graded $\Lambda[q]$ -algebra, where q is an indeterminate of degree m.

 $QH_T^*(X)$ has a $\Lambda[q]$ -basis $\{\sigma_{\lambda}\}_{\lambda \subset D}$.

Multiplication:

$$\sigma_{\lambda} \circ \sigma_{\mu} = \sum_{d \ge 0} \sum_{\nu} q^{d} c_{\lambda,\mu}^{\nu,d}(t) \sigma_{\nu}$$

where $c_{\lambda,\mu}^{\nu,d}(t)$ is the (3-point, genus 0) equivariant GW-invariant (A. Givental-B. Kim '95).

 $c_{\lambda,\mu}^{\nu,d}(t)$ is a homogeneous polynomial in Λ of degree $|\lambda| + |\mu| - |\nu| - md$.

Properties of the coefficients
$$c_{\lambda,\mu}^{\nu,d}(t)$$

Proposition 1 (A. Givental - B. Kim '95)

1. If
$$d = 0$$
 then

$$c_{\lambda,\mu}^{\nu,0}(t) = c_{\lambda,\mu}^{\nu}(t).$$

2. If
$$|\lambda| + |\mu| - |\nu| - md = 0$$
 then
 $c_{\lambda,\mu}^{\nu,d}(t) = c_{\lambda,\mu}^{\nu,d}$.

The coefficients $c_{\lambda,\mu}^{\nu,d}(t)$ for which both d > 0and $|\lambda| + |\mu| - |\nu| - md > 0$ are called **mixed**.

Factorial Jacobi-Trudi determinants

Let $h_1, ..., h_{m-p}$ respectively $e_1, ..., e_p$ be two sets of indeterminates. Define $t = (t_i)_{i \in \mathbb{Z}}$ by:

$$t_i = \begin{cases} T_{m+1-i}, & \text{if } 1 \leq i \leq m; \\ 0, & \text{otherwise }. \end{cases}$$

Define shifted indeterminates:

$$\tau^{-1}h_i = h_i + (t_{i+p-1} - t_0)h_{i-1},$$

$$\tau^1 e_j = e_j + (t_1 - t_{p-j+2})e_{j-1}.$$

By iterating this process one can define $\tau^{-s}h_i \in \Lambda[h_1, ..., h_{m-p}], \ \tau^s e_j \in \Lambda[e_1, ..., e_p]$ for $s \in \mathbb{Z}_{\geq 0}$.

For $\lambda \subset D$ define

$$s_{\lambda}(t) = \det(\tau^{1-j}h_{\lambda_i+j-i})_{1 \leq i,j \leq p}$$
$$\tilde{s}_{\lambda}(t) = \det(\tau^{j-1}e_{\lambda'_i+j-i})_{1 \leq i,j \leq m-p}$$

where $\lambda' = (\lambda'_1, ..., \lambda'_{m-p})$ is the partition conjugate to λ .

A presentation and EQ Giambelli formula

Theorem 2 (a) There is a canonical isomorphism of $\Lambda[q]$ -algebras

 $\Lambda[q][h_1, ..., h_{m-p}] / \langle E_{p+1}, ..., E_{m-1}, E_m + (-1)^{m-p} q \rangle \longrightarrow QH_T^*(X)$

where

$$E_k = \det(\tau^{1-j}h_{1+j-i})_{1 \leqslant i,j \leqslant k}.$$

This isomorphism sends $s_{\lambda}(t)$ to the Schubert class σ_{λ} .

(b)(Dual version) There is a canonical isomorphism of $\Lambda[q]$ -algebras

 $\Lambda[q][e_1, ..., e_p] / \langle H_{m-p+1}, ..., H_{m-1}, H_m + (-1)^p q \rangle \\ \longrightarrow QH_T^*(X)$

where

$$H_k = \det(\tau^{j-1}e_{1+j-i})_{1 \leq i,j \leq k}.$$

This isomorphism sends $\tilde{s}_{\lambda}(t)$ to the Schubert class σ_{λ} .

An equivariant quantum Pieri-Chevalley formula

In what follows $\mu \to \lambda$ means that $\lambda \subset \mu$ and $|\mu| = |\lambda| + 1$ and λ^- denotes the partition obtained from λ by removing m - 1 boxes from (resp. to) its border rim.

Theorem 3 In $QH^*_T(X)$,

$$\sigma_{\lambda} \circ \sigma_{(1)} = \sum_{\mu \to \lambda} \sigma_{\mu} + c_{\lambda,(1)}^{\lambda}(t)\sigma_{\lambda} + q\sigma_{\lambda^{-}}$$

where

$$c_{\lambda,(1)}^{\lambda}(t) = \sum_{i=1}^{p} T_{m-p+i-\lambda_i} - \sum_{j=m-p+1}^{m} T_j.$$

The last term is omitted if λ^- is not well-defined.

A characterization of $QH_T^*(X)$

Corollary 4 Let A be a graded, commutative, associative $\Lambda[q]$ -algebra with unit, where the degree of q is defined as usual. Assume that:

1. A has an additive $\Lambda[q]$ -basis $\{s_{\lambda}\}_{\lambda \in D}$ (graded as usual).

2. The equivariant quantum Pieri-Chevalley formula holds.

Then A is canonically isomorphic to $QH_T^*(X)$, as $\Lambda[q]$ -algebras.

Remark: The divisor class $\sigma_{(1)}$ **does not** generate $QH_T^*(X)$.

Idea of the proof

We use the previous corollary. More precisely, we show that:

- (a) The polynomials $s_{\lambda}(t)$ respectively $\tilde{s}_{\lambda}(t)$ ($\lambda \subset D$) form a $\Lambda[q]$ -basis for the corresponding presentations.
- (b) The products $s_{\lambda}(t) \cdot s_{(1)}(t)$ respectively $\tilde{s}_{\lambda}(t) \cdot \tilde{s}_{(1)}(t)$ are given by the EQ Pieri-Chevalley formula.

Remarks:

- 1. In the equivariant setting, the factorial Schur functions can be recovered from a certain degeneracy locus formula.
- 2. The characterization of $QH_T^*(X)$ holds for any homogeneous space G/P. Does the result generalizes to this setting ?

A characterization of
$$c_{\lambda,\mu}^{
u,d}(t)$$

Theorem 5 The coefficients $c_{\lambda,\mu}^{\nu,d}(t)$ are uniquely determined by:

- (a) (homogeneity) $c_{\lambda,\mu}^{\nu,d}(t)$ is homogeneous rational function of degree $|\lambda| + |\mu| |\nu| md$.
- (b) (multiplication by unit)

$$c_{\lambda,(0)}^{\lambda,d}(t) = \begin{cases} 1 & \text{if } d = 0\\ 0 & \text{otherwise} \end{cases}$$

- (c) (commutativity) $c_{\lambda,\mu}^{\nu,d}(t) = c_{\mu,\lambda}^{\nu,d}(t)$.
- (d) (recurrence formula) For any $\lambda, \mu, \nu \subset D$ such that $\lambda \neq \nu$,

$$c_{\lambda,\mu}^{\nu,d}(t) = \left(\sum_{\delta \to \lambda} c_{\delta,\mu}^{\nu,d}(t) - \sum_{\nu \to \zeta} c_{\lambda,\mu}^{\zeta,d}(t)\right) / \sum_{i=1}^{p} (T_{m-p+i-\nu_{i}} - T_{m-p+i-\lambda_{i}}) + \left(c_{\lambda^{-},\mu}^{\nu,d-1}(t) - c_{\lambda,\mu}^{\nu^{+},d-1}(t)\right) / \sum_{i=1}^{p} (T_{m-p+i-\nu_{i}} - T_{m-p+i-\lambda_{i}})$$

Comments about the Theorem

The proof is by an effective algorithm computing $c_{\lambda,\mu}^{\nu,d}(t)$.

The recurrence formula is obtained from the special associativity equation

$$\sigma_{(1)} \circ (\sigma_{\lambda} \circ \sigma_{\mu}) = (\sigma_{(1)} \circ \sigma_{\lambda}) \circ \sigma_{\mu}$$

using the equivariant quantum Pieri-Chevalley rule.