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Abstract. The adiabatic theorem of quantum mechnaics cannot hold or systems in a localiza-
tion regime, because the evolution of eigenvectors as a parameter is varied (also called “spectral
flow”) is generically non-local. However, there is a remnant of the adiabatic theorem, which
we call the “locobatic theorem”. It refers to the fact that adiabatic evolution corresponds,
with high probability, to the spectral flow of a local restriction of the Hamiltonian. We make
the above statements precise for a class of Hamiltonians describing a particle in a disordered
background. An important application is a justification of the linear response formula for the
Hall conductivity in a 2D system with the Fermi energy lying in a mobility gap.

1. Introduction

1.1. Adiabatic theorems. In quantum mechanics, a central problem is to solve and under-
stand the linear initial value problem (IVP):

iψ̇(t) = H(t)ψ(t), ψ(0) = ψo, (1.1)

where H(t) is a self-adjoint family of operators on some Hilbert space H (the so-called Hamil-
tonian), and ψo is a normalized vector onH (the initial wave packet of the system). The solution
of the IVP becomes trivial in the case of time-independent operators H(t) = Ho and the initial
state ψo being an eigenvector for Ho. In this case, the evolution ψ(t) coincides with ψo up to
an acquired phase.

A more interesting and physically realistic situation arises when the dependence on time in
H(t) is present, but is slow (adiabatic). In this case, the evolution ψ(t) is expected to follow
the spectral evolution of the Hamiltonian H(t) (the assertion known as the adiabatic theorem
of quantum mechanics). Of course, slow is a relative concept, and we need to quantify the
reference time scale for these purposes. In the standard adiabatic theorem, such parameter is
given by the spectral gap in H(t) (note that energy has units of time−1 in (1.1)). To make
the statement more quantitative, it is convenient to consider the family H(εt), where ε is a
small (adiabatic) parameter, and the physical time t runs over the long interval [0, 1/ε]. After
a change of variables s = εt where s is a rescaled time, the relevant IVP becomes

iεψ̇ε(s) = H(s)ψε(s), ψε(0) = ψo, s ∈ [0, 1]. (1.2)

We denote by Uε(s) the corresponding propagator, i.e. the unitary operator that solves the IVP

iε∂sUε(s) = H(s)Uε(s), Uε(0) = I. (1.3)

Let us assume that the spectrum σ(H(s)) of the operator H(s) contains a set S(s) which is
isolated from the rest of the spectrum by a uniform distance g (the spectral gap). Denoting by
P (s) the spectral projection ofH(s) onto S(s), and assuming that P (0)ψo = ψo, the (qualitative)
adiabatic theorem states that

lim
ε→0
‖ψε(s)− P (s)ψε(s)‖ = 0, (1.4)

provided H(s) is smooth. In fact a stronger statement holds true, namely

lim
ε→0
‖Uε(s)P (0)U∗ε (s)− P (s)‖ = 0, (1.5)
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and one can make the error estimate for the norm above explicit, in terms of its ε and g
dependencies, see e.g., Lemma 4.5 below.

The adiabatic theorem and its derivatives play an important role in the various branches of
quantum and statistical mechanics (e.g., our second result below concerns the derivation of the
Green–Kubo transport formula using this theory). The first results on adiabatic behavior go
back to the dawn of quantum mechanics and are due to Born and Fock (1928). The modern
adiabatic theory was initiated by Kato in 1950 [Ka] and has since been since studied intensively
in mathematical physics literature. The adiabatic theorem has been extended to a situation
where the family P (s) is smooth, but no gap is present, [B, AE, AHS]. This situation usually
occurs for a ground state in the threshold of continuous spectrum. More recently, the adiabatic
theorem was established for certain systems characterized by a spectral gap but non-smooth
P (s), [BDF]. This situation arises in the context of the thermodynamic limit for many-body
systems. This paper considers a case where both conditions fail to hold, in general. Such a
situation occurs in the localized regime of a disordered H, as will be described now

1.2. Localized systems and resonant hybridization. We will be interested in the family

H(s) = H + βW (s) (1.6)

on `2(Zd), where H is a disordered Hamiltonian, β is a small parameter and W (·) is a uniformly
bounded family of smooth operators (the driving). We say that an open interval Jloc ⊂ σ(H) is
a mobility gap or a region of exponential localization if the spectrum of H in Jloc is of pure point
type and there exist constants 0 < C,m, µ <∞, such that for each eigenpair (Ei, ψi), Ei ∈ Jloc
one can find xi ∈ Zd, called a localization center for ψi, satisfying

|ψi(x)| ≤ C |x|m e−µ|x−xi|. (1.7)

The prototypical example of such H is the Anderson model H = −∆ + Vω on l2(Zd), where
∆ denotes the discrete Laplacian and Vω is a multiplication operator, Vωψ(x) = ω(x)ψ(x) for
ψ ∈ `2(Zd), where ω(x) is drawn as an i.i.d. random variable with some joint probability
distribution µ. The Anderson Hamiltonian is known to display exponential localization in the
vicinity of spectral edges, at large values of disorder (condition on the distribution µ) and in
dimension d = 1, for almost all configurations ω. We will not attempt to cite the extensive
literature for reviews, results and open problems concerning this model and its variants but
rather refer the interested reader to the recent monograph [AW] on the subject.

For the purposes of the present paper, we stress that one should not expect much uniformity
of the localization properties as a function of s or β. More concretely, even if the property (1.7)
holds for all s ∈ [0, 1], we do not expect the constant C to be bounded in s on any open subset
of [0, 1], provided that W is sufficiently nontrivial. The destruction of such uniform localization
properties should intuitively proceed via a mechanism known as resonant hybridization, see e.g.
[AW, Chapter 15]. However, as far as we are aware, there are no prior results that work for Zd

systems, for any d illustrated adequately by the two-level system with a Hamiltonian H(s) of
the form

H(s) =

(
g s
s −g

)
, s ∈ (−1, 1), g � 1.

When s = 0, an eigenbasis is e1 =

(
1
0

)
, e2 =

(
0
1

)
. These remains approximate eigenvectors for

H(s) provided |s| � g. However, the picture is different for the case when the relation between
the energy gap 2g and the tunneling amplitude |s| is reversed: When g � |s| an approximate
eigenbasis is given by {e1 ± e2}. I.e., the eigenfunctions are no longer localized in the basis {ei}
and instead are given by hybridized functions which are combinations of these vectors.

In a generic disordered system such two-level description emerges when one wants to single
out the interaction behavior of a pair of spatially separated eigenstates and as such is present at
all scales. This leads us to the above-mentioned intuition that C cannot be not locally bounded.
Let us also mention that, as we see in this example, the hybridization phenomenon is usually
tied to an avoided level crossing. If we consider the spectral flow of eigenvectors as a function
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of s, then we see that this flow will transition between e1 and e2 in a time span of approximate
length g. If this phenomenon occurs as well in our extended disordered system, then this means
that the spectral flow is very nonlocal, as e1,2 can be localized arbitrarily far away from each
other. More precisely, if we consider a finite volume restriction of H, say to a box with side
length L, we can then label the eigenstates ψi,s so that for each i, t 7→ ψi,s is continuous. How-
ever, we expect do the modulus of continuity to diverge badly as L → ∞, see Theorem 1.1.

We are not aware of any prior results making this heuristics precise and therefore, in Ap-
pendix A we show the emergence of the hybridization rigorously for a one dimensional system.
Specifically, we prove Theorem A.18, which qualitatively can be formulated as

Theorem 1.1. Let Ho be the standard Anderson model in 1d. Then, under some additional
regularity assumptions on the random potential and mild assumptions on W , the eigenfunction
hybridization occurs on all scales with the scale-independent probability. The corresponding
eigenvalues exhibit avoided level crossings.

1.3. The locobatic behaviour. Theorem 1.1 above leads to an interesting question: The folk
adiabatic theorem suggests that dynamics should follow the spectral data, i.e., the spectral
flow s 7→ ψi,s, when the adiabatic parameter ε is small enough. However, as we saw above,
this spectral flow is extremely nonlocal, whereas the physical evolution can not be arbitrarily
nonlocal. The way that this dilemma is resolved, we believe, is that the physical evolution of
an initial eigenvector is for most values of s stays close to one of the global eigenvectors ψi,s,
but the index s varies wildly with s. A simpler take on this is that the evolution of the initial
eigenvector stays, for all times s, close to an instantaneous eigenvector of the restriction of H
to a local box around the support of the initial eigenvector. We will refer to this statement as
a locobatic theorem, and state it quantitatively as Theorem 1.5 below.

In order to state this assertion properly, we need to introduce the necessary framework first.
An operator K acting on `2

(
Zd
)

is range-r for some r ∈ N if

K(x, y) := 〈δx,Kδy〉 = 0 provided |x− y| > r, x, y ∈ Zd,

where |x− y| stands for the `∞ distance in Zd.

Assumption 1.2. The operators H(s) are uniformly bounded, smooth, range-r, self-adjoint
operators, acting on `2

(
Zd
)
, of the form H(s) = H + βW (s). In addition,

‖H(s)‖ ≤ C, ‖W (k)(t)‖ ≤ Ck, W (k)(0) = W (k+1)(1) = 0,

for some constants C,Ck and k ∈ N0.

For any Θ ⊂ Zd, we denote by HΘ the canonical restriction χΘHχΘ of H to `2(Θ).

Assumption 1.3 (Finite range of disorder correlations). For any pair of subsets Θ,Φ of Zd

that satisfy dist (Θ,Φ) > r the operators HΘ and HΦ are statistically independent.

For any region Θ ⊂ Zd and x, y ∈ Θ, we define

|x− y|Θ = min (|x− y| , (dist(x, ∂1Θ) + dist(y, ∂1Θ))) , (1.8)

with the interior boundary ∂1Θ = {x ∈ Θ, dist(x,Θc) = 1}. This distance function regards ∂1Θ
as a single point. It permits us to state that there is exponential decay in the bulk without ruling
out absence of decay along the boundary due to delocalized edge modes. With this preparation,
our assumption of Anderson localization in an interval Jloc for H reads

Assumption 1.4 (Fractional moment condition on Jloc). There exist q ∈ (0, 1) and Cq, µ > 0

such that for any subset Θ of Zd we have

sup
E∈Jloc

E
(∣∣(HΘ − E − i0)−1(x, y)

∣∣q) ≤ Cqe−µ|x−y|Θ for all x, y ∈ Θ, (1.9)

where E (·) stands for expectations with respect to ω.
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Since the next result is easier stated in finite volume, we introduce a periodized restriction of
H(s) to a discrete torus T = TdM which we identify with the square [1,M ]d with opposite faces
identified. This is defined as

HT(x, y) =
∑

m,n∈MZd

H(x+m, y + n), x, y ∈ T. (1.10)

Our two main parameters are the adiabaticity parameter ε and the driving strength β, intro-
duced earlier in (1.2) and (1.6), respectively. In our results we will use three exponents,

ξ =
d

q
, p1 > 2d+ 1/2 + d/q, p2 > max

(
d+

1

2
+ ξ, 2ξ

)
,

with fixed p1, p2 satisfying the inequalities. We allow for the system size M to be arbitrarily
large and all our estimates will be uniform in M .

The following is then the ’locobatic theorem’. It is based on the emergence of a local structure
for the spectral data associated with a torus, once we partition it into smaller boxes of the linear
size `.

Theorem 1.5 (Locabatic theorem on a torus). Assume assumption 1.2 and assumptions 1.3–
1.4 for H(0). We introduce a scale parameter ` ∈ N satisfying

`p2 ≤ ε−1 ≤ Cec
√
`, β1/p1 ≤ 1/` (1.11)

Let J ′loc be any closed interval contained in Jloc. With probability at least 1−e−c
√
`, the following

holds true for a fraction of at least 1− e−c
√
` of eigenstates ψ of HT with eigenvalue E ∈ J ′loc:

There is region R ⊂ T with diam(R) ≤ c`3/2 and an isolated spectral patch S(0) ⊂ σ(HR(0))
such that

(i) For all s, the spectral patch remains isolated from the rest of the spectrum σ(HR(s)).
We denote the associated spectral projector by P (s).

(ii) The solution ψε(s) of the IVP started from ψ satisfies

max
s∈[0,1]

‖(1− P (s))ψε(s)‖ ≤ C
(
ε`d+1/2+ξ + e−c

√
`
)
. (1.12)

The bound can be improved for s = 1; For any N ∈ N,

‖(1− P (1))ψε(1)‖ ≤ CN
(
εN
(
`N(d+1/2+ξ) + `(2N+1)ξ

)
+ e−c

√
`
)
. (1.13)

If the spectrum of HR is level-spaced, i.e. if the probability of a spacing significantly smaller
than |R| is small (as one can prove, e.g., for the standard Anderson model [KM] and at the
bottom of the spectrum for more general random models, [DE]), then with large probability
the spectral patch S(s) consists of a simple eigenvalue and hence P (s) is a rank-one projector.
Moreover, with large probability, one can argue that for a large fraction of times s, the range
of P (s) stays close to an eigenprojection of the global Hamiltonian HT (s). We don’t expect
this property to hold for all times s on a basis of the hybridization result, Theorem 1.1, which
shows that the physical evolution cannot follow the non-local spectral flow.

We will use generic constants C, c, whose values can change from line to line, but they will be
uniform in M, ε, β and in the scale parameter ` introduced below. They will however depend,
in general, on the other parameters and constants introduced above (such as the range r and
the probability distribution µ, as well as constants Cq, Ck, etc.).

1.4. Justification of linear response. One of the main applications of the locobatic theorem
is a proof of validity of the linear response relation for Hall conductivity.

We describe the setup. Take d = 2 and let Z2 3 x = (x1, x2). We will denote by Λn the
characteristic function of the set

{
x ∈ Z2 : xn ≥ 0

}
, n = 1, 2. We consider a Hamiltonian of a

form
H(s) = H0 + βg(s)Λ2,

corresponding to an electric potential βg(s) applied across the 2-direction. The function g
4



(i) g ∈ C∞[−1, 1]
(ii) g(s) = 0 for s ≤ s0 for some s0 > −1.
(iii) g(s) = 1 for s ≥ 0

In the previous sections, we considered the adiabatic evolution from s = 0 to s = 1, but now
it is more natural to consider the time interval [−1, 1]. From time −1 to 0 we adiabatically
switch on the perturbation βg(s)Λ2, an electric field pointing in x2-direction, localised along
the x2 = 0-axis. The total charge passing through a fiducial line, x1 = 0, from time t = 0 up to
a time t = T is given by

Q =

∫ T

0
j(t)dt =

∫ T

0
tr(Pε(t)− P )J)dt,

where j is the current, P = P<EF (H0) is the Fermi projection of the unperturbed Hamiltonian,
Pε(t) is the solution of the driven Schrödinger equation with Pε(t) = P , and J = i[H,Λ1] is
the current observable (the subtraction of P inside the trace corresponds to the removal of the
so-called persistent current). As we show in the proof, the product (Pε(t) − P )J) is indeed
a trace-class operator, even if the neither of the two factors separately is trace-class. Upon
rescaling the total time as T = ε−1 and introducing the scaled time s = εt, we get

Q =
1

ε

∫ 1

0
tr(Pε(s)− P )J)ds,

where Pε(s) solves the adiabatic Schrödinger equation

iε∂sPε(s) = [H(s), Pε(s)], Pε(−1) = P.

The Hall conductance is defined as a proportionality constant between the applied potential
difference (spatial integral of the electric field) and the current flowing in the perpendicular
direction, i.e. the measured conductance σm is defined by a relation

Q = σm
β

ε

∫ 1

0
g(s)ds,

which gives

σm =
1

β

∫ 1

0
tr(Pε(s)− P )J)ds.

We show the validity of linear response in this system by establishing that the limit

lim
β→0

1

β

∫ 1

0
tr(Pε(s)− P )J)ds

exists for a protocol such that ε� β and is equal to the conductance σ obtained from the Kubo
formula, see e.g., [AG],

σ := tr(P [[P,Λ1], [P,Λ2]]). (1.14)

The condition ε � β ensures that a macroscopic amount of charge is transported during the
process. The shape of g determines the state preparation protocol. In our case, it corresponds
to a common choice in which the state is adiabatically prepared before the measurement of
the current takes place (see e.g. [AG]). The most intuitive setup would be to take ε → 0 first
and only then β → 0. This is certainly beyond the reach of our theorem and we do not know
whether in that setup the expression still equals σ1.

Our result reads

Theorem 1.6. Suppose that H satisfies Assumptions 1.3–1.4 with EF lying in the interior of

Jloc. Assume moreover that e−β
−p1/2 < ε < βp2p1. Then

|σ − σm| ≤ C
ε

βp
+O(β∞ + ε∞),

1It is very likely that the evolution at very small ε is delocalized, but we do not quite grasp the implications
of that for our problem.
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holds with probability 1− e−β−p
′

for some integers p, p′.

1.5. Adiabatic theorem in the strong operator topology. An interesting application of
our results for a finite geometry is the following assertion that holds for Zd.

Theorem 1.7. Let EF ∈ Jloc and suppose that Assumption 1.2–1.4 hold. Then (cf. (1.5))

s-limε,β→0Uε(s)PEF (0)U∗ε (s) = PEF (s), s ∈ [0, 1]

almost surely, provided we take a limit maintaining the relation

e−1/βp < ε < βp2p1 , (1.15)

with p = p1/2.

Remark 1.8. For ε = β this statement was proven earlier in [ES]. Let us also mention that
the choice of the topology (the strong operator topology) here is essential - in the absence of
the spectral gap the result is not expected to hold in the norm operator topology, see [ES] for a
counterexample. A major difference between the prior work and our result is that the (formal)
total variation of the perturbation, ε−1β ‖W‖ blows up as ε, β → 0, thanks to the constraints
on ε and β.

Additional notation. By ΛR(y) ⊂ Zd we will denote a cube ΛR = ΛR(y) :=
(
[−R,R]d + y

)
∩

Zd for y ∈ Zd, with the side length 2R. For a subset Φ ⊂ Zd, we will denote by ∂`Φ it’s
`-extended boundary, i.e.,

∂`Φ = {x ∈ Φ : dist (x,Φc) ≤ `} . (1.16)

By Φ` we will denote
Φ` = Φ \ ∂`Φ. (1.17)

For a Hermitian operator H, we denote by PJ(H) the spectral projection of H on the set
J ⊂ R. For an operator X we denote X̄ := 1−X. For A ⊂ T, c ∈ R+, and ` ∈ N, let ρ`A be a
(scaled) distance function

ρA := ρ`A(x) =
dist (A, {x})√

`
. (1.18)

Let Kc
` be a dilation of an operator K with respect to ρ`A of the form

Kc
` = e−c ρ

`
A K ec ρ

`
A . (1.19)

We will denote
‖K‖c,` = ‖Kc

`‖ (1.20)

in the sequel. This norm is multiplicative, i.e.,

‖AB‖c,` ≤ ‖A‖c,` ‖B‖c,` (1.21)

for a pair of operators A,B.

1.6. Outline of the proofs. We will now comment on the arguments pertaining to the proof
of our core assertions, namely Theorems 2.1–2.2 below. We will not comment on the derivations
of the remaining results, as they follow via the more standard strategy.

We first introduce the concepts of local and ultra-local structures. In order to describe our
constructions with the least possible number of parameters we will use the scale variable ` ∈ N
introduced in Theorem 1.5. It will be convenient to formulate them on a torus T whose linear
dimension is L = ec

√
` but this condition can be relaxed.

Let J ⊂ Jloc and let {(En, ψn)} be a collection of eigenpairs for HT (0) with energies J . We
will say that HT(0) possesses an ultralocal structure in J if there exists a disjoint collection {Tγ}
of subsets of T such that diam (Tγ) ≤ C`3/2 for each γ with the following property: For each
ψn, there exists γ such that ∥∥P̄Jγ(HTγ (0)

)
ψn)
∥∥ ≤ e−c√`. (1.22)

Let us note that random Schrödinger operators H(0) satisfying Assumption 1.4 possess the

ultra-local property with probability ≥ 1 − e−c
√
` provided the length of the interval J is of
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the order `−ξ, in fact a stronger statement holds true, see Theorem 5.4 below. Unfortunately,
localization in the usual sense (or in an ultra-local sense to this matter) breaks down under
perturbations due to the hybridization phenomenon. So the first step is to identify a weaker
notion than ultra-locality that however remains stable under small perturbations.

We will say that HT(s) possesses a local structure in J ⊂ Jloc if there exists a disjoint collection

{Tγ} of subsets of T such that diam (Tγ) ≤ `3/2 for each γ with the following properties:

(i) (Local Gap) There exist intervals Jγ = [E−γ , E
+
γ ] comparable in length to J such that

Jγ ⊂ J and dist
(
E±γ , σ(HTγ (s))

)
≥ ∆; (1.23)

(ii) (Support of spectral projections) Let T := ∪γTγ . Then∥∥PJ(s)χT \T8`
∥∥ ≤ e−c√`, (1.24)

and

‖PJγ (HTγ (s))− χ∂`T PJγ (HTγ (s))χ∂`T − χT8`PJγ (HTγ (s))χT8`‖ ≤ e
−c
√
`. (1.25)

The unperturbed Hamiltonian possesses a local structure for small but not too small ∆. As
we shall see in the proof of Theorem 2.1, the local structure is stable under the perturbation, i.e.,
if the Hamiltonian possesses a local structure for s = 0 on J , it possesses it for all s on a slightly
smaller interval J ′, provided β is sufficiently small. The reason for this stability is related to
the fact that under small local perturbations an eigenstate with energy E is well described in
terms of the thin spectral projection about E of the unperturbed operator. Since the latter
is supported in the localized patches Tγ , so is the eigenstate. The locality property is fully
compatible with the hybridization effect: Even if initially the state is ultra-local (concentrated
in a single patch Tγo), it can (and in fact will) hybridize to a number of different patches Tγ as
s increases.

The scaling of various objects with ` depends on q, d and our choice of sub-exponential error
exp(−c

√
`). The correct scaling of ∆ and β to ensure existence of local structure is given in

Theorem 2.1.
Once the local structure for the family H(s) is established, one can use an (enhanced) version

of the standard, gapped adiabatic theorem (Lemma 4.5) to control the behavior of the individual
spectral patches PJγ

(
HTγ (s)

)
. Here we explicitly invoke part (1.8.(i)) of the definition above.

This, in turn, allows us to control a physical evolution of spectral data Q(s) for HT (s) near
the energy E, see Section 4.5 for details. Finally, we show that it translates to the adiabatic
theorem for the (distorted) Fermi projection, Theorem 2.2. The principal idea here is that the
removal of the spectral data Q(s) on one hand creates a spectral gap for H (making the standard
adiabatic theorem applicable) and on the other does not distort the adiabatic behavior of the
system too much since Q(s) itself evolves adiabatically, the feature we verified in the previous
step.

2. Adiabatic theorem on a torus

We shorthand PJ(s) := PJ(HT(s)) and PJ := PJ(0) in this section.
We will show Section 5 that Anderson type models posses a local structure. In fact, a stronger

statement holds true:

Theorem 2.1 (Local structure of HT(s)). Suppose that H satisfies Assumptions 1.3–1.4 and
the family H(s) satisfies Assumption 1.2. Let

L = ec1
√
`, V` = `d+1/2, δ = c2`

−ξ, ∆ = c3V
−1
` `−ξ, (2.1)

and suppose that β ≤ `−p1. Then there exists constants c, c1, c2, c3, c4, c5, c6 such that for ` large
enough HT(s) possesses a local structure for the energy interval J = (E − 6δ, E + 6δ): One can

find a disjoint collection {Tγ} of subsets of Λ such that|Tγ | ≤ c4V`, diam (Tγ) ≤ c5`
3/2 for each

γ and that the following conditions are met:
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(i) (Local Gap) There exists intervals Jγ = [E−γ , E
+
γ ] such that

(E − 3δ, E + 3δ) ⊂ Jγ ⊂ J and dist
(
E±γ , σ(HTγ (s))

)
≥ ∆; (2.2)

(ii) (Support of spectral projections) Let T := ∪γTγ. Then∥∥PJ(s)χΛ\T8`
∥∥ ≤ e−c√`, (2.3)

and

‖PJγ (HTγ (s))− χ∂`T PJγ (HTγ (s))χ∂`T − χT8`PJγ (HTγ (s))χT8`‖ ≤ e
−c
√
`. (2.4)

(iii) (Exponential Decay of Correlations) Let Ao = ∂`Tγ ∪ (Tγ)8`, then (with A = Ao in
(1.18)–(1.20)) we have∥∥∥(HTγ (s))− z

)−1
∥∥∥
c,`
≤ `3d

∆

1

〈Imz〉
, (2.5)

for z ∈ C with Re(z) = E±γ .

holds true with probability > 1− e−c6
√
`.

The dependence on β here is deterministic, i.e. there exist a subset of configurations of

probability > 1− e−c6
√
` such that the conclusions hold for all β < `−p1.

An additional statement we will establish is

Theorem 2.2 (Locabatic theorem for distorted Fermi projection). In the setting of Theo-
rem 2.2, assume in addition that

e−c
√
` ≤ ε ≤ `−p2 , (2.6)

and fix N ∈ N. Then for ` large enough, there exists a smooth family of orthogonal projections
Q(s) with the following properties:

(i)
∥∥[Q(s), HT(s)]

∥∥ ≤ CN (ε∆−1 + e−c
√
`
)

;

(ii)
∥∥P<E−6δ(H

T(s))Q̄(s)
∥∥+

∥∥Q(s)P>E+6δ(H
T(s))

∥∥ ≤ CN (ε∆−1 + e−c
√
`
)

;

(iii) If we denote by Qε(s) the solution of IVP iεQ̇ε(s) = [Qε(s), HT(s)], Qε(0) = Q(0), we
have

‖Qε(s)−Q(s)‖ ≤ CN
(
εN
(

1

∆N
+

1

δ2N+1

)
+ e−c

√
`

)
. (2.7)

Furthermore, for s = 0 and s = 1, the inequalities in (i) and (ii) hold without the terms
proportional to ε.

3. Consequences of Theorem 2.2

We will use the notation of Theorems 2.2 and 2.1. The purpose of this section is the

Proof of Theorem 1.7. Set ` = bβ−p1c. By Theorem 2.1, Proposition 5.5 and Lemma 5.6, the
probability of the event that conditions (2.2)–(5.30), ‖(PE−PT

E )‖ < e−cL, and |PE(HT )(x, y)| <
e−c|x−y| for all x, y hold on the scale ` is ≥ 1 − e−c

√
`. Thus, by Borel-Cantelli’s lemma, for

almost all random configurations ω ∈ Ω, there exists β0 such that the event holds for all β < βo.
Furthermore, for a.e. ω, E is not an eigenvalue of H thanks to Lemma 5.1. From now on we
will fix the configuration ω for which all this conditions are satisfied and will assume that β is
below the corresponding threshold value βo.

A condition

e−1/β
p1
2 < ε < βp1p2

implies that e−c
√
` < ε < `−p2 . Hence for β sufficiently small, the conclusions Theorem 2.2.(i)–

2.2.(iii) of Theorem 2.2 are satisfied.

We note that using Proposition B.3, ‖(PE −PT
E )‖ < e−cL, and |PE(HT )(x, y)| < e−c|x−y| we

have ∥∥(Uε(s, 0)PEUε(0, s)− UT
ε (s, 0)PT

EU
T
ε (0, s)

)
χΛL/3

∥∥ ≤ Ce−cL. (3.1)
8



where in these steps we have used Proposition B.3, (5.8), (5.9) (that now hold determenistically
by the virtue of our assumptions on ω and β), and Proposition B.3 one more time, respectively.

We will also need the following assertion, which is of the independent interest.

Lemma 3.1. Let E± ∈ Jloc be such that |E+ − E−| ≤ δ. Let P±(s) := PT
E±

(s). Then∥∥P̄+(0))UT
ε (0, s)P−(s))χΛL

∥∥ ≤ Dn

(
εn + e−1/βp

)
, (3.2)

where Dn is some n-dependent coefficient depending only on C,Ck in Assumption 1.2.

Proof of Lemma 3.1. Using Theorem 2.2, we have

‖P̄+(0)(UT )∗ε (s)P−(s)− P̄+(0)Q̄(0)(UT )∗ε (s)Q(s)P−(s)‖ ≤ Ce−1/βp ,

and by the same proposition∥∥P̄+(0)Q̄(0)(UT )∗ε (s)Q(s)P−(s)
∥∥ ≤ CN εN + e−1/βp .

�

We are now ready to complete the proof. We first observe that it suffices to establish that

lim
ε,β→0

‖(Uε(s, 0)PE(0)Uε(0, s)− PE(s))χΛL‖ = 0. (3.3)

Using (3.1), we deduce that it suffices to show that

lim
ε,β→0

∥∥(UT
ε (s, 0)PE(0)UT

ε (0, s)− PT
E (s)

)
χΛL

∥∥ = 0. (3.4)

We next decompose

UT
ε (s, 0)PE(0)UT

ε (0, s)− PT
E (s) = UT

ε (s, 0)PE(0)UT
ε (0, s)P̄T

E+δ(s)

− UT
ε (s, 0)P̄E(0)UT

ε (0, s)PT
E−δ(s)

+
(
UT
ε (s, 0)PE(0)UT

ε (0, s)− PT
E (s)

)
PT

(E−δ,E+δ)(s),

and bound the first term using Lemma 3.1. To bound the last one, we note that
{
HT(s)

}
(extended as an operator on `2(Zd)) converges to H(0) in the strong resolvent sense as ε → 0.
Hence for any interval (a, b), we have

s-limε,β→0P
T
(a,b)(s) = P(a,b) (0) ,

[RS, Theorem VIII.24]. Hence PT
(E−δ,E+δ)(s)

SOT→ P{E}(0) = 0, and (3.4) follows.

�

Remark 3.2. For ε ≥ β Theorem 1.7 follows from the result in [ES] (where it si proven for
ε = β, but the argument is still valid for ε ≥ β). Here we are focused on the regime ε� β. We
did not attempt to extend the theorem to the remaining interval β ≥ ε ≥ βp1p2 .

4. Adiabatic theory for localized spectral patches

Throughout this section we will work on the torus, in the setting of Theorem 2.1. To simplify
the notation, we will shorthand H(s) := HT(s) in this section. In addition, we will use the
assumption of Theorem 2.2), namely that

e−c
√
` ≤ ε ≤ `−p2 , p2 > max{d+

1

2
+
d

q
, 2
d

q
}.

This, in particular, implies that for ` large enough ε−1e−c
√
` ≤ e−c

√
` and that ε/∆ � 1. We

will use this repeatedly. We will also assume that 1 ≥ ∆ ≥ β > 0 (in fact, the above conditions
imply ∆� β for ` large, but it will only matter later on).
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4.1. Kato’s operator. Let 1 ≥ ∆ ≥ β > 0 and let H(s) be a smooth family of self-adjoint
operators on [0, 1] such that

Assumption 4.1. (a) ‖H(s)‖ ≤ C and
∥∥H(k)(s)

∥∥ ≤ βCk for k ∈ N, where H(k)(s) stands
for the k-th derivative of H(s) with respect to the s variable;

(b) There exist E1,2 ∈ R and ∆ > 0 such that mins∈[0,1] dist (σ(H(s)), {E1, E2}) ≥ 2∆;

(c) H(k)(s) = 0 for s = {0, 1} and k ∈ N.

Throughout this section, we will denote by P (s) the spectral projection of H(s) onto the

interval [E1, E2] and will use the shorthand Rz(s) for (H(s)− z)−1. For an operator A (which
can be s-dependent) we define the operator XA(s) by

XA(s) =
1

2π

2∑
j=1

(−1)j
∫ ∞
−∞

Rix+Ej (s)ARix+Ej (s) dx. (4.1)

It has been introduced by Kato in his work on adiabatic theorem, and henceforth we will refer
to it as Kato’s operator.

We note that, for H(s) satisfying Assumption 4.1,

max
j=1,2

∥∥Rix+Ej (s)
∥∥ ≤ (x2 + ∆2

)−1/2
(4.2)

and consequently

‖XA(s)‖ ≤ ‖A‖
π

∫ ∞
−∞

(
x2 + ∆2

)−1
dx ≤ ∆−1‖A‖. (4.3)

Using the Leibniz rule and (B.2), it is straightforward to see that, more generally,∥∥∥X(k)
A (s)

∥∥∥ ≤ Ck ‖A‖k , k ∈ Z+, (4.4)

where ‖·‖k denotes the Sobolev-type norm

‖A‖k =

k∑
j=0

∥∥∥A(j)(s)
∥∥∥ . (4.5)

The importance of the Kato’s operator is related to the fact that it solves the commutator
equation

[H(s), XA(s)] = [P (s), A], (4.6)

which plays a role in a construction of adiabatic theory for gapped Hamiltonians, in particular
in the Nenciu’s expansion presented below.

To handle the adiabatic behavior of localized spectral patches we will also need to understand
the locality properties of the Kato’s operator.

Lemma 4.2. Let A(s) be a smooth family of operators on [0, 1]. Suppose that in addition to
Assumption 4.1, there exists some set A and M, c > 0 such that∥∥Rix+Ej (s)

∥∥
c,`
≤M〈x〉−1, j = 1, 2. (4.7)

Then∥∥∥ecρ
`
AX

(1)
A(s)(s)

∥∥∥ ≤ C (βM2 |ln ∆|+ βM∆−1
) ∥∥∥ecρ

`
AA(s)

∥∥∥+ CM |ln ∆|
∥∥∥ecρ

`
AA(1)(s)

∥∥∥ . (4.8)

Proof. We will be suppress the s-dependence in the proof. Using (B.2) and (1.21), we can bound∥∥∥ecρ
`
AX

(1)
A

∥∥∥ ≤
2∑
j=1

(
Cβ

π

∫ ∞
−∞

∥∥Rix+Ej

∥∥2

c,`

∥∥∥ecρ
`
AA
∥∥∥∥∥Rix+Ej

∥∥ dx
+

1

π

∫ ∞
−∞

∥∥Rix+Ej

∥∥
c,`

∥∥∥ecρ
`
AA(1)

∥∥∥∥∥Rix+Ej

∥∥ dx
+
Cβ

π

∫ ∞
−∞

∥∥Rix+Ej

∥∥
c,`

∥∥∥ecρ
`
AA
∥∥∥∥∥Rix+Ej

∥∥2
dx

)
.
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Using (4.7) and Assumption 4.1.(b), we get (4.8). �

4.2. Nenciu’s expansion. An elegant approach for the analysis of the adiabatic behavior
of gapped systems was discovered by Nenciu [N]. We will use it as a starting point in our
construction.

Lemma 4.3 (Nenciu’s expansion). Let H(s) be a smooth family of self-adjoint operators on
[0, 1] that satisfies Assumption 4.1. Let Bn(s) be a smooth family defined recursively as follows:
B0(s) = P (s) and, for n ∈ N,

Bn(s) =
(
P̄ (s)XḂn−1(s)(s)P (s) + h.c.

)
+ Sn(s)− 2P (s)Sn(s)P (s), (4.9)

where

Sn(s) =

n−1∑
j=1

Bj(s)Bn−j(s). (4.10)

Then we have

(i)

Ḃn(s) = −i [H(s), Bn+1(s)] (4.11)

for all n ∈ Z+;
(ii) Bn(s) = 0 for s = {0, 1} and n ∈ N;

(iii) We have

sup
s

∥∥∥B(k)
n (s)

∥∥∥ ≤ Cn,k∆−n, k, n ∈ Z+. (4.12)

Proof. Property 4.3.(i) is due to Nenciu, [N]. Property 4.3.(ii) follows directly from the recursive
definition of B’s. We establish 4.3.(iii) by induction:

Induction base: For n = 0 and arbitrary k, the bound
∥∥∥B(k)

0 (s)
∥∥∥ ≤ Ck in 4.3.(iii) can be seen

from (B.1), (B.2), Assumption (a), and the Leibniz rule.
Induction step: Suppose now that the statement holds for all n < no and all k ∈ Z+.

Differentiating (4.9) k times with n = no using the Leibniz rule and then using (4.2) and (4.4),
we get that it also holds for n = no and all k ∈ Z+. �

For localized spectral patches we modify the statement slightly.

Lemma 4.4. Suppose that in addition to the assumptions of Lemma 4.3, there exists some set
A and M, c > 0 such that (4.7) holds. Let us also assume that

max
s∈[0,1]

∥∥∥ec ρ
`
AP (s)

∥∥∥ ≤ C, max
s∈[0,1]

∥∥∥H(k)(s)
∥∥∥
c,`
≤ Ckβ for k ∈ N. (4.13)

Let
ν = min

(
M−1 |ln ∆|−1 ,∆

)
,

and assume that β ≤ ν. Then the operators Bn defined in Lemma 4.3 satisfy∥∥∥ecρ
`
AB(k)

n (s)
∥∥∥ ≤ Cn,kν−n, k, n ∈ Z+. (4.14)

Proof. We will suppress the s-dependence in the proof and use induction in n and k.
Induction base: For n = 0 and arbitrary k, by the Leibniz rule we have

P (n) =
(
Pn+1

)(n)
=

∑
k1+k2+···+kn+1=n

(
n

k1, k2, . . . , kn+1

) ∏
1≤j≤n+1

P (kj), (4.15)

where the sum extends over all m-tuples (k1, . . . , kn+1) of non-negative integers satisfying∑n+1
j=1 kj = n (so at least for one value of j we have kj = 0).

Using the integral representation (B.1), the formula (B.2), the Leibniz rule, (4.7), (1.21), and
Assumption (4.13), we can bound∥∥∥P (k)

∥∥∥
c,`
≤ CkMk, k ∈ N.
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We can now use (1.21) and (4.15) to deduce that∥∥∥ec ρ
`
AP (n)

∥∥∥
≤

∑
k1+k2+···+kn+1=n

(
n

k1, k2, . . . , kn+1

) ∏
1≤j<jo

∥∥∥P (kj)
∥∥∥
c,`

∥∥∥ec ρ
`
AP
∥∥∥ ∏
jo≤j≤n+1

∥∥∥P (kj)
∥∥∥

≤
∑

k1+k2+···+kn+1=n

(
n

k1, k2, . . . , kn+1

) ∏
1≤j≤n+1

CkjM
kj = CnM

n, (4.16)

where jo is the first value of the index j for which kj = 0.
Induction step: Suppose now that the assertion holds for all n < no and all k. Differentiating

(4.9) k times with n = no using the Leibniz rule and then using Lemma 4.2 (the assumption
there is satisfied by Eq. (5.30)), we get the induction step. �

4.3. Gapped adiabatic theorem. An immediate consequence of Lemma 4.3 is

Lemma 4.5 (Gapped adiabatic theorem to all orders). In the setting of Lemma 4.3, let

PN (s) :=
∑N

n=0 ε
nBn(s). Then for all N ∈ N,

‖Uε(s)P (0)Uε(s)
∗ − PN (s)‖ ≤ CN εN∆−N ,

where Uε was defined in (1.3).
In particular, for ε < ∆, we have

‖Uε(s)P (0)Uε(s)
∗ − P (s)‖ ≤ Cε∆−1

and

‖Uε(1)P (0)Uε(1)∗ − P (1)‖ ≤ CN εN∆−N .

Proof. By Lemma 4.3,

εṖN (s) = −i[H(s), PN (s)] + εN+1ḂN (s).

Using the fundamental theorem of calculus, we obtain

Uε(s)
∗PN (s)Uε(s)− PN (0) = ε−1

∫ s

0
εN+1 d

ds
(Uε(s)

∗BN (s)Uε(s)) .

Using the unitarity of Uε, Assumption 4.1, and Lemma 4.3.(iii), we obtain

‖Uε(s)∗PN (s)Uε(s)− PN (0)‖ ≤ CN εN∆−N .

The assertion follows from PN (0) = P (0), ‖PN (s)− P (s)‖ ≤ Cε∆−1, and PN (1) = P (1). �

4.4. Adiabatic theorem for a localized spectral patch. The goal of this subsection is to
prove the following assertion, which is of the independent interest.

Theorem 4.6 (Locabatic theorem on a torus). Suppose that the family H(s) satisfies As-
sumption 1.2 and H(0) satisfies Assumptions 1.3–1.4. Let Gω be an event HT(0) possesses an

ultralocal structure for the energy interval J = (E−6δ, E+6δ). Then P (Gω) > 1−e−c
√
`. More-

over, for each ω ∈ Gω, the physical evolution ψε(s) of each eigenvector ψ = ψn with En ∈ J ,
given by (1.2), satisfies

max
s∈[0,1]

∥∥P̄Jγ(HTγ (s)
)
ψε(s)

∥∥ ≤ C (ε∆−1 + e−c
√
`
)

(4.17)

for some γ. Furthermore, for any N ∈ N, we can further improve (4.17) for s = 1:∥∥P̄Jγ(HTγ (1)
)
ψε(1)

∥∥ ≤ CN (εN (∆−N + δ−2N−1
)

+ e−c
√
`
)
. (4.18)
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Proof of Theorem 4.6. We already established the first part of the assertion in Theorem 2.1.
We now show the second part. We first note that G ⊂ Ωloc,N of the full configuration space for
which T and all sets in {Tγ} are `/10-localizing, see Lemma 5.11 below. Thus Theorem 2.1.(ii)

implies the existence of the patch Tγ such that
∥∥∥χ̄(Tγ)8`

ψ
∥∥∥ ≤ e−c√`. It then follows from Lemma

B.2 below, specifically (B.6), that E ∈ Jγ (see also (2.2)). Let T̂γ = (Tγ)4` and set

Qγ(s) = χT̂γPJγ (HTγ (s))χT̂γ . (4.19)

By Lemma B.2, specifically (B.7), we know that (4.18) holds for s = 0 (with ε = 0 on the
right hand side). Let ρ := Qγ(0) be the (truncated) initial spectral patch. Then, since

ρ̄ = χT̂ P̄Jγ (HTγ (0))χT̂ + χ̄T̂ ,

we deduce that ‖ρ̄ψ‖ ≤ e−c
√
`. Hence by unitarity of the quantum evolution,

‖ρ̄ε(s)ψε(s)‖ ≤ e−c
√
` (4.20)

for all s, where ρε denotes the (full) Heisenberg evolution of the (truncated) initial spectral
patch ρ := Qγ(0), i.e.,

iερ̇ε(s) = [H(s), ρε(s)], ρε(0) = ρ. (4.21)

Therefore the result follows from

Lemma 4.7. (i) We can estimate

max
s∈[0,1]

‖ρε(s)−Qγ(s)‖ ≤ C
(
ε∆−1 + e−c

√
`
)
. (4.22)

Moreover, for any N ∈ N, we have

max
s={0,1}

‖ρε(s)−Qγ(s)‖ ≤ CN
(
εN
(
∆−N + δ−2N−1

)
+ e−c

√
`
)
. (4.23)

(ii) In addition,

max
s∈[0,1]

∥∥P̄Jγ (HTγ (s))− P̄Jγ (HTγ (s)) Q̄γ(s)
∥∥ ≤ e−c√`. (4.24)

�

Proof of Lemma 4.7. We suppress the s dependence in the proof. The property (4.24) can be
seen by decomposing

P̄Jγ (HTγ ) = P̄Jγ (HTγ ) Q̄γ + P̄Jγ (HTγ )Qγ

and noticing that

P̄Jγ (HTγ )Qγ = P̄Jγ (HTγ )χT̂γPJγ (HTγ )χT̂γ

= P̄Jγ (HTγ )PJγ (HTγ )χT̂γ +O
(
e−c
√
`
)

= O
(
e−c
√
`
)
,

thanks to (2.4).
Lemma 4.7.(i): By our assumption, HTγ is a gapped Hamiltonian with a gap ∆. Following

the argument in Section 4.2, we set Bγ
n the n-th order in the Nenciu’s expansion. Explicitly, we

use Lemma 4.3 with Bγ
0 = PJγ (HTγ ). We set

Qγ,N :=
N∑
n=0

εnχT̂ B
γ
nχT̂ . (4.25)

and proceed to show that

max
s
‖ρε −Qγ,N‖ ≤ CN

(
εN
(
∆−N + δ−2N−1

)
+ e−c

√
`
)
. (4.26)

The result then follows immediately from (4.26) by definition of Qγ,N and Lemma 4.3.(ii)–

4.3.(iii) (we recall that Bγ
0 = PJγ (HTγ )).
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To get (4.26), we observe that by (4.27),

εQ̇γ,N = −i
∑
γ

N∑
n=0

εn+1χT̂
[
HTγ , Bγ

n+1

]
χT̂

= −i[H,Qγ,N ]− iεN+1χT̂ Ḃ
γ
NχT̂

+

(
i
∑
γ

N∑
n=0

εn+1
[
HTγ , χT̂

]
Bγ
n+1χT̂ + h.c.

)
,

where we have used HT (s)χT̂ = H(s)χT̂ . We bound the second term on the second line by

CN ε
N+1∆−N using (4.12). For the term on the third line, we note that∥∥[HTγ (s), χT̂

]
Bγ
n+1(s)

∥∥ ≤ ν−n−1e−c
√
`

using Lemma 4.4. Putting these bounds together, we get∥∥∥εQ̇γ,N + i[H,Qγ,N ]
∥∥∥ ≤ CN εN+1∆−N + Ce−c

√
`. (4.27)

Finally, we observe that

∂s (Uε(t, s)Qγ,N (s)Uε(s, t)) = ε−1Uε(t, s)
(
εQ̇γ,N (s) + i[H(s), Qγ,N (s)]

)
Uε(s, t).

where Uε(t, s) was defined in (1.3).
Integrating over s and using (4.27), we deduce that

‖Uε(t, r)Qγ,N (r)Uε(r, t)−Qγ,N (t)‖ ≤ ε−1
(
CN ε

N+1∆−N + Ce−c
√
`
)
, (4.28)

We now note that Qγ,N (0) = ρ, so Uε(t, 0)Qγ,N (0)Uε(0, t) = ρε(t) by uniqueness of a solution
for the IVP (4.21). Combining it with (4.28) yields (4.26). �

4.5. Adiabatic theorem for a thin spectral set near E. In preparation for the proof of
Theorem 2.2, we will investigate first the adiabatic behavior of a spectral data corresponding
to a thin set of non-trivial thickness that contains energy E. It will play a role of a natural
barrier that suppresses transitions between the spectral data below and above E which will
make Theorem 2.2 works. The idea here is to combine localized spectral patches near E that
we analyzed in the previous subsection into such a set. Specifically, we define

Q(s) :=
∑
γ

Qγ(s), (4.29)

where the spectral patch Qγ was defined in (4.19). Our first assertion encapsulates the basic
property of this operator.

Lemma 4.8. For ` large enough, the operator Q(s) satisfies:

(i) If H(s) is k times differentiable, so is Q(s):

max
s∈[0,1]

∥∥∥∥djQ(s)

djs

∥∥∥∥ ≤ Cjβ, j = 1, . . . , k;

(ii) Near commutativity with H(s):

‖[H(s), Q(s)]‖ ≤ Ce−c
√
`; (4.30)

(iii) Almost projection: ∥∥Q̄(s)Q(s)
∥∥ ≤ Ce−c√`; (4.31)

(iv) Spectrally thin but with non trivial thickness: Let J+ = (E − 6δ, E + 6δ), and J− =
(E − δ, E + δ). Then∥∥P̄J+(s)Q(s)

∥∥ ≤ Ce−c√`, ∥∥Q̄(s)PJ−(s)
∥∥ ≤ Ce−c√`. (4.32)
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Proof. Lemma 4.8.(i): Note that for ` large enough, β � ∆. The assertion follows from the
integral representation (B.1) for PJγ (HTγ (s)) with E1,2 = Eγ±, the formula (B.2), (4.2), and the
Leibniz rule.

Lemma 4.8.(ii): We compute

[H(s), Qγ(s)] =
[
HTγ (s), Qγ(s)

]
=
[
HTγ (s), χT̂

]
PJγ (HTγ (s))χT̂ + χT̂ PJγ (HTγ (s))

[
HTγ (s), χT̂

]
,

and estimate both terms by Ce−c
√
` using Assumption 1.2 and Theorem 2.1.(ii).

Lemma 4.8.(iii): We note that for disjoint sets Ωγ ,

‖
∑
γ

χΩγAγχΩγ‖ ≤ max
γ
‖χΩγAγχΩγ‖. (4.33)

Since Tγ are disjoint, we have

∥∥Q̄(s)Q(s)
∥∥ =

∥∥∥∥∥∑
γ

χT̂ PJγ (HTγ (s))χ̄T̂ PJγ (HTγ (s))χT̂

∥∥∥∥∥ .
The right hand side is bounded by Ce−c

√
` using Theorem 2.1.(ii).

Lemma 4.8.(iv): We apply Lemma B.1 with H1 = H(s), H2 = HT (s), and R = χT̂ to bound∥∥P̄J+(s)χT̂ PJ(HT (s))
∥∥ ≤ Ce−c√`,

where we have used (2.4) and the fact that H(s) has range r. Since

Q(s) ≤ χT̂ PJ(HT (s))χT̂

by (2.2), we deduce that∥∥P̄J+(s)Q(s)
∥∥ ≤ ∥∥P̄J+(s)χT̂ PJ(HT (s))

∥∥ ≤ Ce−c√`.
On the other hand, letting J ′ = (E − 3δ, E + 3δ) and using Lemma B.1 with H1 = HT (s)

and H2 = H(s), we get ∥∥P̄J ′(HT (s))χT̂ PJ−(s)
∥∥ ≤ Ce−c√`

Since

Q̄(s) ≤ χΛ\T̂ + χT̂ P̄J ′(H
T (s))χT̂

by (2.2), we deduce that∥∥Q̄(s)PJ−(s)
∥∥ ≤ ∥∥∥χΛ\T̂ PJ−(s)

∥∥∥+
∥∥P̄J+(s)χT̂ PJ−(s)

∥∥ ≤ Ce−c√`
using (2.3) to bound the first term on the right hand side.

�

One disadvantage of working with Q is due to the fact that it is not a projection. We rectify
this problem in the next assertion.

Lemma 4.9. Let N ∈ N. Suppose that ` large enough, then there exists a smooth family of
projections Qs with the following properties:

(i)

max
s∈[0,1]

‖[Qs, H(s)]‖ ≤ C
(
ε+ e−c

√
`
)

(4.34)

and

max
s∈{0,1}

‖[Qs, H(s)]‖ ≤ CN εN+1∆−N + Ce−c
√
`; (4.35)
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(ii) Let J+ = (E − 6δ, E + 6δ), and J− = (E − δ, E + δ). Then

max
s∈[0,1]

(∥∥P̄J+(s)Qs
∥∥ ,∥∥Q̄sPJ−(s)

∥∥) ≤ C (ε∆−1 + e−c
√
`
)

(4.36)

and

max
s∈{0,1}

(∥∥P̄J+(s)Qs
∥∥ ,∥∥Q̄sPJ−(s)

∥∥) ≤ Ce−c√` (4.37)

(iii) Q
(k)
0 = Q

(k)
1 = 0 for all k ∈ Z+, and

max
s∈[0,1]

∥∥∥Q(k)
s

∥∥∥ ≤ Ckβ, k ∈ N;

(iv) ∥∥∥εQ̇s + i[H(s), Qs]
∥∥∥ ≤ CN εN+1∆−N + Ce−c

√
`; (4.38)

(v) If we denote by Qε(s) the solution of IVP iεQ̇ε(s) = [H(s), Qε(s)], Qε(0) = Q0, then
we have

max
s∈[0,1]

‖Qε(s)−Qs‖ ≤ CN εN∆−N + Ce−c
√
`. (4.39)

Proof. We set

QN (s) :=
∑
γ

Qγ,N (s), (4.40)

where was defined in (4.25), and first show the assertions of the lemma holds if we replace Qs
there with QN (s). Note that the latter operator is not a projection.

It follows from Lemma 4.3 and the hypothesis ε ≤ ∆ that

‖QN (s)−Q0(s)‖ = ‖QN (s)−Q(s)‖ ≤ CN ε∆−1. (4.41)

Hence, combining this bound with Lemma 4.8, we conclude that QN (s) satisfies the properties
4.9.(ii)–4.9.(iii).

We next observe that the property 4.9.(iv) holds for QN (s) by (4.27), Assumption 1.2, and
(4.33).

The property 4.9.(v) is established by replicating the argument employed in the proof of
Lemma 4.7.(i).

Finally, the property 4.9.(i) holds for QN (s) by the properties 4.9.(iii)–4.9.(iv) we already
established.

We now note that QN (0) = Q(0). Hence, defining Qε(t) := Uε(t, 0)Q(0)Uε(0, t), we get∥∥Qε(t)Q̄ε(t)∥∥ =
∥∥Q(0)Q̄(0)

∥∥ ≤ Ce−c√` by (4.31). Thus by the triangle inequality, we get∥∥QN (t)Q̄N (t)
∥∥ ≤ ∥∥QN (t)Q̄N (t)−Qε(t)Q̄ε(t)

∥∥+ Ce−c
√
`

≤
(∥∥Q̄N (t)

∥∥+ ‖Qε(t)‖
)
‖QN (t)−Qε(t)‖+ Ce−c

√
`

≤ CN εN∆−N + Ce−c
√
`,

where in the last step we have used properties 4.9.(iii) and 4.9.(v) for QN .
It follows that

max
s

dist (σ (QN (s)) , {0, 1}) ≤ CN εN∆−N + Ce−c
√
`.

If ε/∆ is small enough and ` large then the right hand side is smaller than 1/4. We set Qs to be
the spectral projection for QN (s) onto the interval [1

2 ,
3
2 ]. Then by the functional calculus for

self adjoint operators and triangle inequality, Lemma 4.9.(i), 4.9.(ii), and 4.9.(v) hold for this
operator. To establish Lemma 4.9.(iii) we use the following integral representation for Qs:

Qs = (2πi)−1
∮

Γ
(QN (s)− z)−1 dz, Γ = {z ∈ C : |z − 1| = 1/2} . (4.42)
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Since

∂s (QN (s)− z)−1 = − (QN (s)− z)−1 ∂sQN (s) (QN (s)− z)−1 ,

and
∥∥∥(QN (s)− z)−1

∥∥∥ is uniformly bounded for z ∈ Γ, (4.9.(iii)) follows by the Leibniz rule and

the bounds on Q
(k)
N (s).

Lemma 4.9.(iv):

Q̇s = − (2πi)−1
∮

Γ
(QN (s)− z)−1 Q̇N (s) (QN (s)− z)−1 dz

= −i (2πi)−1
∮

Γ
(QN (s)− z)−1 [H(s), QN (s)] (QN (s)− z)−1 dz

− (2πi)−1
∮

Γ
(QN (s)− z)−1

(
Q̇N (s)− i[H(s), QN (s)]

)
(QN (s)− z)−1 dz,

and the statement follows from the properties 4.9.(iv) and 4.9.(i) that we already proved for
QN (s).

For s ∈ {0, 1}, we have QN (s) = Q(s), (4.35) and (4.37) follow from Lemma 4.8.
�

4.6. Adiabatic behavior of distorted Fermi projection. Here we prove Theorem 2.2. The
idea behind it is that since the projection Qs evolves adiabatically, it effectively induces a gap
on its spectral support and decouples the energies separated by this induced gap.

Let H̄(s) = Q̄sH(s)Q̄s. By Lemma 4.9, Q̄s is close to a spectral projection of H(s) and so
the spectrum of H̄(s) is approximately a subset of the original spectrum and the point 0. To
avoid discussing the position of 0 with respect to E, we assume without loss of generality that
E < 0. We will need a pair of preparatory results.

Lemma 4.10. Let I = (E−δ/2, E+δ/2). Suppose that ` large enough, then we have σ(H̄(s))∩
I = ∅ for s ∈ [0, 1]. In addition, we have

max
s∈[0,1]

∥∥∥H̄(s)(k)
∥∥∥ ≤ Ck for k = 1, . . . , N. (4.43)

Proof. For ` large enough, 0 /∈ I. Hence it is enough to show the claim when H̄(s) is understood

as an operator on the range of Q̄s. Let w ∈ I, we will show that
(
H̄(s)− w

)2
> 0 from which

the assertion follows. To this end, we suppress the s dependence and note that(
H̄ − w

)2
= Q̄ (H − w) Q̄ (H − w) Q̄ = Q̄ (H − w)2 Q̄− Q̄HQHQ̄

≥ Q̄P̄J− (H − w)2 Q̄+ Q̄[H,Q][H,Q]Q̄,

while we can bound

Q̄P̄J− (H − w)2 Q̄ ≥ δ2

4
Q̄P̄J−Q̄ =

δ2

4
Q̄− δ2

4
Q̄PJ−Q̄ ≥

δ2

4
Q̄− δ2

4

(
CN ε+ C exp

(
−c
√
`
))2

Q̄,

using Lemma 4.9 4.9.(ii), and

Q̄[H,Q][H,Q]Q̄ ≤
∥∥[H, Q̄]

∥∥2
Q̄ ≤

(
CN ε+ C exp

(
−c
√
`
))2

Q̄

using Lemma 4.9 4.9.(i). Hence(
H̄ − w

)2 ≥ (δ2/4− 2
(
CN ε+ C exp

(
−c
√
`
))2

)
Q̄ > 0

on Range Q̄.
The bound (4.43) follows from Lemma 4.9.(iii), Assumption 1.2, and the Leibniz rule. �
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Lemma 4.11. Let T (s, s′) be the unitary semigroup generated by i[Q̇s, Qs], i.e., T (s, s′) is the
solution of the IVP

i∂sT (s, s′) = i[Q̇s, Qs]T (s, s′), T (s′, s′) = 1. (4.44)

Then T (s, s′) satisfies

T (s, s′)Qs′ = QsT (s, s′). (4.45)

Suppose in addition that ε/∆ is small enough and ` large enough. Then

max
s

∥∥∥T (k)(s, 0)
∥∥∥ ≤ Ckβ for k = 1, . . . , N. (4.46)

Proof. The interweaving relation (4.45) follows from observing that

d

ds

(
T (s′, s)QsT (s, s′)

)
= T (s′, s)

[
Qs, [Q̇s, Qs]

]
T (s, s′) + T (s′, s)Q̇sT (s, s′) = 0,

and T (s′, s′)Qs′T (s′, s′) = Qs′ .
The bound (4.46) follows from Lemma 4.9.(iii), the unitarity of T , and the Leibniz rule. �

We now consider the evolution Uε(s, s
′) generated by the equation

iε∂sUε(s, s
′) = H(s)Uε(s, s

′), Uε(s
′, s′) = 1.

Let Q+
s (Q−s ) be the spectral projection of H̄s associated with the interval (E,∞) (respectively

(−∞, E)).

Lemma 4.12. Suppose that ` is large enough. Then we have

max
s

∥∥Q+
1 Uε(s, 0)Q−0

∥∥ ≤ C (ε∆−1 + e−c
√
`
)

(4.47)

and ∥∥Q+
1 Uε(1, 0)Q−0

∥∥ ≤ CN (εN∆−N + εNδ−2N−1
)

+ Ce−c
√
`. (4.48)

Proof. We first note that Lemma 4.9 implies that∥∥QsUε(s, s′)Q̄s′∥∥ ≤ CN εN∆−N + Ce−c
√
`. (4.49)

Indeed, using the semigroup property for Uε,

QsUε(s, s
′)Q̄s′ = Qs(Qs −Qε(s))Uε(s, s′)−QsUε(s, s′)(Qs′ −Qε(s′)),

and both terms on the right hand side can be now bounded using Lemma 4.9.(v).
Let Vε(s) = Q̄sUε(s, 0)Q̄0. Then a straightforward computation yields

iε∂sVε(s) = −iεQ̇sUε(s, 0)Q̄0 + Q̄sH(s)Uε(s, 0)Q̄0

= iε[Q̇s, Qs]Vε(s) + H̄(s)Vε(s) +Rε(s),

where

Rε(s) = −iεQ̇sQsUε(s, 0)Q̄0 + Q̄sH(s)QsUε(s, 0)Q̄0.

We note that

‖Rε(s)‖ ≤
(
ε
∥∥∥Q̇s∥∥∥+ ‖[H(s), Qs]‖

)∥∥QsUε(s, 0)Q̄0

∥∥ ≤ CN εεN∆−N + Ce−c
√
`, (4.50)

by Lemma 4.9 and (4.49).
Let Wε(s) = T (0, s)Vε(s), where T was defined in (4.44). Then

iε∂sWε(s) = T (0, s)H̄(s)T (s, 0)Wε(s) + T (0, s)Rε(s).

By Lemma 4.10, the operator H̄(s) has a gap, δ, in its spectrum that separates the associ-
ated spectral projections Q±s . This implies that T (0, s)H̄(s)T (s, 0) has the same gap with the
associated projections given by Q±s := T (0, s)Q±s T (s, 0). We can bound∥∥∥(T (0, s)H̄(s)T (s, 0)

)(k)
∥∥∥ ≤ Ckβ for k = 1, . . . , N,

using (4.43), (4.46), and the Leibniz rule.
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Let W̃ε(s) denote the evolution generated by T (0, s)H̄sT (s, 0):

iε∂sW̃ε(s) = T (0, s)H̄(s)T (s, 0)W̃ε(s), W̃ε(0) = 1. (4.51)

Then it follows from our previous analysis and the Leibniz rule that T (0, s)H̄(s)T (s, 0) satisfies
Assumption 4.1 and the gapped adiabatic theorem to all orders, Lemma 4.5, is applicable.
Hence

max
s

∥∥∥Q+
1 W̃ε(s)Q−0

∥∥∥ ≤ Cεδ−1,
∥∥∥Q+

1 W̃ε(1)Q−0
∥∥∥ ≤ CN εNδ−N . (4.52)

We now observe that

Wε(s) = W̃ε(s) + iε−1Wε(s)

∫ s

0
W ∗ε (s′)T (0, s′)Rε(s

′)W̃ε(s
′)ds′,

so ∥∥∥Wε(s)− W̃ε(s)
∥∥∥ ≤ ε−1 max

s′≤s

∥∥Rε(s′)∥∥ ≤ CN εN∆−N + Ce−c
√
`, (4.53)

using (4.50). We conclude that∥∥Q+
1 Vε(s)Q

−
0

∥∥ =
∥∥Q+

1 T (s, 0)Wε(s)Q
−
0

∥∥ =
∥∥Q+

1 Wε(s)Q−0
∥∥

≤

{
CN ε

N∆−N + C
(
εδ−1 + e−c

√
`
)

uniformly in s;

CN
(
εN∆−N + εNδ−N

)
+ Ce−c

√
` if s = 1.

As Vε(s) = Q̄sUε(s, 0)Q̄0, and Q̄0Q
−
0 = Q−0 , it follows that∥∥Q+

1 Uε(s, 0)Q−0
∥∥ ≤ ∥∥Q+

1 Vε(s)Q
−
0

∥∥+
∥∥Q1Uε(s, 0)Q̄0

∥∥
≤

{
CN ε

N∆−N + C
(
εδ−1 + e−c

√
`
)

uniformly in s;

CN
(
εN∆−N + εNδ−N

)
+ Ce−c

√
` if s = 1,

where in the last step we have used (4.49). �

Let P−(s) be the spectral projection of H(s) on the interval (−∞, E− 6δ) and P+(s) be the
spectral projection on the interval (E + 6δ,∞).

We are now ready to complete the proof.

Proof of Theorem 2.2. We pick Q(s) = Q−s .
Theorem 2.2.(i): Using the integral representation (B.1),

Q−s = (2πi)−1
∮

Γ

(
H̄(s)− z

)−1
dz,

we get

[Q(s), H(s)] = (2πi)−1
∮

Γ

(
H̄(s)− z

)−1
[H(s), H̄(s])

(
H̄(s)− z

)−1
dz,

and we can bound
‖[Q(s), H(s)]‖ ≤ Cδ−1

∥∥[H(s), H̄(s)]
∥∥ .

But
[H(s), H̄(s)] = [H(s), Q̄sH(s)Q̄s] = [H(s), Q̄s]H(s)Q̄s + h.c.,

which yields ∥∥[H(s), H̄(s)]
∥∥ ≤ CN ε+ Ce−c

√
`.

by Lemma 4.9. Hence

‖[Q(s), H(s)]‖ ≤ CN εδ−1 + Ce−c
√
`,

and 2.2.(i) follows.
Theorem 2.2.(ii): Using (4.36) and Q−s Q̄s = Q−s , we deduce that∥∥(H(s)− H̄(s)

)
P<E−6δ(H(s))

∥∥+
∥∥(H(s)− H̄(s)

)
Q(s)

∥∥ ≤ CN ε∆−1 + Ce−c
√
`.
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Hence we can use Lemma B.1 with H1 = H̄(s), H2 = H(s), and R = P<E−6δ(H(s)) first to get∥∥Q̄(s)P<E−6δ(H(s))
∥∥ ≤ CN ε∆−1 + Ce−c

√
`,

and then use the same lemma with H1 = H(s), H2 = H̄(s), and R = Q(s) to get

‖P>E+6δ(H(s))Q(s)‖ ≤ CN ε∆−1 + Ce−c
√
`.

Theorem 2.2.(iii): This part follows directly from Lemma 4.12 and the ± symmetry in the
argument there, as

‖Qε(s)−Q(s)‖ =
∥∥Uε(s, 0)Q−0 Uε(0, s)−Q

−
1

∥∥ ≤ ∥∥Q+
1 Uε(1, 0)Q−0

∥∥+
∥∥Q−1 Uε(1, 0)Q+

0

∥∥ .
�

5. Localization on a torus

5.1. Consequences of Assumptions 1.2–1.4. We first note that Assumptions 1.2–1.4 imply
localization on torus, as well (e.g., [AW, Theorem 11.2]):

sup
E∈Jloc

E
(∣∣(HT − E − i0)−1(x, y)

∣∣q) ≤ Ce−µd(x,y) for all x, y ∈ T, (5.1)

see Section 2 for notation.
Another consequence of these hypotheses is

Lemma 5.1 (The Wegner estimate). Let Θ ⊂ T. For all E ∈ Jloc,

P
{

dist
{
E, σ(HΘ)

}
≤ ν

}
≤ Cνq |Θ| . (5.2)

For the proof, see e.g., [ETV, Eq.(24)].
Together with Assumption 1.3, Lemma 5.1 yields

Lemma 5.2 (Distance between spectra). Let Θ,Φ ⊂ T be such that dist (Θ,Φ) > r. Then

P
{

dist
(
σ(HΘ) ∩ Jloc, σ(HΦ) ∩ Jloc

)
≤ ν

}
≤ Cνq |Θ| |Φ| . (5.3)

Moreover, if a collection {Θi}ni=1 of subsets in T satisfies dist (Θi,Θj) > r for i 6= j, |Θi| ≤ D
for all i, and E ∈ R, then

P
{

dist
(
E, σ(HΘi)

)
≤ ν for all i

}
≤ (CνqD)n . (5.4)

A more subtle implication of our assumptions is the fact that the associated eigenfunction
correlator Q(x, y; Jloc), defined by

Q(x, y; Jloc) =
∑

λ∈σ(HΘ)∩Jloc

∣∣P{λ}(x, y)
∣∣ (5.5)

satisfies

EQ(x, y; Jloc) ≤ Ce−c|x−y|Θ (5.6)

for some c > 0 that depends only on µ and q. For the non correlated randomness this assertion
is known to hold with c = µ, see, e.g. [AW, Theorem 7.7] (the proof relies on the so called
spectral averaging procedure available in this case). For a more general class of correlated
random models, this consequence of Assumption 1.4 was derived in [ESS, Theorem 4.2], with
c = qµ

9 .
This statement implies that all eigenstates in PJloc(H) are localized with large probability.

We make this statement quantitative.

Definition 5.3. Let c > 0. We say that a set Θ ⊂ T is (c, `)-localizing for H in the interval
I ⊂ Jloc if for all eigenpairs (En, ψn)En∈I of HΘ there exists a set {xn} in Θ such that

|ψn(y)| ≤ Ce−c|y−xn|Θ for any y ∈ Θ such that |y − xn|Θ ≥
√
`. (5.7)

Then we have the following result:
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Theorem 5.4. Suppose that Assumption 1.4 holds. Then there exist c > 0 such that the

probability that a set Θ ⊂ T is (c, `)-localizing for H in the interval Jloc is ≥ 1− C|Θ|2e−c
√
`.

For the proof, see e.g., [AW, Theorem 7.4].
We recall that PE (resp. PT

E) are spectral projections below energy E for H (resp. HT). The
next assertion implies that deep inside T, PE and PT

E are close.

Proposition 5.5. Let L, and T be as above. Then there exists µ̄ > 0 such that the probability

P
(∥∥∥(PE − PT

E

)
χΛL/2(0)

∥∥∥ > e−µ̄L
)
≤ e−µ̄L. (5.8)

For the proof, see [EPS, Lemma 4.11]. The argument is closely related to the one used in the
proof of the following result, that establishes localization property of some bounded functions
of H in the mobility gap.

Lemma 5.6. For any I := [E1, E2] ⊂ Jloc and any Θ ⊂ T,

E
∣∣(P](HΘ)

)
(x, y)

∣∣ ≤ Ce−µ|x−y|Θ , ] = I, E, (5.9)

for all x, y ∈ Θ. Moreover, for any z ∈ C with Re(z) ∈ I/2, we have

E
∣∣∣(P̄I(HΘ)

(
HΘ − z

)−1
)

(x, y)
∣∣∣ ≤ C

E2 − E1

e−µ|x−y|Θ

〈Imz〉
(5.10)

for all x, y ∈ Θ.

Proof. Let ] = I. Since Θ is finite, the spectrum of HΘ is a discrete set. By (1.9), {E1,2} 6⊂
σ
(
HΘ
)

almost surely. Thus the spectral projection PI(H
Θ) is equal to

PI(H
Θ) =

1

2π

∫ ∞
−∞

2∑
j=1

(−1)j
(
HΘ − iu− Ej

)−1
du (5.11)

almost surely, see (B.1). Using |
(
HΘ − iu− Ej

)−1
(x, y)| ≤ |u|−1, we get a bound∣∣(PI(HΘ)

)
(x, y)

∣∣ ≤ max
j

1

π

∫ ∞
−∞

∣∣∣(HΘ − iu− Ej
)−1

(x, y)
∣∣∣q 1

|u|1−q
du.

For |u| ≥ 1, we use a decomposition(
HΘ − iu− Ej

)−1
= − (iu+ Ej)

−1 + (iu+ Ej)
−1HΘ

(
HΘ − iu− Ej

)−1
,

the range-r property for H, and |H(x, y)| ≤ C to estimate

E
∣∣(PI(HΘ)

)
(x, y)

∣∣ ≤ 1

π
sup
u∈R

max
j

(
E
∣∣∣(HΘ − iu− Ej

)−1
(x, y)

∣∣∣q ∫
[−1,1]

du

|u|1−q

+ C max
z∈Zd:
|z−x|≤r

E
∣∣∣(HΘ − iu− Ej

)−1
(z, y)

∣∣∣q ∫
[−1,1]c

du

|u|2−q
)

≤ Ce−µ|x−y|Θ .

The argument for ] = E is nearly identical.
To get the second assertion of the lemma, we use(

HΘ − z
)−1

= − (iIm(z) + 1)−1 + (iIm(z) + 1)−1 (HΘ −Re(z)− 1
) (
HΘ − z

)−1
,

and

P̄I(H
Θ)
(
HΘ − z

)−1
= (2π)−1

2∑
j=1

∫ ∞
−∞

(z − Ej − iu)−1 (HΘ − iu− Ej
)−1

du.
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It yields

P̄I(H
Θ)
(
HΘ − z

)−1
= − (iIm(z) + 1)−1 P̄I(H

Θ)+

(2π)−1
2∑
j=1

(iIm(z) + 1)−1 (HΘ −Re(z)− 1
) ∫ ∞
−∞

(z − Ej − iu)−1 (HΘ − iu− Ej
)−1

du.

Since P̄I = 1 − PI , |iIm(z) + 1| = 〈Imz〉, and
∣∣∣ 1
z−Ej−iu

∣∣∣ ≤ 4
E2−E1

for any Re(z) ∈ I/2 and

u ∈ R, the remaining argument is identical to the one used in the proof of the first bound. �

We will be using the probabilistic version of Lemma 5.6 that follows from the previous
statement by the Markov’s inequality.

Lemma 5.7. Let J := [E1, E2] ⊂ Jloc. Then there exist c > 0 such that for any Θ ⊂ T, the

probability that for all x, y with |x− y|Θ ≥
√
`,∣∣(PJ(HΘ)

)
(x, y)

∣∣ , ∣∣∣(P̄J(HΘ)
(
HΘ − z

)−1
)

(x, y)
∣∣∣ ≤ Ce−c|x−y|Θ (5.12)

is ≥ 1− Ce−c
√
`.

5.2. Local Structure of HT. Given scales ` < L with L mod
(

3
2`
)

= `, and ` even, we cover

the torus T = T d
L by the collection of boxes Λ` of the form{

Λ`(a)/LZd
}
a∈Ξ`

, (5.13)

where
Ξ` :=

(
3
2`Z
)d
/LZd. (5.14)

We call the collection of boxes a suitable l-cover of T .
The (trivial) properties of suitable covers are encapsulated by the following lemma. We recall

that we use a max distance.

Lemma 5.8. Let r < ` < L. Then a suitable `-cover satisfies

(i) T =
⋃
a∈Ξ`

Λ`(a);

(ii) for all y ∈ T there is a = a(y) ∈ Ξ` such that Λ`/4(y)/LZd ⊂ Λ`(a)/LZd. For such a,

we will denote Λ
(y)
` := Λ`(a);

(iii) Λ`/4(a) ∩ Λ`(a
′) = ∅ for all a, a′ ∈

(
3
2`Z
)d
, a 6= a′mod L;

(iv)
(L
`

)d ≤ |Ξ`| ≤ (2L
`

)d
.

Furthermore, any box Λ`(a) with a ∈ Ξ` overlaps with no more than 2d other boxes in the
`-cover, and any non overlapping boxes are separated by a distance > r.

Let ` < L and let S be a subset of a suitable `-cover such that boxes {Λ`(a)}S are separated
by a distance r. Fix E ∈ Jloc, then, by Lemma 5.2, for all ν > 0 we have

P
{

dist
(
E, σ(HΛ`(a))

)
≤ ν for all Λ`(a) ∈ S

}
≤
(
Cνq`d

)|S|
. (5.15)

We now inspect the structure of PI(H
T). We will work with the scale ` and the interval

I ⊂ Jloc such that

ec
√
` = L � `� 1, |I| = c`

− d
q . (5.16)

for an `–independent constant c. We remind the reader that we are using a convention that
c denotes a sufficiently small constant and C a sufficiently large constant. The value of these
constants can change equation by equation.

We endow the set Ξ` with the usual graph structure, i.e., we will think of its elements as
vertices and introduce the edges 〈a, b〉 between the neighboring elements a, b ∈ Ξ`, separated
by a distance 3

2` on the torus T . By RM we will denote a set of all connected subgraphs of Ξ`
with cardinality M , and by SM we will denote a collection of sets {∪a∈RΛ`(a) : R ∈ RM}.

22



Lemma 5.9. The cardinality of RM is bounded by

(2de)M |Ξ`| ≤
(

2L
`

)d
(2de)M . (5.17)

Proof of Lemma 5.9. We first note that each set S in SM looks like a compressed d-dimensional
polycube of size M , and we can bound the number of distinct SM ’s using the same method as
the one used for the latter, see e.g., [BBR]. To make the arguments self-contained, we reproduce
it here.

A d-dimensional polycube of size n is a connected set of n cubical cells on the lattice Zd,
where connectivity is through (d − 1) faces. Two fixed polycubes are equivalent if one can be
transformed into the other by a translation.

Given S, assign the numbers 1, . . . ,M to the cubes of S in lexicographic order. Now search
the cube-connectivity graph G of S, starting from cube 1. During the search, any cube c ∈ S is
reached through an edge e and connected by edges of G to at most 2d − 1 other cubes. Label
such an outgoing edge e′ with a pair (i, j): i is the number associated with c, and 1 ≤ j ≤ 2d−1
identifies the orientation of e′ with respect to e. By the end of the search, each of the M − 1
edges of the resulting spanning tree is given a unique label from a set of (2d − 1)M possible
labels. This is an injection from polycubes of size M to M − 1-element subsets of a set of size
(2d− 1)M , and so a number of distinct shapes for S’s is bounded by(

(2d− 1)M

M − 1

)
≤ (2de)M . (5.18)

The total number of sets S can be now bounded by noticing that they are contained in a set
of all translates of the distinct shapes of S by elements of Ξ`, yielding (5.17).

�

For any given configuration ω, let T̃ denote the union of boxes Λ`(a) with a ∈ Ξ` such that
the Dirichlet restriction of Hω to each box Λ`(a) has at least one eigenvalue in the interval 2I.

Let T denote the union of boxes Λ`(b) with b ∈ Ξ` that has a non trivial overlap with T̃ . We
will enumerate by {Tγ} a set of connected components in T , i.e.,

T = ∪γTγ , Tγ ∩ Tγ′ = ∅, Tγ ∈ SM for some M ∈ N.

For a given T , we will denote by M(T ) the maximum

M(T ) = max
γ

M : Tγ ∈ SM .

For an integer N , let ΩN denote a subset of the full configuration space for which

M(T ) < N.

Lemma 5.10. For ` > r and I ⊂ Jloc with |I|q < c`−d. Then for c small enough we have

P(Ωc
N ) ≤

(
2L
`

)d
e−N . (5.19)

Proof. For any ω ∈ Ωc
N there exists at least one cluster Tγ ∈ SM with M ≥ N . Let T̃γ ∈ SMγ

denote the union of boxes that generates Tγ , i.e., T̃γ ⊂ T̃ and Tγ is formed by all boxes that

overlap with a box in T̃γ . Note that any box Λl(a) ⊂ T̃γ overlaps with 3d boxes. Including each

box and all its neighbors, the boxes generate 3dMγ boxes. Let U be a collection of vectors in Rd

whose components are either zero or unit. Then Ξ` = ∪e∈UΞ`,e where Ξ`,e = 3
2e+ (3`Z)d /LZd.

Then Ξ`,e ∩ Ξ`,e′ = ∅ for e 6= e′ and

Λ`(a) ∩ Λ`(a
′) = ∅ for all a ∈ Ξ`,e, a ∈ Ξ`,e′ , (5.20)

using the fact that ` is even. Hence for any S ⊂ Ξ`, there exists e ∈ U such that |S ∩ Ξ`,e| ≥
2−d |S|. In particular, the number of non overlapping boxes in T̃γ is at least 6−dM thanks to
(5.20).
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We are now in position to apply (5.15) to conclude that the probability that a fixed config-

uration T has at least one cluster Tγ ∈ SM with M ≥ N is bounded by
(
C |I|q `d

)6−dM
. It

follows now from Lemma 5.9 that

P(Ωc
N ) ≤

∞∑
M=N

(
2L
`

)d (
(2de)(6d)C |I|q `d

)6−dM
. (5.21)

This is less than equal to
(

2L
`

)d
e−N provided c is small enough.

�

For an integer N , we now consider a subset Ωloc,N of the full configuration space for which T
and all sets in {SM}NM=1 are `/10-localizing and satisfy (5.12).

Lemma 5.11. There exists constants C, c such that

P(Ωc
loc,N ) ≤ CN2 (2L`)d (2de)N e−c

√
`. (5.22)

Proof. The total number of {SM}NM=1 is bounded by

N∑
M=1

(
2L
`

)d
(2de)M < 2

(
2L
`

)d
(2de)N

thanks to Lemma 5.9. Their maximal volume is bounded by N`d. So we can bound

P(Ωc
loc,N ) ≤ C

(
2L
`

)d
(2de)N

(
N`d

)2
e−c
√
` = CN2 (2L`)d (2de)N e−c

√
`, (5.23)

using Theorem 5.4 and Lemma 5.7. �

We now optimize N in the previous two lemmas. To this end, we pick N = bc
√
`c. Then,

using Lemmata 5.10–5.11, for ` large enough and intervals I ⊂ Jloc satisfying |I| < C`−d/q, we
have

P((ΩN ∩ Ωloc,N )c) ≤ Lde−c
√
`. (5.24)

For ω ∈ ΩN ∩Ωloc,N , the number of eigenvalues of HTγ cannot exceed |Tγ | ≤ N`d ≤ C`d+1/2.
Hence, for each γ, we can find Jγ := [E−γ , E

+
γ ] such that

I/2 ⊂ Jγ ⊂ I and dist(E±γ , σ(HTγ )) ≥ c`−d−1/2 |I| .

We note that

max
γ

diam (Tγ) ≤ L := C`3/2. (5.25)

Let ΩG be a subset of configuration set ΩN ∩ Ωloc,N such that, for c small enough,

sup
Tγ

∣∣∣((HTγ − z)−1
)

(x, y)
∣∣∣ ec`−1/2 |x−y|Tγ ≤ C`d+ 1

2 |I|−1 〈Imz〉−1 (5.26)

for ω ∈ ΩG, z ∈ C with Re(z) = E±γ and all x, y ∈ Tγ .

Applying Lemma 5.7 with J = E±γ +[−c`−d−1/2 |I| , c`−d−1/2 |I|], and z ∈ C with Re(z) = E±γ
yields

P (Ωc
G) ≤ Lde−c

√
`.

Proposition 5.12. Let ω ∈ ΩG, and let I ⊂ Jloc be such that |I| < c`−d/q. Suppose that ` is
large enough, then

(i) (Local Gap) There exists intervals Jγ = [E−γ , E
+
γ ] such that

I/2 ⊂ Jγ ⊂ I and dist
(
E±γ , σ(HTγ )

)
≥ c`−d−1/2 |I| ; (5.27)
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(ii) (Support of spectral projections)∥∥PJ(HT)δx
∥∥ ≤ e−c√` for any x ∈ T \ T`, (5.28)

and ∥∥PJγ (HTγ )δx
∥∥ ≤ e−c√` for any x /∈ ∂`/8T ∪ T`; (5.29)

(iii) (Exponential Decay of Correlations) Let Ao = ∂`Tγ ∪ (Tγ)8`, then (with A = Ao in
(1.18)–(1.20)) we have∥∥∥(HTγ (s))− z

)−1
∥∥∥
c,`
≤ `3d

∆

1

〈Imz〉
, (5.30)

for z ∈ C with Re(z) = E±γ .

Proof. The property 5.12.(i) we already established earlier and 5.12.(iii) is a consequence of
(5.26). This leaves us with the property 5.12.(ii).

Let {λn, ψn} be an eigenpair for HT in I, and let xn be its localization center. We first check

that xn ∈ T̃ . Indeed, suppose that xn /∈ T̃ . Then by the properties of the suitable cover, there
exists a box Λ`(a) /∈ T̃ such that Λ`/4(xn) ⊂ Λ \ T̃ and Λ`/4(xn) ⊂ Λ`(a). Since

|ψn(y)| ≤ Ce−µ|y−xn|Λ`(a) for |y − xn|Λ`(a) ≥
√
`/10,

by localization of ψn, we can use Lemma B.2 below to conclude

σ
(
HΛ`(a)

)
∩ 2I 6= ∅, (5.31)

which means that Λ`(a) ∈ T̃ , a contradiction. This shows (5.28).
Let {µn, φn} be an eigenpair for HT in I. By the argument identical to the one for Item (ii),

its localization center yn is either located in T̃ or in ∂C
√
`T ⊂ ∂`/8T . This shows that

‖PJγ (HTγ )− χ∂`/8T PJγ (HTγ )χ∂`/8T − χT`PJγ (HTγ )χT`‖ ≤ e
−c
√
`, (5.32)

and, in particular, shows (5.29). In fact it shows more, namely that (recall notation in Theo-
rem 2.1.(iii)) ∥∥PJγ (HTγ (s))δx

∥∥ ≤ e−c√` for any x /∈ Ao. (5.33)

�

This completes the proof that HT possesses a local structure. Using perturbation theory
methods we are now going to show that HT(s) possesses a local structure as well.

5.3. Proof of Theorem 2.1. We denote by ∆ = c`−d/q−d−1/2 the lower bound on the gap of
HTγ that we established in the previous section, i.e. dist

(
E±γ , σ(HTγ )

)
≥ ∆. Let a ∈ R be such

that H
Tγ
a (s) := HTγ (s) + aP[E−γ ,E

+
γ ]

(
HTγ (s)

)
satisfy

σ
(
H
Tγ
a (s)

)
∩
([
−∆

3 ,
∆
3

]
+ [E−γ , E

+
γ ]
)

= ∅, (5.34)

provided β < ∆
6 (e.g., a = ∆ + E+

γ − E−γ will do).
For the next assertion, we recall the definition of a dilation and its norm, introduced in

(1.18)–(1.20).

Lemma 5.13. There exists c > 0 such that for β < c∆`−d and any z ∈ C with Re(z) = E±γ ,
we have ∥∥∥(HTγ (s)− z

)−1
∥∥∥
c,`

+

∥∥∥∥(HTγa (s)− z
)−1

∥∥∥∥
c,`

≤ C`3d∆−1〈Imz〉−1
, (5.35)

where ‖·‖c,` is defined with A = Ao.
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Proof. If we denote by Roz,a and Rz,a the resolvents

Roz,a =
(
H
Tγ
a (0)− z

)−1
, Rz,a =

(
H
Tγ
a (s)− z

)−1
, (5.36)

we have ∥∥Roz,0∥∥c,` ≤ C`3d∆−1〈Imz〉−1
(5.37)

by (5.25)–(5.26).
Using (5.33), we deduce that∥∥∥ec ρ

`
A P[E−γ ,E

+
γ ]

(
HTγ (s)

)∥∥∥ ≤ C`d. (5.38)

Since

Roz,a = Roz,0 − aP[E−γ ,E
+
γ ]

(
H
Tγ
o

)
Roz,0R

a
z,aP[E−γ ,E

+
γ ]

(
H
Tγ
o

)
, (5.39)

we obtain, using (5.37)–(5.39) and∥∥∥P[E−γ ,E
+
γ ]

(
H
Tγ
o

)
Roz,0R

a
z,aP[E−γ ,E

+
γ ]

(
H
Tγ
o

)∥∥∥ ≤ C〈Imz〉−2,

that ∥∥Roz,a∥∥c,` ≤ C`3d∆−1〈Imz〉−1

as well.
We now expand Rz,a into the Neumann series

Rz,a = Roz,a

∞∑
n=0

βn
(
WRoz,a

)n
,

yielding, via (1.21),

‖Rz,a‖c,` ≤
∥∥Roz,a∥∥c,` ∞∑

n=0

βn
∥∥WRoz,a

∥∥n
c,`

≤ C`3d∆−1〈Imz〉−1
∞∑
n=0

(
βC`d

)n
∆−n ≤ C`3d∆−1〈Imz〉−1

,

provided β ≤ c∆`−d. �

We are now ready to complete the proof. It will be convenient to relabel ` everywhere in
the formulation of Theorem 2.1 by 8` (this does not affect any of its implications). We first
note that (5.30) is a direct consequence of Lemma 5.13. We recall Jγ = [E−γ , E

+
γ ] and we set

Ĵγ =
[
−∆

8 ,
∆
8

]
+ [E−γ , E

+
γ ]. We will abbreviate Pγ := PJγ

(
HTγ (s)

)
, P̂γ := PĴγ

(
HTγ (s)

)
and

suppress the s dependence for this argument. We use the decomposion (5.11) with E1 = E−γ
and E2 = E+

γ to write (recall (5.36))

Pγ = PγP̂γ = (2π)−1
∫ ∞
−∞

2∑
j=1

(−1)jRiu+Ej ,0P̂γdu. (5.40)

We note that the integrand can be bounded by

max
j=1,2

∥∥∥Riu+Ej ,0P̂γ

∥∥∥ ≤ 8∆−1〈u〉−1, u ∈ R. (5.41)

Using

Riu+Ej ,0 = Riu+Ej ,a −Riu+Ej ,aPJγ (H
Tγ
o )Riu+Ej ,0

and ∫ ∞
−∞

2∑
j=1

(−1)jRiu+Ej ,adu = 0
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which holds thanks to (5.34), we conclude that Pγ is equal to

− (2π)−1
2∑
j=1

(−1)j
∫ ∞
−∞

Riu+Ej ,aPJγ (H
Tγ
o )Riu+Ej ,0P̂γdu. (5.42)

Hence we can bound∥∥∥e
c√
`
ρAPγ

∥∥∥ ≤ ∫ ∞
−∞

max
j

(∥∥Riu+Ej ,a

∥∥
c,`

)∥∥∥e
c√
`
ρAPJγ (H

Tγ
o )
∥∥∥∥∥∥Riu+Ej ,0P̂γ

∥∥∥
≤ C`4d∆−2

∫ ∞
−∞
〈u〉−2du ≤ C`4d∆−2, (5.43)

where we have used Lemma 5.13, (5.38), and (7.2) in the second step.
For β � ∆, Ej does not belong to the spectrum of HTγ and we have

Pγ =

∫ ∞
−∞

2∑
j=1

(−1)jRiu+Ej ,0 du.

By perturbation expansion for the resolvent we then have

Pγ = PJγ (H
Tγ
o ) +

∫ ∞
−∞

2∑
j=1

∞∑
n=1

βnR0
−iu+Ej (WR0

−iu+Ej )
n.

Using the exponential decay of correlations of the resolvent (5.26), we have

‖χ∂`/8T R
0
−iu+EjχT` | ≤ C〈u〉

−1 e−c
√
`.

This together with (5.32) then implies
∥∥∥χ∂`/8T P γI χT`∥∥∥ ≤ e−c

√
`. Combining it with (5.43), we

get (2.4).
The proof of (2.3) is essentially identical to the one above, and so is left out.

6. Uniformly localized eigenfunctions for H(s)

Let Hω be the infinite volume operator that satisfies Assumptions 1.2–1.4. The starting point
of our analysis here is

6.1. Non-uniform bound on localization.

Theorem 6.1 (Eigenfunction localization). There exists c > 0 such that for P-almost every ω
and Lebesgue a.e. β ∈ [0, 1], σ(Hω) is simple and for each E ∈ σ(Hω) there is a localization
center xE(ω, β) such that the normalized eigenfunction ψE(·, ω) satisfies, for all y ∈ Z

|ψE(y, ω)|2 ≤ A(ω)〈xE(ω)〉2e−c|y−xE(ω)|, (6.1)

with A(·) ∈ L1(Ω,P).

This statement is a consequence of [AW, Theorems 5.8, 7.4, and 12.11].
We now formulate the probabilistic version of this assertion. For this, we need a stronger

concept of localizing Hamiltonian than the one introduced earlier in Definition 5.3.

Definition 6.2. For ω ∈ Ω and a pair (c, θ) of positive parameters, we will say that Hω is
non-uniformly (c, θ)-localizing if for each E ∈ σ(Hω)

|ψE(y, ω)|2 ≤ 1

θ
〈xE(ω)〉2e−c|y−xE(ω)|. (6.2)

The quantifier ”non-uniformly” here refers to the presence of the factor 〈xE(ω)〉2 which prevents
the uniform estimates on ψE .

Then Theorem A.1 implies, via Markov’s inequality, that

P ({ω ∈ Ω : Hω is non-uniformly (c, θ)-localizing}) ≤ 1− Cθ (6.3)

for some C > 0.
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6.2. From non-uniform to uniform estimates. Our first goal in this section is to remove the
”non-uniform” part from the above statement, at a price of the small fraction of the eigenstates
for which the statement will fail to hold.

We first note that that the integrated density of states (IDOS) NJloc of Ho, associated with
the interval Jloc, defined as

NJloc = lim
R→∞

trχΛR(0)PJloc(Hω)

Rd
(6.4)

is almost surely non random, see e.g., [AW, Theorem 3.15 and Corollary 3.16]. Moreover, if
NJloc > 0, then the convergence to the mean in (6.4) is exponentially fast, so in particular

P

(
trχΛR(0)PJloc(Ho)

Rd
<
NJloc

2

)
≤ e−mR (6.5)

for some m > 0. This is a typical large deviations result, see e.g., [CL]. We will assume here
that NJloc > 0.

We now adjust the concept of localizing eigenvectors to make it uniform.

Definition 6.3. For ω ∈ Ω and a pair (c, θ) of positive parameters, we will say that a normalized
ψ ∈ `2(Zd) is (c, θ)-localized if there exists x ∈ Zd such that

|ψ(x)|2 ≥ |ln θ|−d−1 and |ψ(y)| ≤ |ln θ|
d+1

2

θ
e−c|y−x|, y ∈ Zd. (6.6)

Armed with this definition, we proceed in getting the uniform estimates, first for finite (albeit
arbitrary large) systems, and then for an infinite volume one.

Let HT
L denote the periodic restriction of Hω to the torus TL. The following assertion follows

from the judicious use of Markov’s inequality and the elementary deterministic Lemma 6.5
below.

Theorem 6.4. Suppose that Assumptions 1.2–1.4 hold and in addition σ(HT
L) ∩ Jloc is a.s.

simple and NJloc > 0. For a given configuration ω ∈ Ω, let PE denote the normalized counting
measure of eigenvalues of HT

L in the interval Jloc. Let G be the set

G :=
{
En ∈ σ(HT

L) ∩ Jloc : En is simple and ψn is (c, θ) -localized
}
.

Then there exist c, C > 0 such that for any L and θ sufficiently small we have a bound

P
(

PE (G) ≥ 1−
√
θ
)
≥ 1− C

√
θ. (6.7)

Proof. For an eigenpair (En, ψn), let

wn = w(ω, ψn) =
∑
x,y

|ψn(x)| |ψn(y)| ec|x−y|. (6.8)

We then have, by the bound (5.6) on the eigenvector correlator and NJloc > 0,

EωEE [wn] ≤ C.
Let a, b > 0, then by Markov’s inequality, we then have

Pω
(
EE [wn] ≤ θ−a

)
≥ 1− Cθa

Pick now an ω such that EE [wn] ≤ θ−a. Then another application of Markov’s inequality gives
that

PE(wn ≤ θ−b) ≥ 1− θb−a. (6.9)

For a normalized vector ψ ∈ `2 (TL), let

M(ψ) := max
x∈TL

|ψ(x)|2 =: |ψ(xo)|2 for some xo ∈ TL.

Clearly, we have M(ψn) ≤ wn for every n. Thus the assertion follows from (6.9) with a = 1
2 ,

b = 1, and
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Lemma 6.5. Suppose that the normalized vector ψ ∈ `2 (TL) satisfies

max
x,y∈TL

(
|ψ(x)| |ψ(y)| ec|x−y|

)
≤ 1

θ
. (6.10)

Then for any sufficiently small (but L-independent) θ we have M(ψ) ≥ |ln θ|−d−1 and, for the
corresponding xo,

|ψ(y)| ≤ |ln θ|
d+1

2

θ
e−c|y−xo|, y ∈ TL.

�

Proof of Lemma 6.5. The second bound is an immediate consequence of the first, so we only

need to show that M(ψ) ≥ |ln θ|−d−1. Let r = r(c, θ) > 0 be such that
∑

y∈Zd: |y|>r e−2c|y| ≤
θ2M2

2 . In particular, for a fixed c there exists C such that we can chose r = −C ln
(
θ2M2

)
for

θ sufficiently small. Then by (6.10) we can bound

1 =
∑
x∈TL

|ψ(x)|2 ≤ M(ψ)
∑
x∈TL:
|x−xo|≤r

1 +
∑
x∈TL:
|x−xo|>r

e−2c|x−xo|

M(ψ)2θ2
≤ M(ψ)(2r + 1)d +

1

2
. (6.11)

This implies that M(ψ) ≥ 1
2(2r+1)d

or, in view of what r is, M(ψ) ≥ u, where u is a unique

positive solution of

e−Cu
− 1
d = θ2u2.

Since u > |ln θ|−d−1 for θ sufficiently small, we get M(ψ) ≥ |ln θ|−d−1. �

We now extend Theorem 6.4 to the infinite volume setting. To this end, we will use

Theorem 6.6. Let xn denote the localization center for ψn, an eigenvector of Hω with energy
En (i.e., M(ψn) = |ψn(xn)|2). Let ARω be the event

ARω = {En ∈ σ(Hω) ∩ Jloc : xn ∈ ΛR(0)} .
Then

lim
R→∞

PRE
(
ARω
)

= 1 (6.12)

Pω-a.s., provided NJloc > 0 and (A.3) holds.

Proof. For the case Jloc = R, see [DJLS, Theorem 7.1]. The proof there can be readily adapted
to the present situation. �

This assertion allows us to give an analogue of the normalized counting measure of eigen-
values of HT

L in the interval Jloc for the infinite volume Hamiltonian Hω. Namely, for a given
configuration ω ∈ Ω, let PRE denote the normalized counting measure of eigenvalues of Hω in the
interval Jloc with xn ∈ ΛR(0). We then have, by the bound (5.6) on the eigenvector correlator
and NJloc > 0,

EωERE [wn] ≤ C,
see (6.8) for the definition of wn. Then the argument identical to the one used in the proof of
Theorem 6.4 yields

Theorem 6.7. Suppose that Assumptions 1.2–1.4 hold and in addition σ(HT
L) ∩ Jloc is a.s.

simple and NJloc > 0. Let G be the event

GR := {En ∈ σ(Hω) ∩ Jloc : En is simple and ψn is (c, θ) -localized with xn ∈ ΛR(0)} .
Then there exist c, C > 0 such that for any R sufficiently large and θ sufficiently small we have
a bound

P
(

PRE (GR) ≥ 1−
√
θ
)
≥ 1− C

√
θ. (6.13)

We are now ready to complete
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Proof of Theorem 1.5. Let θ = e−c
√
` and pick R = R(`) such that (6.13) holds. Let L = Cε−1

and consider

ΞL :=
(

3
2LZ

)d
, (6.14)

cf. (5.14), and an L-cover of Zd of the form

Zd =
⋃
a∈ΞL

ΛL(a).

We note that for any x ∈ Zd we can find a ∈ ΞL such that dist (ΛcL(a), x) ≥ L/4.
We also cover Jloc with the overlapping intervals

Jloc = ∪iJi,

so that (a) length of each interval Ji is equal to c`−ξ and (b) for each E ∈ J ′loc that satisfies

dist (E, Jcloc) ≥ `−ξ we can find Ji such that dist (E, Jci ) ≥ `−ξ/3. It is clear that one can always

construct such a covering using C`ξ intervals Ji.
We will say that a property A is satisfied for a fraction 1− θ of boxes ΛL(a) (which we will

be calling the good ones) if

lim
R→∞

#ΛL(a) ⊂ ΛR : A is satisfied for ΛL(a)

#ΛL(a) ⊂ ΛR
= 1− θ. (6.15)

Identifying each box ΛL(a) in the cover with the corresponding torus T a, we can use Theorem

2.1 to conclude, using the ergodicity, that 1− e−c
√
` fraction of such tori satisfy the conclusions

of Theorem 4.6 for each interval Ji in the cover of Jloc (we recall that given N tori {T a}, we
can chose at least 6−dN of them to be disjoint, see the proof of Lemma 5.10).

We now pick any ω ∈ GR and conclude from the previous statement that the fraction 1−e−c
√
`

of eigenstates ψn for Ho with eigenvalues En ∈ Jloc are (c, θ)-localized. Let ψ be one of such
eigenfunctions. Then there exists a box a ∈ ΞL and an interval Ji such that

dist (ΛcL(a), xn) ≥ L/4, ‖χ̄Λψ‖ ≤ e−cL, E ∈ Ji.

If this box happen to be a good box, then the first assertion of Theorem 1.5 holds for all s by
Theorem 2.1, and the second assertion holds for s = 0 by Lemma B.2 below and the assertions of
Theorem 2.1. It then follows from Theorem 4.6 that the second assertion holds for all s ∈ [0, 1].

Since the fraction of good boxes is 1− e−c
√
`, we get the result.

�

7. Derivation of Linear Response Theory

In this Section, we prove Theorem 1.6 and we assume the setting outlined in the section 1.4.
The proof has three steps.

1) We approximate the Z2 geometry by the one of a (sufficiently large) torus. In particular,
we replace PEF by PT

EF
.

2) We decompose PT
EF

into the adiabatic projection Q corresponding to the energy E =

EF + 6δ (recall (2.1)) and a reminder term R. We then use the adiabatic theorem on
torus to control the evolution of the adiabatic part.

3) We show that the reminder term does not contribute to the transport, and the adiabatic
term gives the Kubo formula. The reminder term does not contribute because it consists
of localized states.

Let L = Cε−1 and let T be a torus of the linear size L. For the first step, we consider a region
B ⊂ T be a region such that ΛL/4 ⊂ B ⊂ ΛL/3. The precise choice of B is made afterwards.

Lemma 7.1. With probability 1− e−cL, the operator (Pε(s)− P ) J is trace class and

tr(Pε(s)− P ) J = tr
(
PT
ε (s)− PT) J̃ +O(e−cL), (7.1)
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where PT = PT
EF

(H) is a Fermi projection on the torus, and

J̃ = χBJ.

We note that J̃ is supported in a strip |x1| ≤ r.

Proof. We will show that, with probability ≥ 1− e−cL,∥∥∥(P ]ε (s)− P ]
)
χ{x}J

∥∥∥ ≤ e−c|x| for |x| ≥ L/3, P ] =
{
P, PT } . (7.2)

This bound immediately implies the first assertion of the lemma. To get the second claim, we
decompose

tr(Pε(s)− P ) J = tr(Pε(s)− P ) J̃ + tr(Pε(s)− P ) χ̄BJ, (7.3)

and estimate them separately. For the first term, we use (3.1) to deduce that

tr(Pε(s)− P ) J̃ = tr
(
PT
ε (s)− PT) J̃ +O(e−cL).

The second term on the right hand side of (7.3) is O(e−cL) by (7.2), so we only need to prove
the latter bound. For the time independent case, see [EGS, Lemma 5]. We provide the proof
of this fact in our setting for completeness.

Since the argument is identical for both projections, we will only consider the case P ] = P .
Using the fundamental theorem of calculus, we write

Pε(s)− P = −Uε(s)
(∫ s

−1
∂t (U∗ε (t)PUε(t)) dt

)
U∗ε (s)

=
i

ε
Uε(s)

(∫ s

−1
U∗ε (t)[H(t), P ]Uε(t)dt

)
U∗ε (s)

=
iβ

ε
Uε(s)

(∫ s

−1
g(t)U∗ε (t)[Λ2, P ]Uε(t)dt

)
U∗ε (s).

We next note that with probability ≥ 1− e−cL,∥∥[Λ2, P ]χ{x}
∥∥ ≤ CecL |x|d+1 e−c|x2|. (7.4)

Indeed, (5.9) implies by Markov’s inequality that∑
x,y∈Z2

|x|−d−1 ec|x−y| |P (x, y)| ≤ CecL

with this probability. It implies that on the same probabilistic set,

|P (x, y)| ≤ CecL |x|d+1 e−c|x−y|.

The relation (7.4) now follows by using ‖Λ2e
cx2‖ ≤ 1 for all x with x2 < 0, and then using∥∥Λ̄2e

cx2
∥∥ ≤ 1 for the remaining x ∈ Z2 together with [Λ2, P ] = −[Λ̄2, P ].

Combining (7.4) with Proposition B.3, we deduce that∥∥[Λ2, P ]Uε(t)χ{x}
∥∥ ≤ |x|d+1 ecLe−c|x2| for |x| ≥ L/3. (7.5)

The desired bound (7.2) now follows by combining (7.5) with
∥∥χ{x}ec|x1|J

∥∥ ≤ C for all x ∈ Z2.
�

This establishes the first step of the proof.
For the second step, we will consider configurations ω for which Theorem 2.1 (and conse-

quently ) are applicable. In particular, all bounds below hold with probability ≥ 1 − e−c
√
`.

For a fixed ω, we consider a set A = ∪γTγ , where the union is taken over all γ such that
Tγ ∩ ΛL/4 6= ∅. Let B = ΛL/4 ∪ A. We note that by construction ΛL/4 ⊂ B ⊂ ΛL/4+L and

min
γ

dist
(
∂B, T̂γ

)
≥ `/4 (7.6)

(see a paragraph preceding (4.19) for notation), the fact that will be used often in the proof
below.
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We next decompose PT into two components PT = Q(−1) + R where Q(s) is the smooth
adiabatic projection constructed in Theorem 2.2 (adjusted to the interval (−1, 1)) and R :=
PT −Q(−1). By Theorem 2.2 we then have that for s ≥ 0 and N ∈ N,

‖PT
ε (s)−Q(0)−Rε(s)‖ ≤ CN εN

(
1

∆N
+

1

δ2N+1

)
+O(e−c

√
`),

with Rε = Uε(s)RU
∗
ε (s), and where we used Q(s) = Q(0) for s ≥ 0. Hence

σm =
1

β
tr((Q(0))−Q(−1))J̃) +

1

β

∫ 1

0
tr(Rε(s)−R)J̃)ds+O(ε∞ + e−c

√
`).

In Proposition 7.2 below we will show that the first term on the right hand side is equal to σ,

up to corrections of order O(e−c
√
`).

Thus it remains to bound the second term. It will be convenient to introduce a new scale ˜̀

in addition to `, defined by the modified value for δ, namely δ̃ = 7δ. We consider the operator
Q̃s constructed in Lemma 4.9. The important properties of Q̃s are that it covers the spectral
support of R and that it allows us to control spatial support of R. Let I = (E − 6δ, E + 6δ).
Using Theorem 2.2.(ii), we have ∥∥R− PT

I RP
T
I

∥∥ ≤ O(e−c
√
`).

By definition of Qs and the exponential decay of R, we then obtain∥∥∥∥∥R−∑
γ

Q̃γ−1RQ̃
γ
−1

∥∥∥∥∥ ≤ O(e−c
√
`)

and, using Lemma 4.7.(i), we see that, for s ≥ 0,

‖Rε(s)−
∑
γ

QγsRε(s)Q
γ
s‖ ≤ O(ε∞ + e−c

√
`). (7.7)

Since Qγs is supported in T̂γ (see a paragraph preceding (4.19) for notation), it follows that,

up to a small error, Rε(s) is a sum of terms each supported in a region T̂γ . Let Ûε denote the
evolution generated by HT (s), the restriction of HT(s) to the union of all Tγ . Then we have

d

ds

(
Û∗ε (s)Rε(s)Ûε(s)

)
=
i

ε
Û∗ε (s)[HT (s)−H(s), Rε(s)]Ûε(s) = O(ε∞ + e−c

√
`),

thanks to (7.7) and Lemma 4.4. Thus we can approximate

‖Rε(s)−
∑
γ

Q̃γs R̂ε(s)Q̃
γ
s‖ ≤ O(ε∞ + e−c

√
`),

where R̂ε(s) = Û∗ε (s)RÛε(s).
Let X be a set

X =
{
T̂γ :

{
T̂γ ∩ {|xj | ≤ r

}
6= ∅, j = 1, 2

}
, (7.8)

then clearly |X | ≤ CL2.

Consider now any T̂γ /∈ X , then either dist
(
T̂γ ,
{
x ∈ Z2 : x1 = 0

})
≥ r, in which case

Qγs J̃ = 0,

or dist
(
T̂γ ,
{
x ∈ Z2 : x2 = 0

})
≥ r, in which case

Qγs R̂ε(s)Q
γ
s = Qγ−1RQ

γ
−1 +O(e−c

√
`)
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as the perturbation is constant in that region. Hence, using (7.7) and Lemma 4.4 again (recall
that AΘ stands for the restriction of the operator A to the set Θ),

tr(Rε(s)−R) J̃ = tr

((
R̂ε(s)

)X
−RX

)
J̃ +O(ε∞ + e−c

√
`)

= tr

((
R̂ε(s)

)X
−RX

)
J +O(ε∞ + e−#

√
`).

Next we observe, using the cyclicity of the trace for a trace class operator and (7.7), Lemma
2.2.(i), and Lemma 4.4 one more time, that

tr

((
R̂ε(s)

)X
−RX

)
J = −itr

(
[HT (s), R̂ε(s)]

)X
Λ1 +O(e−#

√
`).

But

−itr
(

[HT (s), R̂ε(s)]
)X

Λ1 = ε∂str
(
R̂ε(s)

)X
Λ1.

Hence by the fundamental theorem of calculus,

1

β

∫ 1

0
tr

((
R̂ε(s)

)X
−RX

)
Jds =

ε

β
tr

((
R̂ε(1)

)X
−
(
R̂ε(0)

)X)
Λ1 +O(e−c

√
`),

so that we finally get ∥∥∥∥ 1

β
tr

((
R̂ε(s)

)X
−RX

)
Jds

∥∥∥∥ ≤ CL2 ε

β
+O(e−c`).

Picking

` = β−p, for p > 2d+
1

2
+
d

q
,

in order to satisfy assumptions of Theorem 2.2, see the proof of Theorem 1.7, we get the
statement with p′ = (6d+ 5/2 + 3d/q)−1.

The next statement establishes the last step of the proof. The proof shows that the conduc-
tance is constant within the mobility gap, in the spirit of [AG].

Proposition 7.2. We have

1

β
tr(Q(0)−Q(−1)) J̃ = σ +O(e−c

√
`),

where σ is defined in (1.14).

Proof. We note that by locality of H, J̃ = iχB[HT(r),Λ1]. By the fundamental theorem of
calculus,

1

β
tr(Q(0)−Q(−1)) J̃ =

1

β

∫ 0

−1
tr
(
∂rQ(r)iχB[HT(r),Λ1]

)
dr.

We claim that
1

β
tr
(
∂rQ(r)iχB[HT(r),Λ1]

)
= iġ(r)tr (Q(r)[[Q(r),Λ1], [Q(r),Λ2]]χB) +O(e−c

√
`). (7.9)

Indeed, let Λ̂1(r) = Q(r)Λ1Q̄(r) + Q̄(r)Λ1Q(r). We have

tr
(
∂rQ(r)iχB[HT(r),Λ1]

)
= tr

(
∂rQ(r)iχB[HT(r), Λ̂1(r)]

)
+O(e−c

√
`)

= tr
(
−i[HT, ∂rQ(r)]χBΛ̂1(r)

)
+O(e−c

√
`)

= tr
(
i[ḢT,Q(r)]χBΛ̂1(r)

)
+O(e−c

√
`)

= tr
(
i[βġ(r)Λ2,Q(r)]χBΛ̂1(r)

)
+O(e−c

√
`),

where in the first step we used Q(r)∂rQ(r)Q(r) = Q̄(r)∂rQ(r)Q̄(r) = 0 and in the third step we

used [HT,Q(r)] = O(e−c
√
`). We also repeatedly used that commuting χB with other operators
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under the trace contributes O(e−c
√
`) by virtue of (7.6) and the location of support of the

involved operators. The relation (7.9) now follows, since Λ̂1 = [Q(r), [Q(r),Λ1]].
The implication is

1

β
tr
(
Q(0)−Q(−1))J̃

)
= i

∫ 0

−1
ġ(r)tr(Q(r)[[Q(r),Λ1], [Q(r),Λ2]])χB +O(e−c

√
`). (7.10)

We now define

IndL (Q) = tr(Q[[Q,Λ1], [Q,Λ2]])χB. (7.11)

For Z2 geometry without the cutoff function χB, the index (when it is well defined) is known
to be integer valued and additive. I.e., for orthogonal projections Q,R with a compact R,
Ind∞(Q + R) = Ind∞(Q) + Ind∞(R), provided Q + R is a projection, [ASS, Proposition 2.5].
The argument in [ASS] assumes that the underlying projections are covariant and that their
kernels enjoys good decay properties. The latter hold in the random setting; one can also relax
the covariance requirement for such models, [EGS]. Moreover, limL→∞ IndL (P ) exists and we
have

lim
L→∞

IndL (P ) = σ, (7.12)

[ASS, Section 6]. In fact, using (5.9) it is not hard to show that

|σ − IndL (P )| ≤ O(e−cL) and
∣∣IndL (P )− IndL

(
PT )∣∣ ≤ e−cL. (7.13)

Next we observe that although PT andQ(−1) do not commute, we have
∥∥[PT ,Q(−1)]

∥∥ ≤ e−c√`.
Hence there exists a pair of operators P̂T , Q̂(−1) such that [P̂T , Q̂(−1)] = 0 and

∥∥∥PT − P̂T
∥∥∥ ≤

e−c
√
`,
∥∥∥Q(−1)− Q̂(−1)

∥∥∥ ≤ e−c
√
`, [KaS]. Moreover, applying the compression procedure used

to get a projection Qs from near projection QN (s) in the proof of Lemma 4.9, without loss of

generality we can assume that P̂T , Q̂(−1) are in fact projections. Let Ř = P̂T − Q̂(−1). Since

‖Q(−1)R‖ ≤ e−c
√
`, we conclude that Q̂(−1)Ř = 0. In particular, the additivity of index is

applicable for Q̂(−1) and Ř and yields∣∣∣IndL

(
Q̂(−1)

)
+ IndL

(
Ř
)
− IndL

(
P̂T
)∣∣∣ ≤ e−c√`. (7.14)

By construction, we deduce that

|IndL (Yi)− IndL (Zi)| ≤ e−c
√
`, i = 1, 2, 3, (7.15)

where Y1 = Ř, Z1 = R, Y2 = Q̂(−1), Z2 = Q(−1), Y3 = P̂T and Z3 = PT . In addition, since
Q(r) is continuous, we conclude that

IndL

(
Q̂(r)

)
= IndL

(
Q̂(−1)

)
+O(e−c

√
`). (7.16)

Putting together (7.13)–(7.16) we see that the statement follows if we can show that

Ind(R) = O(e−c
√
`). (7.17)

To establish this bound we observe that

Ind(R) = Ind(RX ) +O(e−c
√
`),

where X was defined in (7.8), just as in the argument used in the second step above. But

Ind(RX ) = itrRX [[RX ,Λ1], [RX ,Λ2]],

and the right hand side isO(e−c
√
`) usingRX

(
I−RX

)
= O(e−c

√
`) and cyclicity of the trace. �
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Appendix A. Hybridization in 1D

Here we will consider the analytic family of Hamiltonians of the form

Hβ = Ho + βW (A.1)

acting on `2 (Z) (we will only consider the phenomenon in one dimension).
The assumptions on Ho in this section will be stronger than elsewhere in the paper, too. In

particular, the random operator Ho will be assumed to be the standard Anderson Hamiltonian,
HA = ∆ + Vω, with Vω(i) = ωi, the i.i. random coupling variables distributed according to
the Borel probability measure P := ⊗ZP0. We will assume that the single-site distribution P0

is absolutely continuous with respect to Lebesgue measure on R. The corresponding Lebesgue
density µ will be further assumed to be bounded with support supp(µ) ⊂ [0, 1]. In addition we
will assume that the single-site probability density is bounded away from zero on its support.

With such assumptions on Ho we can make stronger statements about the system’s behavior.
These are encapsulated in

A.1. Background results. Important properties concerning the behavior of Ho are encapsu-
lated in Theorems A.1, A.4, A.6, and A.5 below.

Theorem A.1 (Eigenfunction localization). There exists ν > 0 such that for P-almost every
ω and Lebesgue a.e. β ∈ [0, 1], σ(Hω) is simple and for each E ∈ σ(Hω) there is a localization
center xE(ω, β) such that the normalized eigenfunction ψE(·, ω) satisfies, for all y ∈ Z

|ψE(y, ω)|2 ≤ A(ω)〈xE(ω)〉2e−ν|y−xE(ω)|, (A.2)

with A(·) ∈ L1(Ω,P).

This statement is a consequence of [AW, Theorems 5.8, 7.4, and 12.11].
We will need the probabilistic version of this assertion. For this, we introduce

Definition A.2. For ω ∈ Ω and a pair (ν, θ) of positive parameters, we will say that Hω is
(ν, θ)-localized if for each E ∈ σ(Hω)

|ψE(y, ω)|2 ≤ 1

θ
〈xE(ω)〉2e−ν|y−xE(ω)|. (A.3)

Then Theorem A.1 implies, via Markov’s inequality, that

P ({ω ∈ Ω : Hω is (ν, θ)-localized}) ≤ 1− Cθ (A.4)

for some C > 0.
We now state a consequence of (ν, θ)-localization. This is essentially repetition of the argu-

ment in [DJLS, Theorem 7.1 and Lemma 7.2] that tracks the dependence on θ. We omit the ω
dependence in what follows since the result is deterministic.

Theorem A.3. Assume that H is (ν, θ)-localized. Then there exists Cν > 0 and E ∈ σ(H)

such that |ψE(0)|2 ≥ −Cνln θ and |xE | ≤ − ln θ
9Cν

.

Proof. We first observe that for any L ∈ N and E ∈ σ(H) we have∑
y∈Z:

|y−xE |≥ 1
2

(|xE |+L)

|ψE(y)|2 ≤ 〈xE〉
2

θ

∑
y∈Z:

|y−xE |≥ 1
2

(|xE |+L)

e−ν|y−xE |

=
〈xE〉2

θ

∑
u∈Z:

|u|≥ 1
2

(|xE |+L)

e−ν|u| =
〈xE〉2

θ
e−

ν
2

(L+|xE |) 2

1− e−ν
≤ Cν

θ
e−

ν
2

(L+|xE |) (A.5)

for some Cν > 0.
We next note that by orthonormality and completeness of {ψE} we have∑

E∈σ(H)

|ψE(y)|2 = 1, y ∈ Z; (A.6)
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∑
y∈Z

|ψE(y)|2 = 1, E ∈ σ(H); (A.7)

Hence, using (A.5), there exists Kν > 0 such that

4L+ 1 =
∑
|y|≤2L

∑
E∈σ(H)

|ψE(y)|2 ≥
∑
|y|≤2L

∑
E∈σ(H):
|xE |≤L

|ψE(y)|2 =
∑

E∈σ(H):
|xE |≤L

1−
∑
|y|>2L

|ψE(y)|2


≥ # {E ∈ σ(H) : |xE | ≤ L}
(

1− Cν
θ

e−
ν
2
L

)
≥ 1

2
# {E ∈ σ(H) : |xE | ≤ L} (A.8)

for L ≥ Kν |ln θ|.
This bound together with (A.5) imply that for L ≥ Kν |ln θ| we have∑
|y|≤L

∑
E∈σ(H):
|xE |>3L

|ψE(y)|2 ≤
∞∑
k=4

# {E ∈ σ(H) : |xE | ≤ kL}
Cν
θ

e−
νkL

2

≤ 9Cν
θ
L
∞∑
k=4

ke−
νkL

2 <
1

2
(A.9)

for L ≥Mν |ln θ| with some Mν > 0.
Using this estimate, we get

1 =
∑

E∈σ(H)

|ψE(0)|2 ≤
∑

E∈σ(H):
|xE |≤3L

|ψE(0)|2 +
1

2
,

for L ≥Mν |ln θ|, so
1

2
≤

∑
E∈σ(H)

|ψE(0)|2 ≤
∑

E∈σ(H):
|xE |≤3L

|ψE(0)|2 ,

and since # {E ∈ σ(H) : |xE | ≤ 3L} ≤ 13L by (A.9), we deduce that there exists Cν > 0 and
E ∈ σ(H) such that

|ψE(0)|2 ≥ 1

27L
=
−Cν
ln θ

, |xE | ≤
− ln θ

9Cν
.

�

Let Λ = [0, L] ∩ Z. By HΛ
β we will denote the (Dirichlet) restriction of Hβ to Λ.

While Theorem A.1 asserts that the σ(HΛ
β ) is a.s. simple, we will need a stronger statement

about its spectrum.

Theorem A.4 (Two-sided Wegner estimate). There exist L0 > 0 and constants C+ ≥ C− > 0
such that for any subinterval J of [0, 2] we have

C− |J |L ≤ E
(
trχJ

(
HΛ
β

))
≤ C+ |J |L, (A.10)

provided L > L0.

The upper bound is well known, see e.g., [AW, Corollary 4.9]. The lower bound was recently
established in [G, Theorem 1.1].

We will also need the following extension of the upper Wegner bound, known as the Minami
estimate:

Theorem A.5 (Minami estimate). For any n ∈ N, there exists Cn > 0 such that

P
(
trχJ

(
HΛ
β

)
≥ n

)
≤ Cn (C+ |J |L)n , (A.11)

with C+ defined in Theorem A.11.
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See e.g., [AW, Theorem 17.11]. This assertion implies

Theorem A.6. Let δ > 0 and let Eω be an event

Eω,β :=
{
σ(HΛ

β ) is δ-level spaced on Λ
}
.

Then there exists C > 0 such that

P (Eω) ≥ 1− CδL2.

This statement is essentially [KM, Lemma 2], in the formulation given in [EK1, Lemma B.1].

A.2. Hybridization. We will henceforth assume that W in (A.1) satisfies W ≥ 0, supp(W ) is
compact, and that there exists a point z ∈ Z such that W ≥ χ{z}. Since Hω is ergodic, without
loss of generality we will also assume that z = 0.

Our main focus here will be on what we can show for a large but finite system size L. Specifi-
cally, we will consider a box ΛL := [−L,L]∩Z, and L large enough so that we can decompose ΛL
into two distinct sets ΛL = Λin∪Λout, such that supp(W ) ⊂ Λin and dist (supp(W ),Λout) ≥

√
L.

We will denote by 〈l±, r±〉 the pair of edges connecting Λin and Λout (i.e., l± ∈ Λin, r± ∈ Λout
and |r± − l±| = 1).

We will use the concept of n.u. (ν, θ)-localizing Hamiltonian, cf. Definition 6.2.

Definition A.7. Let L ∈ N. We will say that H is hybridization-susceptible on the scale L if
there exists θ ∈ (0, 1

4) and eigenpairs (Ein, φin), (Eout, φout) for Hin := HΛin and Hout := HΛout ,
respectively, such that

|Eout − Ein| ≤ θ3L−1 and min (dist (σ(Hout) \ Eout, Eout) ,dist (σ(Hin) \ Ein, Ein)) ≥ θ2L−1.
(A.12)

Definition A.8. Let ` ∈ N, ν > 0, and let Ψ ⊂ Z. We will say that an eigenvector ψ for HΨ

is (`, ν)-bulk if there exists x ∈ Ψ such that [−`, `] + x ⊂ Ψ and
∥∥χ̄[−`/2,`/2]+xψ

∥∥ ≤ e−ν`/2.

We will shorthand ΛL to Λ whenever the scale L is fixed. By ΩΛ we will denote the restriction

of Ω to Λ. By Λ± we will denote the sets Λ± = [−
√
L

10 ,
√
L

10 ] + l±. Our first result is

Proposition A.9. Let θ ∈ (0, 1
4). Consider the following events Aω,Bω, Cω,Dω, Eω ⊂ ΩΛ:

Aω =
{
H

Λ]
0 is n.u.

(
ν, θ4

)
-localizing for ] = in, out

}
;

Bω =
{
H

Λ±
0 are θ

L -gapped
}

;

Cω =
{
HΛ

0 is hybridization-susceptible on the scale L
}

;

Cω ⊃ Dω =
{

The corresponding eigenvectors φ] are (
√
L

10 ,
1

lnL)-bulk
}

;

Dω ⊃ Eω =
{

the eigenpair (Ein, ψ) with localization center xin

satisfies |xin| < ln2 θ and
∣∣∣Ėin(0)

∣∣∣ > ln−2 θ
}
.

Let Fω = Aω ∩ Bω ∩ Eω. Then there exists θo ∈ (0, 1) and Lo ∈ N such that, for all θ < θo
and L > Lo, P (Fω) ≥ cθ3.

Remark A.10. These conditions imply, via Hellmann-Feynman theorem, that for the decou-
pled system the eigenvalues Ein(β) and Eout(β) level cross for some β ∈ I, see the proof of
Lemma A.18 below. This will play an important role in our analysis down the road.

We will now prove the above proposition. We first show a part of it, namely
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Lemma A.11. Let θ > 0 be a small parameter. Consider the following events (recall Definition

??) Ãω and B̃ω:

Ãω =
{
ω ∈ ΩΛin : HΛin

0 is n.u.
(
ν, θ4

)
-localizing and θ4L−1-level spaced

}
,

B̃ω =
{
ω ∈ ΩΛin : ∃ i s.t. |xin| < ln2 θ,

∣∣∣Ėin(0)
∣∣∣ > c ln−2 θ

}
Then P

(
Ãω ∩ B̃ω

)
≥ 1−Kθ4.

Proof. We first note that P
(
Ãω
)
≥ 1 − Cθ4 by (A.4) and Theorem A.6. We will now assume

that ω ∈ Ãω.
The existence of a level Ein supported around the origin and susceptible to W , follows from

the Hellmann–Feynman theorem. Indeed, let S be a subset of σ(Hin) such that for each Ein ∈ S
the corresponding localization center xin satisfies |xin| ≥ ln2 θ. Then we have∑

Ein∈S
tr
(
PEinχ{0}

)
≤ Cθ2, (A.13)

where PEin denotes the spectral projection of Hin onto Ein. This implies that∑
Ein /∈S

tr
(
PEinχ{0}

)
≥ 1

2
(A.14)

for θ sufficiently small. We now note that |σ(HR) \ S| ≤ C ln2 θ, see [DJLS, Lemma 7.2]. Hence,
by the pigeonhole principle, there exists Ein such that

tr(PEinW ) ≥ tr
(
PEinχ{0}

)
≥ c ln−2 θ.

But, by the Hellmann–Feynman theorem, denoting by Ein(β) the analytic family of eigenvalues
associated with H(β) and satisfying Ein(0) = Ein,

Ėin(0) = tr(PEinW ),

and the result follows.
�

Now we can complete

Proof of Proposition A.9. We first note that the lower Wegner estimate, Theorem A.4, and the
statistical independence of Hin and Hout implies that

dist (σ(Hout), Ein) ≤ θ3L−1

with probability cθ3 (on ΩΛout), i.e., the first part of (A.12) holds with this probability. In fact,

with the same probability we can ensure that the corresponding eigenvector φout is (
√
L

10 ,
1

lnL)-

bulk. Since |xin| < ln2 θ, we deduce that φin is (
√
L

10 ,
1

lnL)-bulk as well. Theorem A.6 ensures

that P (Bω) ≥ 1−θ4 for L sufficiently large. On the other hand, the Minami estimate, Theorem
A.5, applied for HΛout

o and the energy E = Ein, implies that the second part of (A.12) holds
with probability 1−Cθ4 (on ΩΛout). Putting everything together yields the desired result for θ
sufficiently small (specifically we need to ensure cθ3 > 2Cθ4). �

We recall that Λout consists of two disconnected parts Λ±out. Without loss of generality, we

will henceforth assume that Eout ∈ σ(HΛ+
out) (i.e., the corresponding eigenvalue is supported on

Λ+
out), and will denote by 〈l+, r+〉 the edge connecting Λin and Λ+

out.

Lemma A.12. Let Ψ = [−(lnL)2, (lnL)2] + l+ and let Ĩ := Ein + [− θ√
L ,

θ√
L ]. In the notation

of Proposition A.9 consider Fω ⊂ Eω given by

Gω =
{
ω ∈ Fω : trχĨ(H

Ψ
0 ) = 0

}
.

Then there exists θo ∈ (0, 1) and Lo ∈ N such that, for all θ < θo and L > Lo, P (Gω) ≥ 1− θ4.
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Proof. The result follows from the upper Wegner estimate, Theorem A.4.
�

Lemma A.13. Let

Hω =
{
ω ∈ Ω :

∣∣∣〈δr+ , (HΨ
)−1

δl+〉 − 1
∣∣∣ ≥ 1

L

}
and HΨ is n.u.

(
ν, θ4

)
-localizing.

Then P (Hω) ≥ 1− θ4.

Proof of Lemma A.13. By (A.4), it suffices to show the first property.

Let G(x, y) = 〈δx,
(
HΨ
)−1

δy〉. We first observe that thanks to the geometric resolvent
identity (or just directly in [AW, Eq. 12.7]),

G(l+, r+) = Ĝ−1(l+, r+)G(r+, r+), (A.15)

where Ĝ(x, y) = 〈δx,
(
ĤΨ
)−1

δy〉 and ĤΨ is obtained from HΨ by the removal of the 〈l+, r+〉
bond, i.e., ĤΨ = HΨ − Γ+. We have

1

Ĝ(0, 0)G(1, 1)− 1
=

1

G(1, 1)

1

Ĝ(0, 0)−G−1(1, 1)
= −G̃(1, 1)

G(1, 1)
,

where G̃(x, y) := 〈δx,
(
H̃Ψ
)−1

δy〉 with H̃Ψ = HΨ − Ĝ(0, 0)χ{r}. The important fact here is

to note that Ĝ(0, 0) is independent of ω1 random variable. This independence allows us to
conclude that

Eω1

∣∣∣G̃β(1, 1)
∣∣∣s ≤ Cs, s ∈ (0, 1).

On the other hand, under our conditions on probability distribution µ, we also have (see [AW,
Theorem 12.8]

E |G(0, 0)|−s ≤ Cs, s ∈ (0, 1).

Combining these two bounds and using the Hölder inequality, we deduce that

E

∣∣∣∣∣ 1

Ĝ(0, 0)G(1, 1)− 1

∣∣∣∣∣
s

≤ Cs, s ∈ (0, 1/2),

from which the assertion follows. �

Proposition A.9 and Lemma A.12 let us conclude that the following holds for the coupled

system. We will shorthand Hβ = HΛL
β .

Proposition A.14. Let Phyb(β) =
∑

]={in,out} |φ]〉〈φ]|, where φin,out were introduced in Defi-

nition A.7 and Lemma A.9. Let I := Ein + [− θ3

L ,
θ3

L ]. Then for ω ∈ Gω ∩ Hω and β ∈ J :=

[− θ2

4L ,
θ2

4L ], we have

(i) σ(Hβ) ∩ I = {λ−(β), λ+(β)} where λ±(β) are real analytic in β for β ∈ J ;

(ii) χÎ(Hβ) = χI(Hβ) for Î := Ein + [− θ2

2L ,
θ2

2L ];
(iii) trχI(Hβ) = 2;

(iv) tr (χIc(Hβ)Phyb(β)) ≤ exp
(
−
√
L

ln2 L

)
;

(v) trχI(Hβ)W ≥ θ2 for β ∈ J .

Proof. By Lemma B.2 we deduce that

dist (σ(Ho), E]) ≤ exp
(
−
√
L

ln2 L

)
for ] = in, out. The property A.14.(ii) is proved by the same argument as one that is used in
the proof of Theorem 2.1.(ii). The statements A.14.(i), A.14.(iii)–A.14.(v) now follow from the
standard perturbation theory. �

We now draw some conclusions about the coupled system Hβ with ω ∈ Gω.
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Lemma A.15. Under the same conditions as in the previous lemma, the operator

R(β, λ) := P̄hyb(β) (Hβ − λ) P̄hyb(β) (A.16)

is invertible on the range of P̄hyb(β) for all λ ∈ I, with∥∥∥(R(β, λ))−1
∥∥∥ ≤ 8L

θ2 (A.17)

for such λ.

Proof. This is proven using the same technique as in the proof of Lemma 4.10. �

Proposition A.14 allow us to introduce a concept of the eigenvalue hybridization:

Definition A.16. Suppose that Hβ satisfies the assumptions of Proposition A.14. For β such

that λ−(β) 6= λ+(β), let P±(β) := χ{λ±(β)}(Hβ), and let P dec− (β) := χ{Eout}(Hout), P
dec
+ (β) :=

χ{Ein)}(Hin) (in particular, P dec− is in fact β-independent). We will say that the analytic families
λ±(β), defined in Proposition A.14 do not hybridize if∥∥∥P−(β)P dec+ (β)

∥∥∥ < θ2 (A.18)

for all β ∈ I for which λ−(β) 6= λ+(β), and hybridize otherwise.

Remark A.17. Note that (A.18) implies, via Proposition A.14.(iv), that∥∥∥P+(β)P dec− (β)
∥∥∥ < θ2 + exp

(
−
√
L

ln2 L

)
, (A.19)

so (A.18) and (A.19) are essentially symmetrical.

We claim that in our setting, λ±(β) have to hybridize in J .

Theorem A.18. In the notation of Proposition A.14, let ω ∈ Fω. Then λ±(β) hybridize in I.
In addition,

min
β∈I
|λ+(β)− λ−(β)| > θ4

L2
. (A.20)

Proof. Suppose in contradiction that the eigenvectors do not hybridize. Wlog let us assume
that λ−(0) > λ+(0). Since (A.18) holds, we deduce that in fact

tr
(
P∓(0)P dec± (0)

)
< exp

(
−
√
L

ln2 L

)
by Proposition A.14.(iv). By the Hellmann–Feynman theorem

λ̇−(β) = tr (P−(β)W ) ≤ tr (P−(β)Phyb(β)W ) + ‖W‖ exp
(
−
√
L

ln2 L

)
= tr

(
P−(β)P dec+ (β)W

)
+ ‖W‖ exp

(
−
√
L

ln2 L

)
≤ ‖W‖ θ2 + exp

(
−
√
L

ln2 L

)
≤ θ (A.21)

for θ sufficiently small and L sufficiently large. On the other hand,

λ̇+(β) = tr (P+(β)W ) ≥ tr (P+(β)Phyb(β)W )− ‖W‖ exp
(
−
√
L

ln2 L

)
= tr

(
P+(β)P dec+ (β)W

)
− ‖W‖ exp

(
−
√
L

ln2 L

)
≥ tr

(
P dec+ (β)W

)
− ‖W‖ θ3 − ‖W‖ exp

(
−
√
L

ln2 L

)
≥ Ėin(β)− ‖W‖ θ3 − ‖W‖ exp

(
−
√
L

ln2 L

)
≥ 2

3
ln−2 θ. (A.22)

Since
θ3

L ≥ λ−(0)− λ+(0) ≥ 0,

we conclude that λ±(β) cross each other somewhere in the interval

J̌ :=
[
0, 2θ3 ln2 θ

L

]
⊂ J.
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So, if we can show that these two eigenvalues never intersect, we will arrive at contradiction.
Thus the result follows from

Lemma A.19. The eigenvalues λ±(β) cannot intersect each other at the interval J̌ above. In
fact, the relation (A.20) holds.

Proof. We will shorthand H for Hβ and P for Phyb(β) here. The idea here is to use Schur
complementation. Namely, given λ ∈ I, we consider M = M(β, λ), the Schur complement of H
in Range P̄ , defined as

M := P (H − λ)P − PHP̄
(
P̄ (H − λ) P̄

)−1
P̄HP.

We note that by (A.17) M is well defined for our range of λ’s and β’s. The standard result
in the theory of Schur complementation see e.g., [Z], is that trχ{λ}(H) = 2 (the sufficient and
necessary conditions for the intersection of two eigenvalues) if and only if M = 0. In particular,
the non-intersection property will follow if we can show that in this range we have M12 6= 0. To
this end, we note that

M12 = 〈φout, (H − λ)φin〉 − 〈φout, PHP̄
(
P̄ (H − λ) P̄

)−1
P̄HPφin〉,

with φin,out defined in Proposition A.14 and where the right hand side is well defined thanks to
(A.17). We now evaluate each of the terms on the right hand side. The first one is equal to

〈φout, Hφin〉 = 〈φout,Γφin〉 = φout(l+)φin(r+),

where Γ := H0−Hout−Hin is the coupling between vertices l± and r± (we recall that the bond

〈l±, r±〉 couples Λout and Λin and that supp (φout) ⊂ Λ+
out). Let H̄ = P̄HP̄ , and let

(
H̄ − λ

)−1

denote the inverse of H̄−λ on the Range(P̄ ). To evaluate the second one, we use the identities

P̄HPφin = Γφin − 〈φout,Γφout〉φout, P̄HPφout = Γφout − 〈φin,Γφout〉φin,
Lemma A.15, localization of φin,out as well as position of their centers to get

〈φout, PHP̄
(
H̄ − λ

)−1
P̄HPφin〉

=
∑
±
φ̄out(l+)φin(r±)〈δr± ,

(
H̄ − λ

)−1
δl+〉+O

(
e−
√
L/5
)
. (A.23)

We next use the geometric resolvent identity to estimate the right hand side as

=
∑
±
φ̄out(l+)φin(r±)〈δr± ,

(
HΨ − λ

)−1
δl+〉

+O
(∣∣〈δr± , T δl+〉∣∣ |φout(l+)φin(r±)|

)
+O

(
e−
√
L/5
)
, (A.24)

where Ψ was defined in Proposition A.12 (we note that HΨ
β = HΨ) and T is given by

T =
(
H̄ − λ

)−1 (
H −HΨ + λP − P̄ΓP − PΓP̄ + PHP

) (
HΨ − λ

)−1
.

We then bound ∣∣〈δr± , T δl+〉∣∣ ≤ e−
√
L/5, (A.25)

using Proposition A.12, localization for HΨ, the properties of φin,out, and position of their
centers. Additionally, we note that the ’−’ summand in

∑
± above vanishes. Finally, using the

second resolvent identity and Proposition A.12, we obtain

φ̄out(l+)φin(r+)〈δr+ ,
(
HΨ − λ

)−1
δl+〉

= φ̄out(l+)φin(r)〈δr+ ,
(
HΨ
)−1

δl+〉+O

(
1√
L
|φL(l)φR(r)|

)
. (A.26)

Putting these bounds together, we get

|M12| = |φout(l+)φin(r+)|
∣∣∣〈δr+ , (HΨ

)−1
δl+〉 − 1

∣∣∣+O
(

1√
L |φL(l)φR(r)|

)
. (A.27)
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Hence M12 6= 0 as the eigenfunctions of Hin,out cannot vanish at the respective boundary points

and by Lemma A.13. More specifically, |φout(l+)| ≥ e−CL, |φin(r)| ≥ e−C
√
L using (a) φin,out

are normalized; (b) |Λin| =
√
L and

∣∣Λ+
out

∣∣ < L; [ESo, Lemma 3.1].

Now we prove the quantitative result, (A.20). This can be seen from the bound
∥∥∥(HΨ

)−1
∥∥∥ ≤

θ−1
√
L, (A.17), and [ESo, Lemma 5.2]. �

�

Appendix B. Auxiliary results

Let H be a self-adjoint operator. Throughout the text we often use the integral representation

P[E1,E2](H) = − 1

2π

∫ ∞
−∞

2∑
j=1

(−1)j (H − ix− Ej)−1 dx, (B.1)

which holds provided that E1, E2 are not in the spectrum σ(H). If, in addition, H(s) is a
differentiable family of operators, the formula

d

ds
(H(s)− ix− Ej)−1 = − (H(s)− ix− Ej)−1 Ḣ(s) (H(s)− ix− Ej)−1 (B.2)

holds. Similarly

[R,
1

H − z
] = − 1

H − z
[R,H]

1

H − z
(B.3)

Lemma B.1. Let H1, H2, R be bounded operators on `2 (Λ), with H1, H2 self-adjoint. Let
J = [E1, E2] and denote by J2∆ for ∆ > 0, the fattened interval J + [−2∆, 2∆]. Suppose that,
for some ε1, ε2,

(i) ‖(H1 −H2)R‖ = ε1
(ii) ‖[H2, R]PJ(H2)‖ ≤ ε2.

Then ∥∥P̄J∆
(H1)RPJ(H2)

∥∥ ≤ ε1 + ε2
∆

.

Proof. Let z1 = E1 −∆ + ix and z2 = E2 + ∆ + ix and write

Gi,j = (Hi − zj)−1 .

We first establish the identity

P̄J∆
(H1)RPJ(H2) =

1

2π

2∑
j=1

(−1)j
∫ ∞
−∞

P̄J∆
(H1)G1,j [H2, R]G2,jPJ(H2)dx

+
1

2π

2∑
j=1

(−1)j
∫ ∞
−∞

P̄J∆
(H1)G1,j (H2 −H1)RG2,jPJ(H2)dx.

Indeed, we start from

G1,j [H2, R]G2,j = G1,j(H2 −H1)RG2,j +RG2,j +G1,jR.

Upon multiplying with (−1)j , summing over j = 1, 2, integrating over x, and using (B.1) with
[E1, E2] replaced by [E1 −∆, E2 + ∆], we get the desired identity. Next, we bound

max
j=1,2

∥∥P̄J∆
(H1)G1,j

∥∥ ≤ 1√
x2 + ∆2

, max
j=1,2

‖G2,jPJ(H2)‖ ≤ 1√
x2 + ∆2

to get ∥∥P̄J∆
(H1)RPJ(H2)

∥∥ ≤ (ε1 + ε2)
1

π

∫ ∞
−∞

dx

x2 + ∆2
=
ε1 + ε2

∆
.

�
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In the next two lemmas, we use the notation Ja(µ) = [µ−a, µ+a], and will let PΘ
Ja(µ) denote

the spectral projection of HΘ
o onto Ja(µ).

Lemma B.2. Let Φ,Θ, with Φ ⊂ Θ be finite subsets of Zd. Let (φ, µ) be an eigenpair for HΦ
o .

Then we have

dist
(
µ, σ(HΘ

o )
)
≤ C |∂rΦ| ‖χ∂rΦφ‖∞ , (B.4)

and

dist
(
φ,RangePΘ

Ja(µ)

)
≤ C

a
|∂rΦ| ‖χ∂rΦφ‖∞ . (B.5)

Conversely, if (ψ, λ) is an eigenpair for HΘ, then

dist
(
λ, σ(HΦ

o )
)
≤ C |Θ \ Φ|

∥∥χΘ\Φψ
∥∥
∞ , (B.6)

and

dist
(
φ,RangePΦ

Ja(λ)

)
≤ C

a
|Θ \ Φ|

∥∥χΘ\Φψ
∥∥
∞ . (B.7)

Proof. We have

((
HΘ
o − µ

)
φ
)

(y) =


∑

y′∈Φ:
|y−y′|≤r

Ho(y, y
′)φ(y′) if y ∈ Θ \ Φ and dist (y,Φ) ≤ r,

0 otherwise.
(B.8)

It follows that ∥∥(HΘ
o − µ

)
φ
∥∥ ≤ C |∂rΦ| ‖χ∂rΦφ‖∞ . (B.9)

Thus, recall that φ is normalized,

dist
(
µ, σ(HΘ

o )
)
≤
∥∥(HΘ

o − µ
)
φ
∥∥ ≤ C |∂rΦ| ‖χ∂rΦφ‖∞ . (B.10)

On the other hand, we have∥∥∥P̄Θ
Ja(µ)φ

∥∥∥ ≤ ∥∥∥P̄Θ
Ja(µ)

(
HΘ
o − µ

)−1
∥∥∥∥∥(HΘ

o − µ
)
φ
∥∥ ≤ C

a

∥∥χΘ\Φψ
∥∥
∞ , (B.11)

from which the second assertion of the lemma follows.
Similar considerations yield∥∥(HΦ

o − λ
)
φ
∥∥ ≤ C |Θ \ Φ|

∥∥χΘ\Φφ
∥∥
∞ , (B.12)

which in turn imply the bounds (B.6)–(B.7). �

In this paper we are interested in the evolution of the initial wave packet ψo supported near
some x ∈ Zd up to the (rescaled) times s of order 1. In this context we can always approximate

the dynamics generated by H(s) with the one generated by ĤT(s), where HT(s) is understood
as an operator on `2(Zd) by extending it by zero outside of the box ΛL, in a following sense.

Proposition B.3 (The finite speed of propagation bound). Let T be a torus of the linear size
R and let Uε(s), U

T
ε (s) be the dynamics generated by H(s) and HT(s), respectively, i.e.,

iε∂sUε(s) = H(s)Uε(s), Uε(0) = 1; (B.13)

iε∂sU
T
ε (s) = HT(s)UT

ε (s), UT
ε (0) = 1. (B.14)

Then there exist c > 0 such that for any L satisfying L ≥ C/ε we have

max
s

∣∣∣(U ]ε (s))(y, x)
∣∣∣ ≤ e−c|x−y|, for |x− y| ≥ L

4
, (B.15)

where U ]ε is either U or UT .

Proof. This is a standard fact for (local) lattice Hamiltonians, see e.g., the proof of [EGS,
Lemma 5] for the time independent case (which extends to the time dependent one without
effort), or, for a more general approach, [LR]. �
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