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Introduction

It is often the case that seemingly unrelated parts of mathematics turn out to have

unexpected connections. In this paper, we explore three puzzles and see how they are

related to continued fractions, an area of mathematics with a distinguished history

within the world of number theory.

Puzzle 1: A Mistake. A typesetting error produced g − 1 instead of g−1, and a

student was quick to point out that, for the problem at hand, it didn’t matter. What

is the value of g?

Puzzle 2: A Whole Lot of Cows. About 22 centuries ago, Archimedes wrote a

letter in which he challenged his fellow mathematicians to determine the size of a certain

herd of cattle. To do this involves solving the equation x2 − 410286423278424y2 = 1

in nonzero integers x and y. What is the connection, and why does this equation even

have such a solution?

Puzzle 3: A Mystery. I once read a book on number theory that contained a

tantalizing problem whose solution eluded me for years. In this book, it stated that

the expression

2 +
2

2 +
3

3 +
4

4 +
5

5 + · · ·
was equal to a certain real number θ. What is θ and why is this expression equal to θ?

The quantity g in Puzzle 1 produces a continued fraction, the solution to Puzzle 2

uses a continued fraction, and the expression in Puzzle 3 is a continued fraction.

Don’t know what a continued fraction is? Don’t worry—you’ll find out.

A TEXnical Error and Simple Continued Fractions

In typing out a recent problem set in TEX, I inadvertently typed $g-1$ (which typesets

as g − 1) instead of $g∧{-1}$ (which typesets as g−1. One student was quick to point
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out that, for the problem at hand, it didn’t matter. Knowing this and knowing that

the answer is positive, what is g?

Now g − 1 = g−1 =
1
g
, so g = 1 +

1
g
. If we multiply both sides by g and transpose,

we are led to the equation g2 − g − 1 = 0. This has two solutions, namely g =
1 ±√

5
2

;

but g > 0, so the answer is g =
1 +

√
5

2
. End of story — or is it? Let’s look a bit

deeper.

Substituting this value for g in the expression on the right, we see that g = 1+
1

1 +
1
g

;

do it again and we get g = 1 +
1

1 +
1

1 +
1
g

; if we continue this process, we find that

g = 1 +
1

1 +
1

1 +
1

1 + · · ·

(1)

— that is, if the expression on the right makes sense.

Turns out, it does make sense: it is what we call a simple continued fraction, or scf

for short. The three dots indicate that the pattern repeats forever, so that we have an

infinite scf. In order to understand what this is, we need to talk about the finite ones

first.

A finite simple continued fraction is an expression of the form

x = b0 +
1

b1 +
1

b2 +
1

b3 + . . . +
1

bk−1 +
1
bk

,

where the bi’s are integers and bi ≥ 1 for i ≥ 1. This notation is not easy to use, so

we customarily write x =
〈
b0, b1, b2, . . . , bk

〉
to represent the above scf. We’ll call the

bi’s partial quotients of x. Now since bi is a positive integer for i ≥ 1, we see that

0 ≤ x − b0 < 1 and so b0 = [x], the greatest integer in x. Let us write x0 = x and

xn+1 =
1

xn − bn
for n ≥ 1; the numbers xi are called the complete quotients of x. It

turns out that bn = [xn] for all n, and it is but a short step to the following theorem.

Theorem 1. (a) Every positive rational number has exactly two representations as a

finite scf, differing only in the last place—if x =
〈
b0, b1, b2, . . . , bk

〉
with bk > 1, then

the other finite scf representing x is
〈
b0, b1, b2, . . . , bk − 1, 1

〉
.

(b) Every finite scf represents a rational number.
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Part (a) is a consequence of Euclid’s Algorithm for finding greatest common divisors;

here is an example:

355
113

= 3 +
16
113

;
113
16

= 7 +
1
16

, and so

355
113

=
〈
3, 7, 16

〉
.

(2)

Part (b) follows from the fact that simplifying a finite scf involves only finitely many

arithmetic operations involving integers and rationals, so that the end result is a ratio-

nal number. Here is an example:

〈
2, 1, 2, 1, 1, 4, 1, 1, 6

〉
=

1264
465

(3)

Checking the arithmetic in the above examples is a good idea; writing out their decimal

equivalents might be revealing.

If x =
〈
b0, b1, b2, . . . , bk

〉
, then for n ≤ k, the theorem tells us that the scf Cn =〈

b0, b1, b2, . . . , bn

〉
is a rational number called the nth convergent to x. This brings up a

problem with continued fractions: how do we calculate the convergents? Dealing with

an 8-deep fraction is tedious at best, so is there a shortcut? In fact, there is.

Theorem 2. Let b0, b1, . . . be real numbers with bi ≥ 1 for i ≥ 1. Define the numbers

Pn and Qn as follows:

P−1 = 1, P−2 = 0; Q−1 = 0, Q−2 = 1;

Pn = bnPn−1 + Pn−2, n ≥ 0;

Qn = bnQn−1 + Qn−2, n ≥ 0.

Then the successive convergents to the scf
〈
b0, b1, b2, . . . , bk

〉
are Cn =

Pn

Qn
, for n ≥ 1.

For example, for that number g defined in Equation (1), the numbers Pn and

Qn, for n ≥ 0, are 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . and 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . ,

respectively — the Fibonacci numbers. Their ratios approximate the number g =

(1 +
√

5)/2 commonly known as the golden mean (“g” as in “golden”).

Here is a sketch of the proof of Theorem 2: For the base case, notice that C0 = b0 =

b0/1 and indeed P0 = b0 = b0·1+0 = b0P−1+P−2 and Q0 = 1 = b0·0+1 = b0Q=1+Q−2.

Then, with the induction hypothesis in hand — namely, that the above formulas are

true for all n ≤ k and for all scf’s — we notice that

〈
b0, b1, b2, . . . , bk+1

〉
=

〈
b0, b1, b2, . . . , bk +

1
bk+1

〉
and apply the formulas to the right-hand side.
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The convergents exhibit some curious behavior. For example, the successive con-

vergents in (3) begin as follows:

2
1
,
3
1
,
8
3
,
11
4

,
19
6

,
87
32

, . . .

Notice that 19 · 32− 87 · 7 = −1, 11 · 7− 19 · 4 = 1, 8 · 4− 11 · 3 = −1, and in general, it

appears that the following is true:

Theorem 3. If Pn and Qn are as in Theorem 2, then PnQn+1 − Pn+1Qn = (−1)n+1

for n ≥ 0.

(Exercise: use the formulas to prove it.)

Infinite scf’s first turn up in Europe in the sixteenth and seventeenth centuries in

the work of Bombelli (1526-1573) and Cataldi (1548-1626), with Wallis (1616-1703) and

Huyghens (1629-1695) first working out the theory ([2], Chaps. 2 and 3). They have

broad applications in number theory, both to the approximation of irrational numbers

by rationals (the Mystery) and to the solution of certain quadratic equations in integers

(the Cows). We may define the infinite simple continued fraction
〈
b0, b1, b2, . . .

〉
by

x =
〈
b0, b1, b2, . . .

〉
= lim

k→∞
〈
b0, b1, b2, . . . , bk

〉
,

provided this limit exists. If bk ≥ 1 for all k ≥ 1, the limit does exist:

Theorem 4. If b0, b1, b2, . . . is a sequence of numbers such that bi ≥ 1 for i ≥ 1, and

if the numbers Pn and Qn are defined as above, then:

(a)
P0

Q0
<

P2

Q2
<

P4

Q4
< . . . , and

P1

Q1
>

P3

Q3
>

P5

Q5
> . . . ;

(b)
P2n

Q2n
<

P2n+1

Q2n+1
for all n ≥ 0; and

(c) limk→∞
〈
b0, b1, b2, . . . , bk

〉
exists.

Proof. Let us sketch the proof. To prove (a), use the results from Theorems 2 and 3:

for example, begin one of the base cases by observing that 0 <
P2

Q2
=

b2P1 + P0

b2Q1 + Q0
and

b2 ≥ 1; then, clear of fractions and apply some algebra. The proof of (b) is simply

a restatement of Theorem 3, paying special attention to the parity of the subscripts.

Now, by (a), the convergents
P2n

Q2n
form an increasing sequence; by (b) this sequence is

bounded above by any odd convergent. By the completeness of the real numbers, the

sequence
(

P2n

Q2n

)
converges to their least upper bound x. It turns out that x is also

the limit of the sequence of odd convergents, and to show this is not hard.

Now, let’s try computing the scf for an irrational number — say,
√

19. We know it

is infinite, but let’s just see what happens. To begin, we notice that [
√

19] = 4, so that
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√
19 = 4 +

√
19 − 4, and the algorithm proceeds as follows.

√
19 = 4 + (

√
19 − 4),

1√
19 − 4

=
√

19 + 4
3

= 2 +
√

19 − 2
3

,

3√
19 − 2

=
√

19 + 2
5

= 1 +
√

19 − 3
5

,

5√
19 − 3

=
√

19 + 3
2

= 3 +
√

19 − 3
2

,

2√
19 − 3

=
√

19 + 3
5

= 1 +
√

19 − 2
5

,

5√
19 − 2

=
√

19 + 2
3

= 2 +
√

19 − 4
3

,

3√
19 − 4

=
√

19 + 4 = 8 + (
√

19 − 4),

1√
19 − 4

=
√

19 + 4
3

= 2 +
√

19 − 2
3

,

and hey, look, it repeats:
√

19 =
〈
4, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8 . . .

〉
, which we abbreviate

as
√

19 =
〈
4, 2, 1, 3, 1, 2, 8

〉
. It is also true that

√
2 =

〈
1, 2

〉
, and rational approxima-

tions to
√

2 were known almost 4 millenia ago. Calculate the scf for several values of√
D, where D is any positive nonsquare integer, and you will be convinced that the

following theorem is true:

Theorem 5. There exists a least positive integer k, called the period length, such that

the scf expansion of
√

D is given by
√

D =
〈
N, b1, . . . , bk−1, 2N

〉
.

This result dates from the seventeenth century and grew out of correspondence

between Pierre Fermat (1601-1665) and the English mathematician William Brouncker

(1620-1684). In fact, these so-called periodic continued fractions are precisely those

that represent quadratic irrationalities — and this is a theorem due to, of all people,

that startling prodigy Évariste Galois (1811-1832):

Theorem 6. (Galois) The simple continued fraction x =
〈
b0, b1, b2, . . .

〉
represents a

quadratic surd — i.e. an irrational root of a quadratic equation with rational coefficients

— if and only if x is periodic.

Computer algebra systems often have built-in functions to find the scf expansion of

quadratic surds. But it is fun to write your own; try it and see! And now, on to the

cattle!
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Archimedes and the Cattle

Archimedes was the greatest mathematician in antiquity, and one measure of his great-

ness was that he thought BIG. He moved the earth with a big stick, and it turns out

that such a stick needed to be about 1035 millimeters long. He filled the universe with

grains of sand and counted the grains (roughly 1051 of them), then imagined an even

bigger universe full of sand and counted those grains (about 1063 grains). Finally, in a

letter to his friend Eratosthenes he posed the problem of finding the size of a certain

herd of cattle, which size pitifully dwarfs all of the previous numbers. (Maybe he wrote

the letter — and maybe he didn’t; more about that later.) Here are the details:

Archimedes asks us to find the numbers W , X, Y and Z of white, black, brown,

and spotted bulls, and the numbers w, x, y and z of white, black, brown, and spotted

cows, subject to the following nine conditions:

1. W = (1/2 + 1/3)X + Z, 2. X = (1/4 + 1/5)Y + Z,

3. Y = (1/6 + 1/7)W + Z, 4. w = (1/3 + 1/4)(X + x),

5. x = (1/4 + 1/5)(Y + y), 6. y = (1/5 + 1/6)(Z + z),

7. z = (1/6 + 1/7)(W + w), 8. W + X is a square, and

9. Y + Z is a triangular number.

(4)

These amount to seven linear equations and two nonlinear equations in eight unknowns.

so that it is not obvious that a solution even exists. Solving the linear equations

1 through 7 is fairly straightforward, and with a computer algebra system such as

Mathematica we can do it in the blink of an eye. It turns out that the first seven

variables are rational multiples of z with common denominator 5439213; if we put

z = 5439213v, we obtain integer values for all eight variables, namely

W = 10366482v, X = 7460514v, Y = 7358060v, Z = 4149387v,

w = 7206360v, x = 4893246v, y = 3515820v, z = 5439213v,
(5)

where v is an integer-valued parameter. At a minimum, Archimedes now has about 50

million head of cattle.

To satisfy condition 8, we want W + X = 17826996v to be a square. Since

17826996 = 4 · 4456749, with the latter factor squarefree, this will occur if we put

v = 4456749s2. This yields W = 46200808287018s2 with similarly magnified values for

the other seven variables. At this point, with about 225 trillion head of cattle in the

herd, Archimedes has clearly overrun the planet—and he still must satisfy condition 9,

namely that Y + Z must be triangular.

Now, the triangular numbers are 1, 3, 6, 10, 15, . . . and have the general form n(n +

1)/2, so this means that Y + Z = 51285802909803s2 = n(n + 1)/2 for some integer n.
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Multiplying this equation by 8 and adding 1 yields the equation 410286423278424s2 +

1 = (2n + 1)2. So, if we set t = 2n + 1, we conclude that satisfying conditions 1-9

amounts to solving the equation

t2 − 410286423278424s2 = 1, (6)

for nonzero integers s and t.

It is apparent madness to prove that s exists, let alone ever find it. But it does,

and we can, by means of continued fractions. It turns out that the convergents to the

scf expansion of an irrational number are excellent approximations to that number. In

particular, we have the following corollary to Theorem 3:

Theorem 7. If α =
〈
b0, b1, b2, . . .

〉
is the scf for α, and if Pn and Qn are as in Theorem

2, then |Pn/Qn − α| < 1/Q2
n.

For example, |355/113 − π| = 0.00000026676 . . . < 0.0000783 . . . = 1/1132. Using

this result, Lagrange (1736-1813) was able to prove that the scf for
√

D encodes all of

the solutions to the equation x2 − Dy2 = 1:

Theorem 8. (Lagrange) Let D be a positive nonsquare integer, let N = [
√

D], and

let
√

D =
〈
N, b1, . . . , bk−1, 2N

〉
, where k is the period length. If Pn and Qn are as in

Theorem 2, and m is a positive integer, then

P 2
mk − DQ2

mk =

{
−1, if mk is odd;

1, if mk is even.

Furthermore, if the integers x and y satisfy x2−Dy2 = ±1, then there exists an integer

m such that x = Pmk and y = Qmk, where k is as above.

For a proof, see [12], Section 13.4 or [7], Section 14.5. As an example, we found

that
√

19 =
〈
4, 2, 1, 3, 1, 2, 8

〉
, with period length k = 6; a short calculation reveals that

P6 = 170, Q6 = 39, and 1702 − 19 · 392 = 28900 − 19 · 1521 = 28900 − 28899 = 1.

We now see that Lagrange’s Theorem will enable us to find a solution to Equation

(6), so we need the scf expansion of
√

410286423278424. Now the period length of this

scf is 203254, but Mathematica happily computes both this scf and — using the formulas

from Theorem 2 — the values of s and t. The final value for W = 46200808287018s2

is, as stated in the literature [4], a 206545-digit number. Written out in full, at 80

characters a line and 72 lines a page, it runs to 37 pages; it took about 35 seconds to

calculate the scf, and about 5 minutes to find the value of W . The total number of

cattle turns out to be

7760271406486818269530232 · · · 8973723406626719455081800,
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with the · · · representing 206495 missing digits. Lots of milking to be done here!

And now, let’s solve that mystery.

Generalized Continued Fractions, and the Mystery Solved

More generally, we can look at so-called generalized continued fractions, i.e. expressions

of the form

x = b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . . +
ak

bk + . . .

,

where the ai’s and bi’s are numbers. Again, this notation is unwieldy, so we write this

as

x = b0 +
a1

b1+
a2

b2+
a3

b3 + · · ·
ak

bk + · · · . (7)

If ak > 0 and bk ≥ 1 for all k, then the above expression converges to a real number.

Using induction, we can prove that the successive convergents to (7) are
Pn

Qn
, for n ≥ 1,

where

P0 = b0, P−1 = 1; Q0 = 1, Q−1 = 0;

Pn = bnPn−1 + anPn−2, n ≥ 1;

Qn = bnQn−1 + anQn−2, n ≥ 1.

(8)

These generalized formulas clearly resemble the formulas from Theorem 2 for the con-

vergents of simple continued fractions. Again, if the cf in equation (7) converges, then

it is periodic if and only if it represents a quadratic irrational.

Notice that the an and the bn are not necessarily integers, or even positive, or even

rational (or, for that matter, even real). The great magical genius Ramanujan (1887-

1920) had a particular liking for continued fractions with bn = 1 and the an arbitrary

real numbers, or even variables.

We can now solve the last puzzle, the one about the continued fraction

2 +
2

2+
3

3+
4

4+
5

5 + · · · . (9)

It is said to represent a real number θ. But what is θ?

Since θ = 2+
2

2 + p
, where p is a positive number, we see that 2 < θ < 3. From the
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formulas in (8), we see that b0 = 2, and for n ≥ 1, bn = an = n + 1. Thus,

P0 = 2,

P1 = 2 · 2 + 2 · 1 = 6,

P2 = 3 · 6 + 3 · 2 = 24,

P3 = 4 · 24 + 4 · 6 = 120,

P4 = 5 · 120 + 5 · 24 = 720,

and we boldly guess that Pn = (n + 2)! for n ≥ 0. Furthermore,

Q1 = 2 · 1 + 2 · 0 = 2,

Q2 = 3 · 2 + 3 · 1 = 9,

Q3 = 4 · 9 + 4 · 2 = 44,

Q4 = 5 · 44 + 5 · 9 = 265;

the fourth convergent to θ is P4/Q4 = 720/265 = 2.71698 . . . , the fifth is P5/Q5 =

5040/1854 = 2.71844 . . . , and we guess that θ = e.

In order to prove it, we need to make sense of the sequence 2, 9, 44, 265, . . . . Notice

that

2 = 3 − 1 =
3!
2!

− 3!
3!

,

9 = 4 · 2 + 1 = 4
(

3!
2!

− 3!
3!

)
+ 1 =

4!
2!

− 4!
3!

+
4!
4!

,

44 = 5 · 9 − 1 = 5
(

4!
2!

− 4!
3!

+
4!
4!

)
− 1 =

5!
2!

− 5!
3!

+
5!
4!

− 5!
5!

,

and in general, we guess that

Qn = (n + 2)!
(

1
2!

− 1
3!

+ · · · + (−1)n+2 1
(n + 2)!

)
= (n + 2)!

n+2∑
k=2

(−1)k

k!
(10)

We’ll leave it as an exercise to prove that the equation in (10) holds for all n ≥ 1.

Having done so, we conclude that the nth convergent Cn to the continued fraction

in (9) is given by

Cn =
Pn

Qn
=

(n + 2)!

(n + 2)!
∑n+2

k=2

(−1)k

k!

=
1∑n+2

k=2

(−1)k

k!

.

Since 0! = 1! = 1, we know that

n+2∑
k=2

(−1)k

k!
=

1
1
− 1

1
+

n+2∑
k=0

(−1)k

k!
=

n+2∑
k=0

(−1)k

k!
;
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we also know that limn→∞
∑n+2

k=0

(−1)k

k!
exists by the Alternating Series Test. In fact,

∑∞
k=0

(−1)k

k!
= e−1 is what we get by substituting x = −1 in the usual Maclaurin series

for ex.

Hence, θ = limn→∞ Cn = 1/e−1 = e, and our guess that

2 +
2

2+
3

3+
4

4+
5

5 + · · · = e

was correct!

Questions

Where can I find out more about continued fractions? Most elementary number

theory books have chapters devoted to continued fractions. See, for example, [6] (a

classic), [7] (which also treats generalized continued fractions), [8] and [12]. Olds’ book

[10] is a very nice elementary introduction. Perron’s book [11] will take you a long way

into the subject—if you can read German. As for the history of continued fractions,

both Volume 2 of Dickson’s encyclopedic History of the Theory of Numbers [4] and

Brezinski’s work [2] contain tons of historical information; their styles are distinctly

different. The above list is far from complete.

What else can you do with continued fractions? Among other things, you

can use them to factor large integers. In the late 1960’s, Brillhart and Morrison [3]

developed an integer factoring algorithm called CFRAC, with which they factored the

seventh Fermat number F7 = 2128 +1. Based on continued fractions, it was the world’s

principle large-number cracker until being superseded by the Quadratic Sieve in the

early 1980’s.

What is the simple continued fraction expansion for e? The finite scf in

Equation (3) for the rational number
1264
465

is its beginning. (That’s why I asked you

to check the arithmetic.) In fact, e =
〈
2, 1, 2, 1, 1, 4, 1, 1, . . . , 2n, 1, 1, . . .

〉
; for a proof,

see [7], Section 11.6.

What about continued fractions for π? The finite scf in Equation (2) for
355
113

is how it begins; that six-decimal-place approximation to π was known to the Chinese

mathematician Tsu Ch’ung Chi (430-501). It proceeds, with no apparent pattern, as

follows: π =
〈
3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, . . .

〉
. As of 1999, it was known

to 20,000,000 terms.

If Archimedes didn’t make up the Cattle Problem, who did — and when?

This problem surfaces in 1773 when Gotthold Ephraim Lessing published the Greek

text of a 24-verse epigram translated from an Arabic manuscript. This epigram was the
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Cattle Problem as stated by Archimedes in a letter for the students at Alexandria which

Archimedes sent to his friend Eratosthenes. A fair amount of ink has been spilled over

the question, “What did Archimedes know, and when did he know it?” Most historians

of mathematics agree that the problem is very likely due to Archimedes, although the

epigram came later.

What’s TEX? TEXis a mathematical typesetting program, but that is like saying

that Hank Aaron was a homerun hitter. For it has become a language that mathe-

maticians use to communicate with each other in emails, handwritten notes, and other

informal settings. It was developed by Donald Knuth, the legendary computer scien-

tist, who did not cash in on his wonderful product, but gave it away to the American

Mathematical Society. Such feats of invention and altruism are as admirable as they

are rare.

What is so interesting about Ramanujan’s continued fractions? Among

other features they look spectacular. One of my favorites is the following, which he

included in a famous letter to the English mathematician G. H. Hardy:

1
1+

e−2π
√

5

1+
e−4π

√
5

1+
e−6π

√
5

1 + . . .
=




√
5

1 +
(

53/4

(√
5 − 1
2

)5/2

− 1
)1/5

−
√

5 + 1
2


 e2π/

√
5

No, I don’t know how to prove that these two expressions are equal. But there is some

comfort: Hardy stated that when he first saw this equality, it defeated him completely.

Why is it called the Pell Equation if Pell had nothing to do with it? It

was one of the few mistakes that the great Leonhard Euler (17078-1783) ever made.

He wrongly attributed the equation to John Pell because it appeared in a book Pell

wrote, but Pell had no connection with the equation. It would be appropriate to name

it after either Brouncker, Fermat, or the Indian mathematician Bhaskara (1114-1185),

all of whom studied the equation extensively. This is yet another example of Boyer’s

Law, which — what’s Boyer’s Law? That’s another story.
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