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Abstract. We study some combinatorial objects related to the flag manifold

X of Lie type G2. Using the moment graph of X we calculate all the curve
neighborhoods for Schubert classes. We use this calculation to investigate

the ordinary and quantum cohomology rings of X. As an application, we

obtain positive Schubert polynomials for the cohomology ring of X and we
find quantum Schubert polynomials which represent Schubert classes in the

quantum cohomology ring of X.

1. Introduction

One of the major theorems in algebra is the classification of complex semisimple
Lie algebras. There are four classical infinite series (of type An, Bn, Cn, Dn) and
five exceptional finite series (of types E6, E7, E8, F4, G2). To each algebra, one can
associate a group and to each group a certain geometric object called a flag manifold.
In type An, the points of this flag manifold are sequences V1 ⊂ V2 ⊂ .... ⊂ Cn of
vector spaces Vi of dimension i. The algebra of type G2 is considered the simplest
among the exceptional series, and we denote by X the flag manifold for type G2.
The study of flag manifolds has a long and rich history starting in 1950’s, and
it lies at the intersection of Algebraic Geometry, Combinatorics, Topology and
Representation Theory.

One can associate a ring to the flag manifold X called the cohomology ring
H∗(X). This ring has a distinguished basis given by Schubert classes σw, indexed
by the elements w in the Weyl group W of type G2; see §4 below. We recall that
W is actually isomorphic to the dihedral group with 12 elements, although we will
use a different realization of it, which is more suitable to our purposes. This ring is
generated by Schubert classes σs1 , σs2 for the simple reflections s1, s2 in W . There-
fore, at least in principle, the full multiplication table in the ring is determined by a
formula to multiply one Schubert class by another for either s1 or s2. This is called
a Chevalley formula. There has been substantial amount of work to find Chevalley
formulas for this ring, starting with Chevalley [5] in 1950’s. This formula can be ex-
pressed combinatorially in terms of the root system and the Weyl group for type G2.
Alternatively, the cohomology ring has a “Borel” presentation H∗(X) = Q[x1, x2]/I
where I is the ideal generated by x21 − x1x2 + x22, x

6
1. A natural question is to find

out what is the relation between this “algebraic” presentation and the “geometric”

Date: February 18, 2015.

2010 Mathematics Subject Classification. Primary 14N15; Secondary 14M15, 14N35, 05E15.
Key words and phrases. quantum cohomology; Schubert polynomial; G2 flag manifold.
L. C. M. was supported in part by NSA Young Investigator Award H98230-13-1-0208.

1



2 RACHEL ELLIOTT, MARK E. LEWERS, AND LEONARDO C. MIHALCEA

one which involves the Schubert basis. In other words, one needs to find a poly-
nomials in Q[x1, x2] which represents a Schubert class σw under the isomorphism
H∗(X) = Q[x1, x2]. This is called a Schubert polynomial. Such polynomials are not
unique, as their class in Q[x1, x2]/I is unchanged if one changes a polynomial by
elements in I. In §5 we use the Chevalley rule to find Schubert polynomials for σw.
Some of our polynomials coincide with similar Schubert polynomials found by D.
Anderson [1], via different methods. The polynomials we found are homogeneous
and have positive coefficients. Given that the positivity of Schubert polynomial
coefficients has geometric interpretations in type An (see the paper of A. Knutson
and E. Miller [10]), this is a desirable property.

The current paper also focuses on a deformation of the ring above called the
quantum cohomology ring QH∗(X). It is a deformation of H∗(X) with the addition

of quantum parameters qd = qd11 q
d2
2 for degrees d = (d1, d2). If d = (0, 0), or

equivalently q1 = q2 = 0, the product reduces to the corresponding calculation
in H∗(X). More detail will be given in section 4. See [6] for more information
about the background/history of this ring. Similar to the ring H∗(X), the quantum
cohomology ring has a Z[q]-basis consisting of Schubert classes σw (where q =
(q1, q2) are the quantum parameters), and it is generated as a ring by the classes
σs1 and σs2 for the simple reflections s1 and s2.

The quantum Chevalley formula is a formula for the quantum multiplication
σw ? σsi (i = 1, 2). An explicit form of this formula, which uses combinatorics
of the root system of Lie type G2 was obtained by Fulton and Woodward [7]. In
this paper we use the “curve neighborhoods” method to write down the explicit
Chevalley formula. This alternative method, obtained by Buch and Mihalcea [4],
involves an interesting graph associated to the flag manifold, called the moment
graph. Its definition and properties are found in section 3. It also has the advantage
that it leads to a conjectural Chevalley formula in a further deformation of the
quantum cohomology ring, called quantum K theory. This will be addressed in a
follow-up paper.

Our main application is to obtain a quantum version of the Schubert polynomials.
More precisely, it is known [6, Prop. 11] that QH∗(X) = Q[x1, x2, q1, q2]/Ĩ where

Ĩ a certain ideal which deforms I. Then, as in the classical case, we would like to
find the polynomials in Q[x1, x2, q1, q2] which represent each Schubert class σw via

the isomorphism QH∗(X) = Q[x1, x2, q1, q2]/Ĩ. These are called quantum Schubert
polynomials. As before, these polynomials are not unique, but we can impose some
natural conditions that they satisfy, such as the fact that they deform the ordinary
Schubert polynomials, and that they are homogeneous with respect to a certain
grading. To our knowledge, such polynomials have not been explicitly calculated
in the literature. As a byproduct, we also use the quantum Chevalley formula to
recover the ideal Ĩ of quantum relations. This ideal has been in principle calculated
by Kim [9] using different techniques, but the explicit polynomials generating this
ideal do not seem to appear in the literature. Our results are stated in Theorem
5.2 below. This work is part of an undergraduate research project conducted under
the guidance of Prof. Leonardo C. Mihalcea

2. Preliminaries: the root system and the Weyl group of type G2

2.1. The G2 Root System. Denote R the root system of type G2. It consists of
12 roots, which are non-zero vectors in the hyperplane in R3 given by the equation



QUANTUM SCHUBERT POLYNOMIALS FOR G2 3

−(3α1 + 2α2)

3α1 + α2
α2

3α1 + 2α2

−(3α1 + α2) −α2

α1

2α1 + α2α1 + α2

−α1

−(2α1 + α2) −(α1 + α2)

Figure 1. The root system for G2. Each node is a root. The
blue lines represent the coordinate system using the ∆ basis.

ξ1 + ξ2 + ξ3 = 0; our main reference is Bourbaki [3]. The roots are displayed in
Table 1, in terms of the natural coordinates in R3. Each root α can be written
uniquely as α = c1α1 + c2α2 where α1, α2 are simple roots and c1 · c2 ≥ 0. A root
is positive (negative) if both c1, c2 are non-negative (resp. non-positive). The set
of simple roots is denoted ∆ = {α1, α2}, and they are α1 = ε1 − ε2 and α2 =
−2ε1 + ε2 + ε3. For later purposes, we need to expand each root in terms of the
simple roots. The full results for each root is shown in Table 1. The root vectors
can be seen in Figure 1, in the ∆ basis.

We also need the dual root system consisting of coroots α∨. The coroot α∨ of
a root α is defined as α∨ = 2α

(α,α) where (α, α) is the standard inner product in

R3. Note that the coroots satisfy the properties (α∨)∨ = α and (−α)∨ = −α∨.
We denote the full set of coroots by R∨ and define the set ∆∨ that holds the
simple coroots: α∨1 and α∨2 for R∨. Table 1 shows the values for each of the coroots.

Natural Coordinates E Basis ± Simple Roots Basis Coroot α∨

(ε1, ε2, ε3) (α1, α2) α∨ = λα1 + µα2

ε1 − ε2 + α1 α∨1 = α1

ε3 − ε1 + α1 + α2 (α1 + α2)∨ = α1 + α2

ε3 − ε2 + 2α1 + α2 (2α1 + α2)∨ = 2α1 + α2

ε2 + ε3 − 2ε1 + α2 α∨2 = 1
3
α2

ε1 + ε3 − 2ε2 + 3α1 + α2 (3α1 + α2)∨ = α1 + 1
3
α2

−ε1 − ε2 + 2ε3 + 3α1 + 2α2 (3α1 + 2α2)∨ = α1 + 2
3
α2

−(ε1 − ε2) − −α1 (−α1)∨ = −α1

−(ε3 − ε1) − −(α1 + α2) (−α1 − α2)∨ = −α1 − α2

−(ε3 − ε2) − −(2α1 + α2) (−2α1 − α2)∨ = −2α1 − α2

−(ε2 + ε3 − 2ε1) − −α2 (−α2)∨ = − 1
3
α2

−(ε1 + ε3 − 2ε2) − −(3α1 + α2) (−3α1 − α2)∨ = −α1 − 1
3
α2

−(−ε1 − ε2 + 2ε3) − −(3α1 + 2α2) (−3α1 − 2α2)∨ = −α1 − 2
3
α2

Table 1. Root System of type G2. For each root, we give its
sign, the root in terms of ∆ basis, and the corresponding coroot.

2.2. The Weyl Group of G2. The Weyl group of G2, denoted W , is the group
generated by reflections sα, where α ∈ R. Let si := sαi . Geometrically, sα is the
reflection across the line perpendicular to the root α. For example, the reflection
s1 (corresponding to sα1) is the reflection across the line perpendicular to the α1

axis (see Figure 2). As Figure 2 shows, for any root α, sα = s−α. Therefore only
six unique reflections exist for the G2 root system.
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α1−α1

Figure 2. The reflection sα1 (dashed line) which is perpendic-
ular to the α1 axis (blue line).

It is known (cf. e.g. [8]) that W has the presentation

W =< s1, s2 : s1
2 = s2

2 = 1, (s1s2)6 = 1 > .

From this it follows easily that W is isomorphic to the dihedral group with 12 ele-
ments. In order to determine the reflections in W , we need the following definitions.

Definition 2.1. Consider w ∈W . A reduced expression for w is an expression
involving products of s1 and s2 in as short a way as possible (via the relations in
the presentation). If w ∈ W where w is a reduced expression, the length of w,
`(w), is the number of simple reflections (s1 and s2) that show up in the reduced
expression.

Example 2.2. Consider w = s1s1s1s2s1s2. From the presentation of W we know
that s1

2 = s1s1 = 1 and so this expression is not reduced. However, (s1s1)s1s2s1s2 =
(1)s1s2s1s2 = s1s2s1s2. The latter is a reduced expression and `(w) = 4.

The 12 reduced expressions of the elements in W are:

W = {1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2,
s1s2s1s2, s2s1s2s1, s1s2s1s2s1, s2s1s2s1s2, s1s2s1s2s1s2}

We denote by w0 the longest element s1s2s1s2s1s2. Notice that among the twelve
elements only six of them are the root reflections from the root system of G2.
Because any reflection has order 2, it is easy to check that the root reflections
correspond to the reduced expressions of odd length.

Since the reflections s1 and s2 generate W , every reflection in the G2 root system
sα can be expressed as a reduced expression product of s1’s and s2’s. Consider the
action of W on the root system R given by the natural action of reflections on
vectors in R3. Explicitly, this action is given by sα · β = sα(β) = β − (β, α∨)α
(see [8, Pag. 43]). The following lemma in proved in loc. cit.

Lemma 2.3. Let w ∈W and α ∈ R. Then wsαw
−1 = sw·α.

Example 2.4. Consider w = s1s2s1. We want to find reflection sα that corre-
sponds to w. By Lemma 2.3, s1s2s1 = ss1(α2) where s1 is its own inverse and the
action is

s1(α2) = α2 − (α2, α1
∨)α1 = α2 −

(
α2,

2α1

(α1, α1)

)
α1
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We know (α1, α1) = 2 (see Table 1) so

α2 −
(
α2,

2α1

(α1, α1)

)
α1 = α2 −

(
α2,

2α1

2

)
α1 = α2 − (α2, α1)α1

= α2 − (−3)α1.

Thus s1(α2) = 3α1 + α2. The reflection s1s2s1 is the reflection s3α1+α2
.

Table 2 shows the reflection across the line perpendicular to each root. Notice
that roots α and −α have the same reflection and all reflections listed have odd
length.

Root (in ∆ basis) Reflection (w ∈W )

±α1 s1
±α2 s2

±(3α1 + α2) s1s2s1
±(α1 + α2) s2s1s2
±(2α1 + α2) s1s2s1s2s1
±(3α1 + 2α2) s2s1s2s1s2

Table 2. The root reflection corresponding to each root in G2.

3. The moment graph and curve neighborhoods

3.1. Finding the Moment Graph. Using the properties of the elements in the
Weyl group for G2, it is possible to define the following graph.

Definition 3.1. The moment graph is an oriented graph that consists of a pair
(V,E) where V is the set of vertices and E is the set of edges. To each Weyl group
element v ∈ W there corresponds a vertex v ∈ V in this graph. For x, y ∈ V , an
edge exists from x to y, denoted by

x
α∨ // y

if there exists a reflection sα such that y = xsα and `(y) > `(x).

Definition 3.2. A degree d is a non-negative combination d1α
∨
1 +d2α

∨
2 of simple

coroots. We will denote d = (d1, d2).

Since any coroot α∨ is a linear combination in terms of α∨1 and α∨2 , it determines
a degree. These degrees are given in Table 3 below.

Coroot degree d

α∨ = d1α1
∨ + d2α2

∨ (d1, d2)

α1
∨ (1, 0)

α2
∨ (0, 1)

(3α1 + α2)∨ (1, 1)

(α1 + α2)∨ (1, 3)

(2α1 + α2)∨ (2, 3)

(3α1 + 2α2)∨ (1, 2)

Table 3. The degree for each coroot in the moment graph.
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Example 3.3. An edge exists from s1 to s2s1. This is so because

`(s2s1) > `(s1) and s2s1 = s1sα, where sα = s1s2s1.

Example 2.4 shows s1s2s1 = s3α1+α2
. The edge corresponding to these two edges

has degree (3α1 +α2)∨, i.e., s1
(3α1+α2)

∨
// s2s1 . Notice that (3α1 +α2)∨ = 1α∨1 + 1α∨2

so d = (1, 1). The edge from s1 to s2s1 can be represented by the degree (1, 1).

id

s2

s2s1

s2s1s2

s2s1s2s1

s2s1s2s1s2

w0

s1s2s1s2s1

s1s2s1s2

s1s2s1

s1s2

s1

Figure 3. The moment graph for G2. The color code for the
degrees is the following:
Black-(1,0), Violet-(0,1), Red-(1,1), Green-(1,3), Blue-(2,3),
Orange-(1,2).

We depict the moment graph as oriented upward, as in Figure 3 above. To help
read the moment graph, a color code has been set up to represent the different
edges. We review some of its relevant properties:

• The vertices correspond to the 12 Weyl group elements.
• The edges represent the root reflections associated to the G2 root system.

There are six different types of edges (different degree values) because there
are exactly six reflections in the G2 root system. Note that edges exist
between Weyl group elements if the difference between lengths is odd.
• The bottom vertex is the element with the smallest length (id where `(id) =

0). The next “row” of vertices have length 1 (s1 and s2). The length of
these elements increases by one as you travel up the graph. The top vertex
is the element with the largest length, w0, where `(w0) = 6.
• For any vertex, there are six edges connected to it, corresponding to the 6

different coroots in R∨.
• For any w1, w2 ∈W where `(w1) = `(w2), both w1 and w2 will have edges

connecting to the same six vertices.
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3.2. Curve Neighborhoods. In Section 3.1 we defined the degree d to help sim-
plify the moment graph for use in future calculations. The importance of the
moment graph can be realized with the following concept defined by A. Buch and
L. Mihalcea [4]:

Definition 3.4. Fix d = (d1, d2) a degree and u ∈ W an element of the Weyl
group, The curve neighborhood, Γd(u) is a subset of W which consists of the
maximal elements in the moment graph which can be reached from u with a path of
total degree ≤ d.

Example 3.5. Consider w = id and d = (1, 1). We want to determine the “high-
est” path (starting at the identity) where the total degree traveled is at most (1, 1).
By inspecting the moment graph, there are three initial paths starting from id:

• path d = (1, 0) which goes from id to s1. Upon reaching s1, one is not
allowed to travel more than d′ = (0, 1) upwards. Further inspection of the
moment graph shows a path exists with degree (0, 1) from s1 to s1s2. We
now have traveled a total degree of (1,1). Thus we are done and s1s2 is the
largest element on this path.
• path d = (0, 1) which goes from id to s2. Upon reaching s2, one is not

allowed to travel more than d′ = (1, 0) upwards. Further inspection gives a
path with degree (1, 0) from s2 to s2s1. We now have traveled a total degree
of (1, 1). Thus we are done and s2s1 is the largest element on this path.

• path d = (1, 1). which goes from id to s1s2s1. Since we traveled a total
degree of (1, 1), we are done, and s1s2s1 is the largest element on this path.

We now take the maximal element that can be reached from id with degree (1, 1).
The largest of the three elements above is s1s2s1, thus Γ(1,1)(id) = {s1s2s1}.

It is clear that for any w ∈ W there exists some degree (a, b) where Γ(a,b)(w) =
w0. Then for any larger degree (a′, b′) where a′ ≥ a and b′ ≥ b, Γ(a′,b′)(w) = w0.
Table 7 in A.1 shows the curve neighborhoods for every element of the Weyl group.
For all the examples given, the curve neighborhood for some degree d at u ∈W is
always unique, a fact which was initially proved in [4] for all Lie types.

4. Quantum Cohomology Ring for flag manifold X

Recall that X denotes the flag manifold of type G2. The cohomology ring,
denoted by H∗(X), consists of elements that can each be written uniquely as finite
sums

∑
w∈W awσw where aw ∈ Z and σw is a (geometrically defined) Schubert class.

Addition in this ring is given by:∑
w∈W

awσw +
∑
w∈W

bwσw =
∑
w∈W

(aw + bw)σw.

The quantum cohomology ring QH∗(X) is a deformation of H∗(X) by adding

quantum parameters, qd = qd11 q
d2
2 for degrees d = (d1, d2). If d = (0, 0) for

any calculation in QH∗(X), we reduce down to the corresponding calculation in
H∗(X). Similarly to H∗(X), the elements of QH∗(X) can each be written uniquely
as finite sums

∑
w∈W aw(d)qdσw where aw(d) ∈ Z. The addition in this ring is

also straightforward:∑
w∈W

aw(d)qdσw +
∑
w∈W

bw(d)qdσw =
∑
w∈W

(aw(d) + bw(d))qdσw.
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The multiplication in this ring is given by certain integers cw,du,v called the Gromov-
Witten invariants:

σu ? σv =
∑
w,d

cw,du,v q
dσw

where the sum is over w ∈W and degrees d which have non-negative components.
The (quantum) cohomology ring has two generators, namely σs1 and σs2 , corre-
sponding to the simple reflections s1, s2 ∈ W . As a result every element is a sum
of monomials in σsi ’s and the quantum multiplication σu ? σsi by generators σsi
determines the entire ring multiplication. The formula for σw ? σsi , the (quantum)
Chevalley rule, is illustrated in Section 4.1. We list below few properties that will
help to understand this ring and we refer e.g. to [6] for full details.

(1) the multiplication of quantum parameters is given by: qdsi q
d′s
i = q

ds+d
′
s

i .
(2) the quantum multiplication ? is associative, commutative and it has unit

1 = σid.
(3) the quantum multiplication is graded by imposing deg(σw) = `(w) and

for d = (d1, d2), deg qd = 2(d1 + d2). This implies that deg(σu ? σv) =
deg(σu) + deg(σv) and that cw,du,v = 0 unless `(u) + `(v) = `(w) + deg qd.

(4) if we impose the substitution q1 = q2 = 0 in σu ? σv then we obtain the
multiplication σu · σv in the ordinary cohomology ring H∗(X).

4.1. Quantum Chevalley Rule Via Curve Neighborhoods. Recall that each
coroot α∨ can be written as a linear combination α∨ = d1α

∨
1 + d2α

∨
2 where α∨1 , α

∨
2

are the simple coroots and d1, d2 ∈ Z. It follows that each α∨ can be identified with
the unique degree d = (d1, d2). Let d[i] denote the i-th component of the degree d
in the decomposition d = d[1]α∨1 + d[2]α∨2 . In other words, d[i] = di. Note that
α∨[i] means the same thing as d[i].

The classical Chevalley rule (cf. [5], see also [7]) is a formula for the products
σu · σsi ∈ H∗(X):

(1) σu · σsi =
∑
α

(α∨[i])σusα

where the sum is over roots positive α such that `(usα) = `(u) + 1.
The quantum Chevalley formula for σu ? σsi =

∑
w,d c

w,d
u,si q

d σw was first proved

by Fulton and Woodward [7]. See Theorem 4.3 below. We follow here an approach
based on curve neighborhoods, recently proved by Buch and Mihalcea [4]. If d =
(0, 0) then the coefficients cw,du,si are those from identity (1) above. If d 6= (0, 0) then

the quantum coefficient cw,du,si can be calculated as follows. First, let w[d] ∈ W be
the curve neighborhood Γd(w). Then

(2) cw,du,si = d[i] · δu,w[d]

where δv1,v2 is the Kronecker symbol and w satisfies `(w) + deg qd = `(u) + 1.

Remark 4.1. Although it is not clear from definition, it turns out that if d[i] 6= 0

then u = w[d] only if d = α∨ for some α such that `(sα) = deg qα
∨ − 1. This

recovers the original quantum Chevalley rule from [7].

Example 4.2. Consider σs1 ? σs1 .

• Assume d = (0, 0). We need to determine roots α such that `(s1sα) =
`(s1)+1 = 2. The only possible Weyl group elements to represent sα are s2
and s1s2s1. If sα = s2 then α = α2. This implies α∨ = (0, 1) so α∨[1] = 0.
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If sα = s1s2s1 then α = 3α1 + α2. This implies α∨ = (1, 1) so α∨[1] = 1.
Thus ∑

α

(α∨[i])σusα = 0 · σs1s2 + 1 · σs1s1s2s1 = σs2s1

• Assume d 6= (0, 0). We need to determine w ∈W such that w[d] = Γd(w) =
s1. According to the curve neighborhood results table in A.1, the only pos-
sible w ∈ W are id and s1. For both elements, the possible nondegrees are
(N, 0) where N ∈ N. Note that we also need to choose w and d such that
`(w) + deg qd = `(s1) + 1 = 2. Since deg qd is never odd, `(w) must be
even. This eliminates s1. As for id, `(id) = 0 so then deg qd = 2 where

d = (N, 0). This implies N = 1. Therefore c
id,(1,0)
s1,s1 = d[1] · δs1,s1 = 1 ·1 = 1

and this represents the only nonzero quantum term. Thus for d 6= (0, 0),∑
w∈W,d

cw,du,si q
d σw = 1 · q(1,0) · σid = 1 · q1 · 1 = q1.

Combining the classical (i.e. from H∗(X)) and pure quantum terms gives us
σs1 ? σs1 = σs2s1 + q1.

Table 4 shows the results of our quantum Chevalley computations.

w σw ? σs1 σw ? σs2
s1 σs2s1 + q1 σs1s2 + σs2s1
s2 σs1s2 + σs2s1 3σs1s2 + q2
s1s2 σs1s2s1 + σs2s1s2 2σs2s1s2 + q2σs1
s2s1 2σs1s2s1 + q1σs2 3σs1s2s1 + σs2s1s2
s1s2s1 σs2s1s2s1 + q1σs1s2 + q1q2 σs1s2s1s2 + 2σs2s1s2s1 + q1q2
s2s1s2 σs2s1s2s1 + 2σs1s2s1s2 3σs1s2s1s2 + q2σs2s1
s1s2s1s2 σs1s2s1s2s1 + σs2s1s2s1s2 σs2s1s2s1s2 + q2σs1s2s1
s2s1s2s1 σs1s2s1s2s1 + q1σs2s1s2 + q1q2σs2 σs2s1s2s1s2 + 3σs1s2s1s2s1 + q1q2σs2
s1s2s1s2s1 q1σs1s2s1s2 + q1q2σs1s2 σw0 + q1q2σs1s2
s2s1s2s1s2 σw0 + q1q22 q2σs2s1s2s1 + 2q1q22

w0 = (s1s2)3 q1σs2s1s2s1s2 + q1q2σs2s1s2 + q1q22σs1 q2σs1s2s1s2s1 + q1q2σs2s1s2 + 2q1q22σs1

Table 4. Quantum Chevalley Table.

Theorem 4.3 (The Quantum Chevalley Rule, [4, 7]). The following holds in
QH∗(X):

(3) σu ? σsi =
∑
α

(α∨[i])σusα +
∑
β

(β∨[i])qβ
∨
σusβ

The first sum is over positive roots α such that `(usα) = `(u) + 1 and the second

sum is over positive roots β such that `(usβ) = `(u) + 1− deg(qβ
∨

).

5. Quantum Schubert Polynomials

We know that QH∗(X) is generated as a Q[q] = Q[q1, q2]-algebra by the classes
σs1 and σs2 . (This means that every element in QH∗(X) can be written as a sum
of monomials in σsi ’s with coefficients in Q[q].) Then there exists a surjective
homomorphism of Q[q]-algebras Ψ : Q[x1, x2; q1, q2]→ QH∗(X) sending

Ψ(qi) = qi; Ψ(x1) = σs1 ; Ψ(x1 + x2) = σs2 .
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Note that for any P, P ′ ∈ Q[x1, x2, q1, q2] we have Ψ(P · P ′) = Ψ(P ) ? Ψ(P ′). We

call Ψ the quantization map. Let Ĩ be the kernel of this homomorphism. By the
first isomorphism theorem we have an isomorphism

Ψ : Q[x1, x2, q1, q2]/Ĩ → QH∗(X)

and this gives the presentation of the quantum cohomology ring. A quantum Schu-
bert polynomial for the Schubert class σw is any polynomial Pw ∈ Q[x1, x2, q1, q2]

such that the image of Pw under Ψ gives the class σw. Equivalently Ψ(Pw+Ĩ) = σw.
To find a quantum Schubert polynomial Pw, we proceed by induction on `(w),

using the quantum Chevalley formula from Table 4, and starting from the “initial
conditions” Ps1 = x1 and Ps2 = x1 + x2. To obtain the corresponding classical
Schubert polynomials for cohomology, set q1 = q2 = 0.

Example 5.1. In order to calculate Ps2s1 we use the identity σs1 ?σs1 = σs2s1 + q1
(taken from Table 4). Using that Ψ is an algebra homomorphism, we know that
Ψ(x21) = Ψ(x1)?Ψ(x1) = σs1 ?σs1 and Ψ(q1) = q1. Since Ψ(x21−q1) = Ψ(x21)−Ψ(q1)
then it follows that Ψ(x21 − q1) = σs2s1 . This shows that x21 − q1 is a quantum
Schubert polynomial for σs2s1 . The corresponding ordinary Schubert polynomial is
x21, obtained by making q1 = 0.

Computations of ordinary Schubert polynomials were done for the ordinary co-
homology ring H∗(X) of the G2 flag manifold in a paper by Anderson [1]. A classical
result of Borel [2] shows that H∗(X) = Q[x1, x2]/I, where I =< x21−x1x2+x22, x

6
1 >.

(This can also be deduced from the classical Chevalley formula). Anderson used
this presentation and a different method to obtain different Schubert polynomials,
but our answers and his must be equal modulo the ideal I. The classical Schubert
polynomials we found are shown alongside Anderson’s in Table 5. In order to check
if our results are equal we verified that the difference between our resulting classical
polynomials was a multiple of one of the elements of the ideal.

σsα Our Calculation D. Anderson’s Calculation [1]

w0
1
2

(x6
1 + x5

1x2) 1
2
x5

1x2

s1s2s1s2s1
1
2
x5

1
1
2
x5

1

s2s1s2s1s2
1
6

(x1 + x2)3x1x2
1
2

(x3
1 + x2x2

1 + x2
2x1 + x3

2)x1x2

s2s1s2s1
1
2
x4

1
1
2

(4x2
1 − 3x1x2 + 3x2

2)x2
1

s1s2s1s2
1
6

(x1 + x2)2x1x2
1
2

(x4
1 + x3

1x2 + x2
1x

2
2 + x1x3

2 + x4
2)

s1s2s1
1
2
x3

1
1
2

(4x2
1 − 3x1x1 + 3x2

2)x1

s2s1s2
1
2

(x1 + x2)x1x2 2x3
1 + 1

2
x2

1x2 + 1
2
x1x2

2 + 2x3
2

s2s1 x2
1 3x2

1 − 2x1x2 + 2x2
2

s1s2 x1x2 2x2
1 − x1x2 + 2x2

2

s2 x1 + x2 x1 + x2

s1 x1 x1

id 1 1

Table 5. Classical Schubert polynomials.

We used our quantum Schubert polynomial results, found in Table 6 below to
compute the ideal Ĩ of the quantum cohomology ring QH∗(X). This ideal is a
deformation of the ideal I of H∗(X). As an example, we will derive the degree 2

relation in Ĩ. From the quantum Chevalley table on page 9 we know the following
identities:
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• σs1 ? σs1 = σs2s1 + q1,
• σs1 ? σs2 = σs1s2 + σs2s1 , and
• σs2 ? σs2 = 3σs1s2 + q2.

These three equalities can be combined to obtain that:

3(σs1 ? σs1) + (σs2 ? σs2) = 3(σs1 ? σs2) + 3q1 + q2.

Now apply the transformation under Ψ to get

3(x1 · x1) + ((x1 + x2) · (x2 + x2)) ≡
(
3(x1(x1 + x2)) + 3q1 + q2

)
+ Ĩ

which is
3x21 + x21 + 2x1x2 + x22 ≡

(
3x21 + 3x1x2 + 3q1 + q2

)
+ Ĩ .

Their difference belongs to Ĩ = ker Ψ so (after simplification) we get x21 − x1x2 +

x22 − (3q1 + q2) ∈ Ĩ. This is the degree 2 relation in Ĩ. Notice that this is clearly
a deformation of the ideal term x21 − x1x2 + x2 in I. To get the degree 6 relation,
one does a similar manipulation but using the higher degree terms in the quantum
Chevalley table on page 9. The following is the main result of this paper.

Theorem 5.2. The quantum cohomology ring of the flag manifold of type G2 is

QH∗(X) = Q[q1, q2, x1, x2]/〈R2, R6〉
where R2 = x21 − x1x2 + x22 − (3q1 + q2) and

R6 := x61 + q1

(
−2x41 −

13

3
x32x2 −

5

3
x21x

2
2 −

1

3
x1x

3
2

)
+ q21

(
−10

3
x21 −

5

3
x1x2 −

1

3
x22

)
+

q1q2

(
−2x21 −

11

3
x1x2

)
− 8

3
q21q2.

Under this presentation, the corresponding quantum Schubert polynomials are
given in the following table:

w0 = (s1s2)3
1
2

[
x6

1 + x5
1x2

]
+ 1

2

[
−2x4

1 − 6x3
1x2 − 5x2

1x
2
2 − x1x3

2

]
q1+

+ 1
2

[
−3x2

1 − 7x1x2 − 2x2
2

]
q1q2 + 1

2

[
−3x2

1 − 4x1x2 − x2
2

]
q2
1 − q2

1q2
s2s1s2s1s2

1
6

[
(x1 + x2)3x1x2

]
+ 1

6

[
(x1 + x2)3q1 + (−6x3

1 − 4x1
2x2 − x1x2

2)q2 + (8x1 + 5x2)q1q2
]

s1s2s1s2s1
1
2
x5

1 + 1
2

[
(−2x3

1 − 4x2
1x2 − x1x2

2)q1 + (−3x1 − 2x2)q1q2 + (−3x1 − x2)q2
1

]
s1s2s1s2

1
6

[
(x1 + x2)2x1x2

]
+ 1

6

[
(x1 + x2)2q1 + (−3x2

1 − x1x2)q2 + 2q1q2
]

s2s1s2s1
1
2
x4

1 + 1
2

[
(−2x2

1 − 3x1x2)q1 − 2q1q2 − 2q2
1

]
s2s1s2

1
2

[(x1 + x2)x1x2] + 1
2

[(x1 + x2) q1 − x1q2]

s1s2s1
1
2
x3

1 + 1
2

[(−2x1 − x2)q1]

s1s2 x1x2 + q1
s2s1 x2

1 − q1
s2 x1 + x2

s1 x1

id 1

Table 6. Quantum Schubert Polynomials.

Appendix A. Tables

A.1. Curve Neighborhood Calculations. This appendix contains the curve
neighborhoods for all the Weyl group elements. In order to list them as short
as possible, we need to define the following:
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• `,m = 0, 1, 2, 3, ...
• N,M = 1, 2, 3, ...

• N ′,M ′ = 2, 3, 4, ...

If w ∈W then Γ(0,0)(w) = w so we won’t include that condition in the tables.

id s1 s2
Γ(N,0)(id) = s1 Γ(N,0)(s1) = s1 Γ(N,0)(s2) = s2s1
Γ(0,N)(id) = s2 Γ(0,N)(s1) = s1s2 Γ(0,N)(s2) = s2
Γ(N,1)(id) = s1s2s1 Γ(N,1)(s1) = s1s2s1 Γ(N,1)(s2) = s2s1s2s1
Γ(1,N′)(id) = s2s1s2s1s2 Γ(N,N′)(s1) = w0 Γ(1,N′)(s2) = s2s1s2s1s2
Γ(N′,M′)(id) = w0 Γ(N′,M′)(s2) = w0

s1s2 s2s1 s1s2s1
Γ(N,0)(s1s2) = s1s2s1 Γ(N,0)(s2s1) = s2s1 Γ(N,0)(s1s2s1) = s1s2s1
Γ(0,N)(s1s2) = s1s2 Γ(0,N)(s2s1) = s2s1s2 Γ(0,N)(s1s2s1) = s1s2s1s2
Γ(N,1)(s1s2) = s1s2s1s2s1 Γ(N,1)(s2s1) = s2s1s2s1 Γ(N,1)(s1s2s1) = s1s2s1s2s1
Γ(N,N′)(s1s2) = w0 Γ(N,N′)(s2s1) = w0 Γ(N,N′)(s1s2s1) = w0

s2s1s2 s1s2s1s2 s2s1s2s1
Γ(N,0)(s2s1s2) = s2s1s2s1 Γ(N,0)(s1s2s1s2) = s1s2s1s2s1 Γ(N,0)(s2s1s2s1) = s2s1s2s1
Γ(0,N)(s2s1s2) = s2s1s2 Γ(0,N)(s1s2s1s2) = s1s2s1s2 Γ(0,N)(s2s1s2s1) = s2s1s2s1s2
Γ(N,M)(s2s1s2) = w0 Γ(N,M)(s1s2s1s2) = w0 Γ(N,M)(s2s1s2s1) = w0

s1s2s1s2s1 s2s1s2s1s2 w0
Γ(N,0)(s1s2s1s2s1) = s1s2s1s2s1 Γ(0,N)(s2s1s2s1s2) = s2s1s2s1s2 Γ(`,m)(w0) = w0

Γ(`,N)(s1s2s1s2s1) = w0 Γ(N,`)(s2s1s2s1s2) = w0

Table 7. The Curve Neighborhoods for every degree at every w ∈W .
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