Curves and positroids in the Grassmannian

Leonardo Mihalcea
Department of Mathematics
Baylor University joint work with A. Buch, P.E.Chaput, N. Perrin

June15, 2010

Gromov-Witten varieties

- $X=\operatorname{Gr}(p, m)$ - transitive action of $\mathrm{GL}_{m}(\mathbb{C})$ acts transitively on X. Take B^{+}, B^{-}the upper/lower triangular matrices in $\mathrm{GL}_{m}(\mathbb{C})$.
- Closures of B^{+}-orbits \leftrightarrow Schubert varieties Ω_{λ}
- Closures of B^{-}-orbits \leftrightarrow opposite Schubert varieties $\Omega_{\mu}^{o p p}$.
- Fix $d \geq 0 . \overline{\mathcal{M}}_{0,3}(X, d)$ compactifies the space of maps $f:\left(\mathbb{P}^{1}, p t_{1}, p t_{2}, p t_{3}\right) \rightarrow X$ such that $f_{*}\left[\mathbb{P}^{1}\right]=d[$ line $]$.
- evaluation maps: $\mathrm{ev}_{i}: \overline{\mathcal{M}}_{0,3}(X, d) \rightarrow X$ given by $\mathrm{ev}_{i}(f)=f\left(p t_{i}\right)$.

Gromov-Witten varieties

Definition: Gromov-Witten variety

$$
G W_{d}(\lambda, \mu)=\mathrm{ev}_{1}^{-1} \Omega_{\lambda} \cap \mathrm{ev}_{2}^{-1} \Omega_{\mu}^{o p p}
$$

Theorem (BCMP)

$G W_{d}(\lambda, \mu)$ is either empty or it is irreducible and unirational, with rational singularities. (This holds for any G/P.)
Y is unirational: $\exists F: \mathbb{P}^{N} \rightarrow Y$ dominant.
Y has rational singularities if \exists desingularization $F: Z \rightarrow Y$ so that $F_{*} \mathcal{O}_{Z}=\mathcal{O}_{Y}$ and $R^{i} F_{*} \mathcal{O}_{Z}=0, i>0$. Definition.

$$
\Gamma_{d}(\lambda, \mu)=\operatorname{ev}_{3}\left(G W_{d}(\lambda, \mu)\right)
$$

- This is a subvariety of the Grassmannian;
- It is the union of all rational curves of degree d joining Ω_{λ} and $\Omega_{\mu}^{o p p}$.

Example

$\Gamma_{d}(\lambda, \emptyset)$ is the union of all rational curves of degree d passing through Ω_{λ}.

Proposition.[Carrell-Peterson, Fulton-Woodward] $\Gamma_{d}(\lambda, \emptyset)=\Omega_{\lambda[-d]}$

λ

Example

Proposition.[Carrell-Peterson, Fulton-Woodward] $\Gamma_{d}(\lambda, \emptyset)=\Omega_{\lambda[-d]}$
$\Gamma_{d}(\lambda, \emptyset)$ is the union of all rational curves of degree d passing through Ω_{λ}.

$$
\lambda[-1]
$$

Example

Proposition.[Carrell-Peterson, Fulton-Woodward] $\Gamma_{d}(\lambda, \emptyset)=\Omega_{\lambda[-d]}$
$\Gamma_{d}(\lambda, \emptyset)$ is the union of all rational curves of degree d passing through Ω_{λ}.

$\lambda[-2]$

Positroids

Definition.[Lusztig, Rietsch, Knutson-Lam-Speyer] Let R be a Richardson variety in the full flag manifold $F I(n)$. A positroid is a projection $\pi(R)$, where $\pi: \mathrm{FI}(m) \rightarrow \operatorname{Gr}(p, m)$ is the projection.

Theorem.[Knutson-Lam-Speyer] Positroid varieties are normal and have rational singularities.

Gromov-Witten positroids

$$
\begin{gathered}
\left\{K^{p-d} \subset V \subset S^{p+d}\right\} \xrightarrow{\pi_{1}} \operatorname{Gr}(p, m)=\{V\} \\
\forall \pi_{2} \\
Y=\left\{K^{p-d} \subset S^{p+d} \subset \mathbb{C}^{m}\right\}
\end{gathered}
$$

$$
\Omega_{\lambda} \subset \operatorname{Gr}(p, m)-\text { Schubert variety }
$$

$$
Y_{\lambda}=\pi_{2}\left(\pi_{1}^{-1} \Omega_{\lambda}\right)
$$

$$
R_{d}(\lambda, \mu)=\pi_{2}^{-1}\left(Y_{\lambda} \cap Y_{\mu}^{o p p}\right) \subset \mathrm{FI}(p-d, p, p+d ; m)
$$

$R_{d}(\lambda, \mu)$ is a Richardson variety and $\pi_{1}\left(R_{d}(\lambda, \mu)\right)$ is a GW positroid.

Gromov-Witten positroids

$$
\begin{gathered}
\left\{K^{p-d} \subset V \subset S^{p+d}\right\} \xrightarrow{\pi_{1}} \operatorname{Gr}(p, m)=\{V\} \\
\forall \pi_{2} \\
Y=\left\{K^{p-d} \subset S^{p+d} \subset \mathbb{C}^{m}\right\}
\end{gathered}
$$

$$
\Omega_{\lambda} \subset \operatorname{Gr}(p, m)-\text { Schubert variety }
$$

$$
Y_{\lambda}=\pi_{2}\left(\pi_{1}^{-1} \Omega_{\lambda}\right)
$$

$$
R_{d}(\lambda, \mu)=\pi_{2}^{-1}\left(Y_{\lambda} \cap Y_{\mu}^{o p p}\right) \subset \mathrm{FI}(p-d, p, p+d ; m)
$$

$R_{d}(\lambda, \mu)$ is a Richardson variety and $\pi_{1}\left(R_{d}(\lambda, \mu)\right)$ is a GW positroid.

Condition DIM. Say $\pi_{1}\left(R_{d}(\lambda, \mu)\right)$ satisfies condition DIM if $\operatorname{dim} R_{d}(\lambda, \mu)=\operatorname{dim} \pi_{1}\left(R_{d}(\lambda, \mu)\right)$.

Definition of small quantum cohomology

$\operatorname{Gr}(p, m)=\left\{V \subset \mathbb{C}^{m}: \operatorname{dim} V=p\right\}-$ Grassmannian of p-planes in \mathbb{C}^{m}.

- $\mathrm{QH}^{*}(\operatorname{Gr}(p, m))$ is a graded $\mathbb{Z}[q]$-algebra, where $\operatorname{deg} q=m$.
- $\mathrm{QH}^{*}(X)$ has a $\mathbb{Z}[q]$-basis $\left\{\left[\Omega_{\lambda}\right]\right\}$ - the Schubert classes.

Multiplication:

$$
\left[\Omega_{\lambda}\right] \star\left[\Omega_{\mu}\right]=\sum_{d \geqslant 0} \sum_{\nu} q^{d}\left\langle\Omega_{\lambda}, \Omega_{\mu}, \Omega_{\nu}^{\vee}\right\rangle_{d}\left[\Omega_{\nu}\right] .
$$

- $\left\langle\Omega_{\lambda}, \Omega_{\mu}, \Omega_{\nu}^{\vee}\right\rangle_{d}$ is the 3 point, genus 0 GW invariant.
- $\left\langle\Omega_{\lambda}, \Omega_{\mu}, \Omega_{\nu}^{V}\right\rangle_{d}$ equals the number of rational curves in X, passing through translates of Schubert varieties $\Omega_{\lambda}, \Omega_{\mu}$ and Ω_{ν}^{\vee}.

Cohomology class of some GW positroids

Theorem.[Buch-Kresch-Tamvakis, Postnikov,
Knutson-Lam-Speyer] Assume condition DIM holds. Then:
(1) $\Gamma_{d}(\lambda)=\pi_{1}\left(R_{d}(\lambda, \mu)\right)$ so it is a positroid GW variety.
(2) The class of $\Gamma_{d}(\lambda, \mu) \in H^{*}(\operatorname{Gr}(p, m))$ is

$$
\left[\Gamma_{d}(\lambda, \mu)\right]=\sum\left\langle\left[\Omega_{\lambda}\right],\left[\Omega_{\mu}\right],\left[\Omega_{\nu}\right]^{\vee}\right\rangle_{d}\left[\Omega_{\nu}\right]
$$

Moreover, condition DIM holds $\Longleftrightarrow q^{d}$ appears in $\left[\Omega_{\lambda}\right] \star\left[\Omega_{\mu}\right] \Longleftrightarrow \mu^{\vee} / d / \lambda$ is toric.

K-theory class of GW positroids

Theorem (B-C-M-P)

(1) $\Gamma_{d}(\lambda, \mu)=\pi_{1}\left(R_{d}(\lambda, \mu)\right)$ is always a positroid GW variety.
(2) The K-theory class of $\Gamma_{d}(\lambda, \mu)$ is given in terms of K-theoretic GW invariants:

$$
\left[\mathcal{O}_{\Gamma_{d}(\lambda, \mu)}\right]=\sum\left\langle\left[\mathcal{O}_{\Omega_{\lambda}}\right],\left[\mathcal{O}_{\Omega_{\mu}}\right],\left[\mathcal{O}_{\Omega_{\nu}}\right]^{\vee}\right\rangle_{d}\left[\mathcal{O}_{\Omega_{\nu}}\right]
$$

Example. $X=\operatorname{Gr}(2,4), d=1, \lambda=\mu=(2)$. it is known that $\left[\Omega_{(2)}\right] \star\left[\Omega_{(2)}\right]=\left[\mathcal{O}_{(2,2)}\right]$. No q^{1} power, so DIM does not hold!

K-theory class of GW positroids

Theorem (B-C-M-P)

(1) $\Gamma_{d}(\lambda, \mu)=\pi_{1}\left(R_{d}(\lambda, \mu)\right)$ is always a positroid GW variety.
(2) The K-theory class of $\Gamma_{d}(\lambda, \mu)$ is given in terms of K-theoretic GW invariants:

$$
\left[\mathcal{O}_{\Gamma_{d}(\lambda, \mu)}\right]=\sum\left\langle\left[\mathcal{O}_{\left.\Omega_{\lambda}\right]}\right],\left[\mathcal{O}_{\Omega_{\mu}}\right],\left[\mathcal{O}_{\Omega_{\nu}}\right]^{\vee}\right\rangle_{d}\left[\mathcal{O}_{\Omega_{\nu}}\right]
$$

Example. $X=\operatorname{Gr}(2,4), d=1, \lambda=\mu=(2)$. it is known that $\left[\Omega_{(2)}\right] \star\left[\Omega_{(2)}\right]=\left[\mathcal{O}_{(2,2)}\right]$. No q^{1} power, so DIM does not hold!

$$
\Gamma_{1}((2),(2))=\Gamma_{1}(p t, \emptyset)=\Omega_{(1)}
$$

This implies:

- $\left\langle\left[\mathcal{O}_{(2)}\right],\left[\mathcal{O}_{(2)}\right],\left[\mathcal{O}_{\nu}\right]^{\vee}\right\rangle_{1}=0$ if $\nu \neq(1)$;
- $\left\langle\left[\mathcal{O}_{(2)}\right],\left[\mathcal{O}_{(2)}\right],\left[\mathcal{O}_{(1)}\right]^{\vee}\right\rangle_{1}=1$.

Rational neighborhoods of GW positroids

In the study of $\mathrm{QK}(\operatorname{Gr}(p, m))$ the following variety arises naturally:

$$
\Gamma_{d_{1}}(\lambda, \mu) \subset \Gamma_{d_{1}, d_{2}}(\lambda, \mu) \subset \operatorname{Gr}(p, m)
$$

the union of all rational curves of degree d_{2} passing through $\Gamma_{d_{1}}(\lambda, \mu)$.

Rational neighborhoods of GW positroids

In the study of $\operatorname{QK}(\operatorname{Gr}(p, m))$ the following variety arises naturally:

$$
\Gamma_{d_{1}}(\lambda, \mu) \subset \Gamma_{d_{1}, d_{2}}(\lambda, \mu) \subset \operatorname{Gr}(p, m)
$$

the union of all rational curves of degree d_{2} passing through $\Gamma_{d_{1}}(\lambda, \mu)$.

$\operatorname{Gr}(\mathrm{p}, \mathrm{m})$

Example. $\Gamma_{0,1}(\lambda, \mu)=$ union of lines through $\Omega_{\lambda} \cap \Omega_{\mu}^{o p p}$.

Open questions

(1) Find geometric properties for $\Gamma_{d_{1}, d_{2}}(\lambda, \mu)$. Given a conjectural formula for K-class of $\Gamma_{d_{1}, d_{2}}(\lambda, \mu)$ we expect that this variety is normal and it has rational singularities.
(2) Examples show:

> GW positroids $\varsubsetneqq\{$ positroids $\}$ \{positroids $\}$ almost equal $\left\{\Gamma_{d_{1}, d_{2}}(\lambda, \mu)\right\}$

Is there a general statement ?
(3) Other homogeneous spaces G / P ? Any connections to Lusztig stratification?

Thank you!

